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as the mice were more resistance to LPS-lethality than their 
wild-type counterparts [8]. 

MIF structure and its signal pathways

As most detail pertaining to structural properties has been 
nicely reviewed [9], here we shall briefl y summarize the struc-
tural properties of MIF. MIF gene contains 115 amino acids 
which reduces to 114 after processing [10]. The structure of 
MIF with hydroxyphenylpyruvate indicates the importance of 
Pro-1 which functions as a catalytic base. Mutation of Pro-1 
to glycine signifi cantly reduces the neutrophil priming activ-
ity of MIF but this mutation does not affect its inhibitory ef-
fects on the migration of monocytes. MIF has a/b structures 
[10]. Each MIF monomer contains two antiparallel a-helics 
(a1 and a2) and six b strands (b1-b6). One b-pleated sheet is 
formed by four of six b strands (b1, b2, b4, b5) above which 
two a-helices rise. This represents close similarity to the pep-
tide-binding domain of a major histocompatibility complex 
molecule. In MIF trimer, the remaining two b-strands attach 
to the b sheets of adjacent MIF subunits. Six a-helices sur-
round three b-sheets to form a barrel containing a solvent-ac-
cessible channel which runs through the centre of the protein. 
Though it is suggested that MIF action is mediated by a dimer 
or monomer [11], it is unclear at this moment whether MIF 
trimer is the physiologically occurring state of MIF or not. 

A MIF membrane receptor has not yet been identifi ed, 
but some studies argue in favor of a proposed receptor-me-
diated pathway. Another possibility for MIF to mediate its 
functions could be through catalytic activities. MIF exhib-
its tautomerase, isomerase and thiol-protein oxidoreductase 
activities [12, 13]. The protein substrate of the enzymatic 
activity of MIF has been identifi ed [14]. Other studies 
showed the important role of extracellular signal-regulated 
(ERK1/2) subfamily of mitogen-activated protein (MAP) 
kinase and activator protein-1(AP-1) pathways in MIF-me-
diated signaling [15–18]. A recent study showed that MIF 
could directly promote cell survival through activation of 
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Introduction

Macrophage migration inhibitory factor (MIF) was origi-
nally found to inhibit the random migration of macrophages 
as a T-lymphocyte-derived activity [1] and was associated 
with delayed-type hypersensitivity reactions, infl ammatory 
arthritis [2], glomerulonephritis [3], allograft rejection [4] 
and wound healing [5]. MIF can signifi cantly modify the 
activation, adherence, phagocytosis and nitric oxide (NO) 
production of macrophages [6, 7]. Neutralization of MIF in 
animal models of infl ammatory diseases such as arthritis, 
glomerulonephritis and acute lung injury has pronounced 
therapeutic effects. However, molecular characterization of 
the protein responsible for this activity and its role in the im-
mune response has remained elusive. In addition to its role 
in hypersensitivity reactions, recent studies with MIF–/– mice 
confi rmed the paramount importance of this protein in sepsis 
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the PI3K/Akt pathway and this effect is critical for tumor 
cell survival [19]. Furthermore, an intracellular receptor 
protein for MIF, i. e. co-activator c-jun activation domain 
binding protein-1(JAB1), has been identifi ed [19].

Immunoregulatory effect of MIF 

Glucocorticoids have been administered clinically to treat in-
fl ammatory and autoimmune diseases for over fi ve decades. 
They exert positive and negative effects on immune responses, 
e. g. glucocorticoids are involved in gene modulation during 
priming of the innate response, while they suppress cellular 
(Th1) and promote humoral (Th2) immunity [20]. It is con-
sidered that glucocorticoids inhibit cytokine expression but 
induce MIF expression by monocytes, macrophages and T-
lymphocytes. MIF was described as the fi rst pro-infl ammatory 
cytokine to be produced upon glucocorticoid stimulation [21]. 
Due to the pro-infl ammatory effect of MIF and anti-infl am-
matory effect of glucocorticoids on immune cell activation, 
MIF acts as counterregulatory mediator that counteracts the 
immunosuppressive effects of glucocorticoids [22]. In par-
ticular MIF counteracts glucocorticoid-induced inhibition of 
infl ammatory cytokine secretion in T cells [23]. Current data 
indicate that MIF may play an important role in the infl am-
matory cascade.

The association of glucocorticoid counter-regulating ac-
tivity of MIF with its redox rather than tautomerase activity 
was suggested by the fi nding of structure-function correlations 
[24]. The ERK MAP kinase activation [25] causes phosphor-
ylation and prolongs activation of cytoplasmic phospholipase 
A2 (cPLA2), which was later confi rmed [26]. This effect may 
lead to glucocorticoid receptor (GR) antagonism, with no alter-
ation in GR expression or affi nity [27]. cPLA2 and its products, 
such as arachidonic acid, play a critical role in infl ammatory 
reactions and are involved in activation of c-Jun N-terminal 
(JNK)/stress activated protein kinase (SAPK) pathways [28]. 
The blocking of JNK/SAPK activation induces glucocorticoid 
inhibition of tumor necrosis factor-a (TNF-a) translation [29]. 
MIF ability to activate cPLA2 may lead to counter-regulation of 
the immunosuppressive effect of glucocorticoids. The effects 
of MIF on MAP kinase phosphatase-1 and p38 MAP kinase 
may regulate the sensitivity of cells to glucocorticoid [16].

MIF and infl ammatory diseases

MIF is a ubiquitous protein performing an important role in 
the pathogenesis of various infl ammatory disease conditions 
in different organs such as kidney, heart, lung, liver, skin and 
so on [30]. Here, we briefl y discuss the role of MIF in vari-
ous autoimmune diseases.

Over-expressing MIF could remarkably accelerate the 
progression of glomerulosclerosis and end-stage renal fail-
ure [31]. The urine MIF concentration was signifi cantly in-
creased in proliferative forms of glomerulonephritis (GN) 
and correlated with the degree of renal dysfunction, histo-
logic damage and leukocytic infi ltration. Urine MIF refl ected 
MIF expression in the injured kidney [32]. MIF performs a 
regulatory role in the pathogenesis of immunologically in-
duced kidney disease [33–35]. Anti-MIF mAbs or defi ciency 

of MIF signifi cantly inhibited focal lesions and glomerular 
crescent formation, minimizing glomerular macrophage and 
T-cell infi ltration and activation [36]. This treatment inhib-
ited IL-1, glomerular, interstitial and tubular inducible nitric 
oxide (NO) synthase expressions.

MIF is closely related with the occurrence of rheuma-
toid arthritis (RA) [37]. Elevated levels of MIF were found 
in typical RA infl ammatory sites i. e. 5 to 10 fold higher than 
in normal volunteers. The MIF was released by infi ltrating 
T lymphocytes, macrophages and synovial cells in synovial 
fl uid. Anti-MIF mAb signifi cantly suppressed the infl amma-
tory response in experimentally induced arthritis in mouse 
models [2]. The typical pathological feature of RA is the 
connective tissue degradation by matrix metalloproteinases 
(MMPs). MIF is involved via up-regulation of MMP-1 and 
MMP-3 mRNA levels in synovial fi broblasts [38]. MMP-1 
and MMP-3 are considered to be involved in the degrada-
tion of extracellular matrix components in RA. Furthermore, 
MIF polymorphisms are closely related with increased clini-
cal disease severity and increased risk of joint erosions and 
damage in adult patients with RA [39–41]. The proliferation 
of human RA synoviocytes, inhibition of p53 expression and 
apoptosis in these cells by MIF demonstrate the role of MIF 
in human RA [42, 43]. Recently, the suppression of collagen-
induced arthritis (CIA) in MIF–/– mice [44] confi rms the role 
of MIF in RA. These data suggest that MIF inhibition could 
have signifi cant importance as a therapeutic target in RA.

In all stages of human atherosclerosis, an elevated MIF 
expression and functional co-localization with JAB1 were ob-
served [43, 45]. MIF is up-regulated in endothelial cells (EC), 
smooth muscle cells (SMC) and macrophages during progres-
sion of atherosclerosis in humans and hypercholesterolemic 
rabbits. Activated CD68+ macrophages adherent onto MIF+ 
vascular endothelial cells increased MIF expression [46], which 
indicated a key role of MIF in atherosclerosis. An increased 
MIF-mediated monocyte arrest in the endothelium suggests a 
crucial role of MIF in leukocyte recruitment in atherogenesis 
[47]. The vascular infl ammation, cellular proliferation and ne-
ointimal thickening were reduced by neutralizing MIF bioac-
tivity after experimental angioplasty in atherosclerosis-suscep-
tible mice [48]. The genetic deletion of MIF in LDLR–/– mice 
reduced lipid deposition and intimal thickening in the aorta. 
Neutralizing anti-MIF mAb or peripheral MIF depletion in 
ApoE–/– mice signifi cantly reduced the infl ammatory response 
associated with atherosclerosis development, including reduc-
tions in concentrations of circulating and lesional infl amma-
tory cytokines, lesional adhesion molecules and MMPs, and 
expression of infl ammatory transcription factors. These recent 
studies demonstrated that MIF expression was closely corre-
lated with atherosclerotic disease severity [43].

A signifi cant quantity of MIF was found in the alveolar 
air spaces, which indicates the potential role of MIF in acute 
respiratory distress syndrome (ARDS) [49]. Increased MIF 
expression was confi rmed in ARDS patients [50]. MIF plays 
a role in ARDS via up regulation of the neutrophil chemo-
attractant macrophage infl ammatory protein-2 (MIP-2). An 
elevated level of MIF expression was shown in both lung 
tissues and bronchoalveolar lavage (BAL) fl uids in the devel-
opment of acute injury [51]. Anti-MIF antibody signifi cantly 
reduced the accumulation of infl ammatory cells and also re-
duced TNF-a expression in air spaces. Furthermore, human 
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eosinophils are potent sources of MIF. Eosinophils are the 
key cells in the pathogenesis of allergic infl ammatory diseas-
es such as atopic dermatitis, allergic rhinitis and bronchial 
asthma [52]. MIF is involved in the immunopathogenesis of 
asthma possibly via the promotion of Th2 responses. MIF 
inhibition in asthma may be therapeutically benefi cial and 
specifi c intervention may be guided by the MIF genotype 
of affected individuals [53]. However, recent studies showed 
that MIF is required for allergic infl ammation but not for Th2 
differentiation [54] and without affecting immune response 
[55]. These data suggest that MIF may contribute to the pul-
monary infl ammatory response in asthma and other allergic 
infl ammatory conditions.

Increased level of MIF was noticed in the serum and liver 
of patients with hepatitis, alcoholic liver disease and cirrhosis 
[56, 57]. Neutralizing anti-MIF mAb signifi cantly inhibited the 
severity of hepatitis by reducing the level of transaminase in 
sera and inhibited TNF-a production. In addition, acute hepati-
tis in mice was prevented by anti-sense MIF cDNA [58], which 
reduced the necrotic area in liver. Anti-mouse MIF antibody 
treatment reduced liver injury and infl ammatory cell infi ltra-
tion in the liver after injection of antigen-specifi c cytotoxic T 
lymphocytes into hepatitis B virus transgenic mice [59]. These 
fi ndings suggest the therapeutic potential of MIF in hepatitis. 

An experimental model of pancreatitis induced by tauro-
cholic acid showed the involvement of MIF in the pathogen-
esis of pancreatitis [60]. It was observed that MIF expression 
was signifi cantly increased systemically and locally in pa-
tients with pancreatitis [61, 62]. Anti-MIF antibody treatment 
signifi cantly decreased the severity of pancreatitis [60].

In mice with acute gastric ulcer, macrophages were the 
major source of up-regulated MIF. Anti-MIF antibody signifi -
cantly inhibited the up-regulation of TNF-a and inducible NO 
synthase and intercellular adhesion molecule-1 [63]. Helico-
bactor pylori infection induced signifi cantly high levels of 
MIF protein and mRNA expressions in epithelial cells, T cells 
and macrophages, which suggest a role of MIF in stomach 
disease [64, 65]. Crohn’s disease (CD) and ulcerative colitis 
(UC) showed enhance a MIF protein in the serum of these 
patients [66, 67]. In experimental colitis, MIF expression was 
increased during colitis and the severity of colitis was reduced 
by anti-MIF antibody [68], which suppressed T-helper 1-type 
cytokines and matrix metalloproteinase (MMP). It has been 
reported that MMP is overexpressed in infl ammatory bowel 
disease (IBD) and in experimental colitis [69]. Moreover, 
MIF-defi cient mice showed mild infl ammation compared 
with wild-type mice [70]. Increasing expression of MIF was 
observed in acute neonatal necrotizing enterocolitis [71]. Col-
itis in acute graft-versus-host disease (GVHD) was correlated 
with local upregulation of MIF [72]. 

In addition, MIF may also be involved in intestinal tu-
morigenesis [73]. H. pylori induced gastritis, intestinal 
metaplasia and gastric cancer had progressively increased 
epithelial and serum MIF expression, suggesting that MIF is 
involved in gastric carcinogenesis and may be a valuable bi-
omarker for the early detection of gastric cancer [74].Various 
colon cancers in vivo and in vitro exhibited increased MIF 
level [75]. MIF expression was associated with enhanced 
cell proliferation. Anti-MIF antibody markedly inhibited tu-
mor growth [75]. These studies suggest that MIF may be a 
possible indicator of prognosis in colorectal cancer. 

MIF and graft rejection

A potent innate immune response is initiated by ischemia-
reperfusion (I/R) injury during the process of harvesting, 
transporting, and implanting a transplanted organ [76]. Liver 
I/R and surgical injury causes induction of transcripts for 
the cytokines including IL-10, IL-1a,IL-1b, IL-1Ra, IL-18, 
IL-6, INF-b, MIF, IL-6, INF-g, TGF-b1, RANTES, major 

intrinsic protein MIP-1b, MIP-1a, MIP-2, IFN- -inducible 

protein (IP)-10, MCP-1 and TCA-3 [77, 78]. 
Allografts can induce macrophage accumulation and the 

overall macrophage accumulation promotes a rejecting im-
mune response. The infi ltration of recipient-derived macro-
phages was observed in the graft within 24 h after surgery 
[79]. MIF participates in the recruitment of circulating mono-
cytes into rejecting organs and, as a pro-infl ammatory mol-
ecule, is involved in cell-mediated immunity and delayed-
type hypersensitivity [3, 80]. MIF promotes the production 
of pro-infl ammatory cytokines as activated macrophages can 
secret IL-1, IL-2, IL-18, TNF-a and IFN-g [81]. These pro-
infl ammatory cytokines are associated with graft rejection 
[82, 83]. The pivotal role of MIF in infl ammation and graft 
rejection is briefl y summarized in Figure 1.

MIF may be an important mediator in the allo-immune 
reaction during renal transplantation. TNF-a involves up-
regulation of local MIF expression by both infi ltrating mac-
rophages and resident kidney cells in rat crescentic glomeru-
lonephritis. Systemic MIF production is also regulated by 
TNF-a. Thus, both TNF-a and MIF may participate in the 
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Fig. 1. The role of MIF in infl ammation and graft rejection. MIF pro-
motes the production of infl ammatory cytokines from macrophages 
which play important roles in immune response to allo-grafts.
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pathogenesis of immunological by induced renal disease 
[33]. Glomerular macrophage accumulation was reported in 
severe allograft rejection with worse prognosis which high-
lights the importance of MIF in renal transplantation [84]. 
As local MIF production is increased in acute renal allograft 
rejection, urine MIF may be used as a diagnostic tool in hu-
man renal allograft rejection [32, 85]. However, studies us-
ing MIF–/– mouse models did not support the important role 
of MIF in kidney or heart allo-graft rejection [86]. Though 
MIF blockade signifi cantly reduced the delayed-type hy-
persensitivity response; neither local nor systemic MIF are 
required for the rejection of fully mismatched skin and re-
nal allo-grafts [87]. It is worth noting that MIF participates 
in skin graft destruction after indirect recognition through 
an inhibition of macrophage migration and/or function [4]. 
Thus whether MIF plays different roles in direct and indirect 
antigen recognition in transplants needs to be addressed.

Pancreas transplantation offers a cure for diabetes mel-
litus. Some immune modulating proteins, monocyte chem-
oattractant protein-1(MCP-1), transforming growth factor-β 
(TGF-β) [88] and MIF [89] are expressed in islets of Langh-
erhans. These proteins could be involved in the development 
of autoimmunity in type-1 diabetes and infl uence intrapor-
tal islet transplantation outcome [90–92]. Isolated islets ex-
pressed several infl ammatory mediators, particularly at an 
early stage after isolation, suggesting that a few days culture 
could be benefi cial for outcome of islet transplantation [92]. 

In addition, the important role of MIF in the development 
of acute GVHD in a mouse model of allogeneic stem cell 
transplantation has been reported [93]. MIF was thus found 
to be one of the major cytokines involved in the rejection of 
the allogeneic tracheal; treatment with MIF siRNA inhibits 
the destruction of tracheal allografts and formation of ob-
structive bronchiolitis in the early phase [94].

Closing remarks and future direction

A number of questions about the pathophysiological signifi -
cance of MIF remain to be answered. It is currently known 
that MIF is a pro-infl ammatory cytokine that plays a critical 
role in infl ammation and cellular immunity. MIF is an impor-
tant mediator in the pathogenesis of infl ammatory disorders 
such as endotoxemia/sepsis, arthritis, glomerulonephritis, 
pancreatitis, infl ammatory bowel disease, tumorigenesis as 
well as several other pathophysiologic infl ammatory and im-
mune conditions. MIF may also be closely involved in allo-
graft rejection and dysfunction. Anti-MIF antibodies have 
proved to be a potent tool for effective treatment of human 
infl ammatory diseases. MIF inhibitors may have potential 
therapeutic applications in patients with infl ammatory dis-
eases or allo-grafts in the clinic. 
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