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Summary

Toll-like receptors (TLRs), which are a family of pattern recognition receptors
(PRRs), are involved critically in the generation and regulation of innate
immunity as well as initiation of subsequent adaptive immune responses.
However, recent research results showed that different subsets of T cells
express certain types of TLRs during development and activation stages.
Importantly, TLRs participate in the direct regulation of adaptive immune
response, possibly as co-stimulatory molecules. In this review we summarize
recent studies about the novel regulation of TLRs on the homeostasis and
immunity of different T cell subtypes including CD4+CD25+T regulatory cells
(Treg) and interleukin (IL)-17-producing CD4+T cells (T helper type 17). The
direct involvement of TLRs in T cell-mediated immunity prompted us to
reconsider the role of TLRs in the occurrence of autoimmune diseases, infec-
tious diseases and graft rejection. The important effects of TLRs in T cell-
intrinsic components also prompt us to explore novel vaccine adjuvants for
modifying desired immune responses in an efficient way.
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Introduction

Toll-like receptors (TLRs) are germline-encoded pathogen
recognition receptors expressed most prominently on or in
antigen-presenting cells (APCs) such as macrophages and
dendritic cells (DCs) [1]. TLR-2, -4, -5 and -11 are expressed
on the cell surface while TLR-3, -7, -8 and -9 locate in
endosomal compartments. They detect a broad range of
pathogen-associated molecular patterns (PAMPs) to recog-
nize different microbial as a means to distinguish ‘non-self ’
from ‘self ’, and in some cases they also recognize endogenous
ligands, which are considered damage-associated molecular
patterns (DAMPs) [2,3]. For example, TLR-4 can be acti-
vated by lipopolysaccharide (LPS) from Gram-negative bac-
teria, heat shock proteins and the anti-cancer drug taxol [4].
TLR-2 can be activated by the yeast cell wall component
zymosan and lipoteichoic acid from Gram-positive bacteria.
TLR-3 is activated by double-stranded RNAs from viruses,
and TLR-9 recognizes cytosine-guanine dinucleotide (CpG)
DNA motifs present in viruses and bacteria [5]. It is well
known that activation of TLRs on APCs initiates a cascade
of intracellular signalling events, resulting ultimately in
enhancing antigen presentation, the production and release
of inflammatory cytokines and up-regulation of adhesion

and co-stimulatory molecules on the cell surface of APCs as
well as priming the adaptive immune system [6–8] (Fig. 1).
However, recent studies have shown that T cells also express
certain types of TLRs [9,10]. TLRs can function as
co-stimulatory receptors that complement T cell receptor
(TCR)-induced signals to enhance effector T cell prolifera-
tion, survival and cytokine production [11]. TLRs could thus
be involved in the modulation of the adaptive immunity,
including regulatory T cell (Treg)-mediated immune suppres-
sion and the induction of different subtypes of effector T
cells, particularly interleukin (IL)-17-producing cell [T
helper type 17 (Th17)] differentiation in autoimmune dis-
eases and other immune response processes [9]. In this
review we summarize mainly recent advances about the
novel mechanisms of TLRs for the homeostasis and function
of different T cell subtypes.

Innate immunity initiated by TLRs

Engagement of pattern recognition receptors (PRRs) with
their microbial ligands induces specific downstream signal-
ling events, and thereby provides immediate first-line
protection of the host from invading pathogens. This is
mediated by a number of components of innate systems,

Clinical and Experimental Immunology REVIEW ARTICLE doi:10.1111/j.1365-2249.2010.04091.x

168 © 2010 British Society for Immunology, Clinical and Experimental Immunology, 160: 168–175



including activation of the complement pathway, phagocy-
tosis of microbes, the release of direct anti-microbial media-
tors and production of cytokines and chemokines that,
collectively, instruct mechanisms to combat infection [12].
Several PRRs have been characterized in a number of differ-
ent hosts, such as pathogen-resistance proteins in plants
[13,14], the Drosophila Toll protein [14,15] and TLRs in
Caenorhabditis elegans and mammals [15,16]. During the
last decade, many microbial motifs sensed by TLRs and their
impact on the induction of first-line host responses have
been demonstrated [9,16–18].

TLRs represent a major innate pathway through which
pathogens induce DC maturation and acquisition of immu-
nostimulatory functions. TLR signal transduction is initiated
usually by the recruitment of one or more adaptor proteins
[18–20], which include myeloid differentiation primary
response protein 88 (MyD88), MyD88-adaptor-like [Mal,
also referred to as Toll/IL-1 receptor (TIR) domain-
containing adaptor protein (TIRAP)], TIR domain-
containing adaptor protein inducing interferon (IFN)-b
(TRIF, also known as TICAM1) and TRIF-related adaptor
molecule (TRAM; also known as TICAM2) [21,22]. These
adaptors associate with the cytoplasmic domains of TLRs
through homophilic interactions between TIR domains
present in each TLR. All TLR family members use the
MyD88 adaptor, except TLR-3, which recruits TRIF [23].
TLR-4 is the only family member that activates both MyD88-
dependent and TRIF-dependent signal transduction path-
ways [24]. The structural or conformational changes that
facilitate adaptor binding remain poorly defined, although it
seems likely that increased proximity between the cytoplas-
mic domains of TLRs creates a binding interface for the
relevant TIR domain-containing adaptors. Although the sig-
nalling events downstream of MyD88 and TRIF differ, the
outcome of each pathway is conceptually similar: nuclear
factor-kB, interferon-regulatory factors (IRFs) and other

more general transcription factors are activated [16,22,25].
In certain cases differential activation of IRF family members
leads to distinct transcriptional responses.

TLRs bridge the innate immunity and
adaptive immunity

Efficient immune responses depend upon a close interaction
between the innate and adaptive immune systems. The innate
immune system not only reacts promptly to microbial infec-
tion or environmental insult, but also instructs APCs to acti-
vate and secrete cytokines in order to polarize T cells towards
an appropriate effector phenotype [26]. Only mature DCs
will be able, through appropriate antigen presentation, to
stimulate naive T cells such that they differentiate into effector
T cells. The types of effector T cells that evolve from the naive
cells are influenced greatly by the pattern of cytokines
induced by the TLR engagement. Apparently, in addition to
presenting antigens to naive T cells in an appropriate major
histocompatibility complex (MHC) context, the range of
co-stimulatory signals delivered to T cells by APCs is deter-
mined, if not all, at least partially, by TLR ligation.

TLRs serve as an important link between the innate and
adaptive immune responses [27]. Different types of DCs
selectively express cytokines, co-receptors and several other
polarizing signals that promote the development of Th1,
Th2, CD4+CD25+ Treg cells or the recently defined Th17
lineage, respectively [28,29]. In this context, selected TLR
ligands can be used alone or in combination as potential
vaccine adjuvants to elicit the most appropriate immune
response in humans or mice. The majority of known TLRs
mediate the development of Th1-promoting DCs (type 1
DCs), whereas most of the PRRs mediate Th2-inducing DCs
(type 2 DCs) [30,31]. DCs stimulated directly or indirectly
by PRRs from pathogens mature into a specific form and are
able to activate a single specific immune response that is

Fig. 1. Modulation of innate and adaptive
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appropriate for the elimination of the pathogen [32]. In this
regard, DCs determine the nature of the foreign antigen and
the intensity and phenotype of immune response generated.
The development of different subtypes of effector T cell
differentiation, a Th1, Th2 or Th17 immune response, is
dependent upon the physical interaction between the acti-
vated status of the DCs and the naive T cells [8,33] (Fig. 1).
It will not be discussed in this review.

It is worth mentioning that in addition to its importance in
infectious diseases, TLRs also participate in inflammation
and immune responses that are driven by self-, allo- or xeno-
antigens [18,34,35]. TLR signalling has been demonstrated to
be involved in the immune recognition of allo- or xenografts
and the occurrence of autoimmunity [35,36]. This observa-
tion is supported strongly by the expression of TLRs on
almost all immune cells and the identification of their endog-
enously expressing ligands by mammalian cells [9,37–39].

TLRs on effector T cells as co-stimulatory molecules

TLRs are expressed widely in many types of immune cells,
including DCs, T cells, neutrophils, eosinophils, mast cells,
macrophages, monocytes and epithelial cells [1,40,41]. Inter-
estingly, TLR expression is related to the functional status of
different subtype T cells. TLR-3, -6, -7 and -9 have been

reported to be expressed on CD4+ T cells [42]. Naive CD4+ T
cells do not express significant levels of mRNA and intracel-
lular proteins of TLR-2 and TLR-4. Only few CD3+ T cells
express TLR-1, -2 or -4 on the cell surface when they have not
been activated [43]. However, activated/memory T cells
express appreciable levels of cell surface TLR-2 and TLR-4
[34,42]. TCR stimulation by cross-linked anti-CD3 mono-
clonal antibody (mAb) induces cell surface expression of
TLR-2 and TLR-4 on naive human and murine CD4+ T cells
[34,44]. By contrast, TCR stimulation down-modulates sig-
nificantly surface TLR-5 expression on human CD4+ T cells
[45] (Table 1). TLR expression on T cells may be regulated by
TCR signalling, which needs further investigation in the
future.These data thus offer the possibility that pathogens,via
their PAMPs, may contribute directly to the perpetuation and
activation of T cells.

At least some TLRs may function as a co-stimulatory
receptor for antigen-specific T cell responses and participate
in the maintenance of T cell memory [46–48]. It has been
shown that ligands for TLR-2, -3, -4, -5 and -9 enhance the
proliferation and/or biological functions of conventional
effector T cells [44,46,48–51]. Co-stimulation of CD4+ T
effector cells with anti-CD3 mAb and TLR-5 ligand flagellin
results in enhanced proliferation and production of IL-2 at
levels equivalent to those achieved by co-stimulation with

Table 1. Toll-like receptor (TLR) expression and direct regulation on T cells.

TLRs Expression on T cells Location of TLRs PAMPs recognized by TLRs Direct regulation on T cells

TLR-1/2 Very few expression on naive T cells,

up-regulate expression on

activated or memory T cells

Plasma membrane

(cell surface)

Triacyl lipopeptides (bacteria and

mycobacteria)

Abrogate or reverse the

suppressive function of Treg

TLR-2 Very few expression on naive T cells,

up-regulate expression on

activated or memory T cells

Plasma membrane

(cell surface)

Peptidoglycan (Gram-positive

bacteria)

Enhance the suppressive

function of Treg

TLR-3 Expression Endosome ssRNA virus (WNV), dsRNAvirus

(reovirus), RSV, MCMV

TLR-4 Very few expression on naive T cells,

up-regulate expression on

activated or memory T cells

Plasma membrane

(cell surface)

LPS (Gram-negative bacteria) Enhance the suppressive

function of Treg

TLR-5 Expression Plasma membrane

(cell surface)

Flagellin (flagellated bacteria) Enhance the suppressive

function of Treg

TLR-6 Expression Diacyl lipopeptides (mycoplasma),

LTA (Streptococcus), zymosan

saccharomyces)

TLR-7 Expression Endosome ssRNA viruses (VSV, influenza virus) Abrogate or reverse the

suppressive function of Treg

TLR-8 Expression Endosome ssRNA from RNA virus Abrogate or reverse the

suppressive function of Treg

TLR-9 Expression Endosome dsDNA viruses (HSV, MCMV), CpG

motifs from bacteria and viruses,

haemozoin (plasmodium)

Abrogate or reverse the

suppressive function of Treg

CpG, cytosine-guanine dinucleotide; LPS, lipopolysaccharide; LTA, lipoteichoic acid; MCMV, murine cytomegalovirus; PAMP, pathogen-associated

molecular patterns; RSV, respiratory syncytial virus; Treg, regulatory T cell; VSV, vesicular stomatitis virus; WNV, West Nile virus.
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CD28 [52,53]. CpG-containing oligodeoxynucleotides
(CpG-ODN) can co-stimulate primary T cells in the absence
of APCs [54]. In the presence of the TCR signal, CpG-ODN
induces IL-2 production, IL-2R expression and thus T cell
proliferation. Furthermore, CpG-co-stimulated T cells dif-
ferentiate into cytolytic T lymphocytes in vitro [54]. Naive
human T cells express high levels of cell-surface TLR-2 after
activation by anti-TCR antibody and interferon (IFN)-a.
Activated cells produce more cytokines in response to the
TLR-2 ligand, bacterial lipopeptide [44]. Furthermore,
memory human CD4+CD45RO+ T cells express TLR-2 con-
stitutively and produce IFN-g in response to bacterial
lipopeptide [44]. Co-stimulation of antigen-activated
murine CD8+ T cells with the lipopeptide Pam3CysSK4
(Pam), a TLR-1/2 ligand, enhances the proliferation, survival
and effector functions of these cells [54]. TLR-2 engagement
on CD8+ T cells reduces significantly their need for
co-stimulatory signals delivered usually by mature APCs
[39]. Importantly, human T cells were also reported to
respond similarly to the endogenous ligand HSP60 through
TLR-2, although these results could reflect potential con-
tamination of commercially available HSP60 with bacterial
TLR-2 ligands [55]. T cells responding to endogenous TLR
ligands is intriguing, because it opens the possibility that
DAMPs may potentially support T cell responses at sites of
damaging tissue. It should be noted that TLR ligands do not
induce functional responses in T cells in the absence of con-
current TCR stimulation [11], indicating that TLR-induced
signals in T cells are strictly co-stimulatory, which may be
important for preventing TLR signal-mediated non-specific
T cell activation.

On the other hand, LPS treatment results in increased
adhesion of mouse and human T cells to fibronectin and
inhibited chemotaxis [56]. Thus, in addition to functioning
as potential co-stimulatory molecules, TLRs may also play a
role in controlling T cell trafficking.

Direct modulation of CD4
+CD25

+ Treg cell bio-function
by TLRs

Naturally occurring and antigen-induced CD4+CD25+ Treg

cells have been studied extensively in mice and humans.
Depletion of the naturally occurring subset of CD4+CD25+

Treg cells results in various types of autoimmune diseases
[57,58]. TLR ligands modulate CD4+CD25+ Treg cell
responses indirectly by promoting inflammatory cytokine
production in APCs, which can inhibit the suppressive
capacity of CD4+CD25+ Treg cells [59]. However, some TLRs
are expressed on CD4+CD25+ Treg cells. It has been reported
that naive CD4+CD25+ Treg cells express TLR-4, -5, -7 and -8
selectively, whereas TLR-1, -2, -3 and -6 appear to be
expressed more broadly on CD4+ T cells, but not confined to
CD4+CD25+ Treg cells [10]. The distinct expression pattern of
TLRs on CD4+CD25+ Treg cells supports the potential
involvement of these TLRs in the direct regulation of

CD4+CD25+ Treg cells [9,60]. It has been shown that ligands
for TLR-2, -5 and -8 modulate the proliferation and suppres-
sive functions of CD4+CD25+ Treg cells.

TLR-2-/- mice, unlike TLR-4-/- mice, contain significantly
lower levels of CD4+CD25+ Treg cells than control mice
[9,55,61]. Administration of TLR-2 ligands to wild-type
mice results in significantly increased CD4+CD25+ Treg cell
numbers [42,62]. In the presence of a TLR-2 agonist, such
as the synthetic bacterial lipoprotein Pam3Cys-SK4,
CD4+CD25+ Treg cells expand markedly, but their immuno-
suppressive function is abrogated temporarily [34,61].
However, engagement of TLR-2 does not reverse the sup-
pressor function of mouse CD4+CD25+ Treg cells, but pro-
motes their survival via induction of Bcl-x(L) [63]. It is also
reported that signals through TLR-2 can enhance the sup-
pressive function of Treg cells as well as forkhead box protein
3 (FoxP3) expression [55].

Exposure of CD4+CD25+ Treg cells to the TLR-4 ligand LPS
induces up-regulation of several activation markers and
enhances their survival or proliferation [10,55]. The prolif-
erative response does not require APCs and is augmented by
TCR triggering and IL-2 stimulation. Most importantly, LPS
treatment increases the immunosuppressive ability of
CD4+CD25+ Treg cells by 10-fold. Moreover, LPS-activated
CD4+CD25+ Treg cells can control efficiently the occurrence
of naive CD4+ T effector cell-mediated diseases [64,65].
Others failed to observe effects of LPS on CD4+CD25+ Treg

cells, indicating that LPS-induced signalling on CD4+CD25+

Treg cells is still controversial.
TLR-5 ligand flagellin plays a critical role in regulating

mucosal immune responses [45,66]. Both human
CD4+CD25+ Treg cells and CD4+CD25- T cells express TLR-5
at levels comparable to those on monocytes and DCs [66].
Co-stimulation with flagellin does not break the hypore-
sponsiveness of CD4+CD25+ Treg cells but, rather, increases
their immunosuppressive capacity potently and enhances
FoxP3 expression [45]. It is reported that TLR-7 signalling
enhances the suppressor function of CD4+CD25+ Treg cells by
sensitizing CD4+CD25+ Treg cells to IL-2-induced activation
[67]. TLR-8 could directly reverse the immunosuppressive
function of CD4+CD25+ Treg cells [68]. It has been reported
that CpG-A and poly(G10) oligonucleotides could directly
reverse the immunosuppressive function of CD4+CD25+ Treg

cells in the absence of DCs, but the exact functional ingre-
dients were not identified in that study [69]. Interestingly,
when TLR-8 and MyD88 were knocked down using a RNA
interference method, the response of CD4+CD25+ Treg cells to
poly(G) oligonucleotides was abolished [68]. Accordingly,
TLR-8 was expressed consistently by naturally occurring as
well as induced CD4+CD25+ Treg cells [70]. These results
support the hypothesis that the TLR-8–MyD88 signalling
pathway controls directly the immunosuppressive function
of CD4+CD25+ Treg cells without the involvement of APCs.

The TLR-9 ligand CpG-ODN synergizes with anti-CD3
mAb to induce proliferation of both rat CD4+CD25- and

TLRs and adaptive immune regulation

171© 2010 British Society for Immunology, Clinical and Experimental Immunology, 160: 168–175



CD4+CD25+ Treg cells [71]. Surprisingly, TLR-9 ligand abro-
gates partially the suppressive activity mediated by
CD4+CD25+ Treg cells, which is attributable partially to the
direct effect of TLR-9 ligand on effector T cells which are
rendered more resistant to the suppression exerted by
CD4+CD25+ Treg cells [71]. Thus, TLR-9 ligand may increase
the host’s adaptive immunity rapidly by expanding effector
T cells and also by attenuating the immunosuppressive activ-
ity mediated by CD4+CD25+ Treg cells [71].

Although relevant studies are limited and somewhat con-
troversial, TLR-2, -8 or -9 ligations abrogate or reverse the
immunosuppressive function of CD4+CD25+ Treg cells,
whereas TLR-2, -4 or -5 ligations enhance CD4+CD25+ Treg

cell-mediated immunosuppressive capacity (Fig. 2). Never-
theless, these findings provide important evidence that
CD4+CD25+ Treg cells respond directly to proinflammatory
bacterial products or endogenous ligands via TLRs, a mecha-
nism that is likely to contribute to the control of inflamma-
tory responses. It should be recognized that, once TLR
ligands are removed, CD4+CD25+ Treg cells fully regain their
immunosuppressive phenotypes and function [34,42]. Thus
it is hypothesized that, during immune response, TLR
ligands can regulate T cell-mediated immune responses
directly by multiple approaches, possibly including: (a)
enhancing effector T cell functions and clonal expansion
through increased proliferation, survival and cytokine pro-
duction and (b) by expanding the CD4+CD25+ Treg cell popu-
lation with a transient loss of immunosuppressive function
in the early response stage, but these expanded CD4+CD25+

Treg cells will regain their immunosuppressive capacity to
regulate the expanded effector T cells following clearance of
the TLR ligands at the late stage of immune response.

Modulating the differentiation and function of Th17

cells by TLRs

Activation of naive T cells and their subsequent differentia-
tion into specific types of effector T cells are dependent upon

TLR-mediated MHC and co-stimulatory molecule induc-
tion, and cytokine production by APCs. The cytokine IL-12
is known to drive IFN-g-producing Th1 cells, whereas IL-6,
IL-23, IL-21, IL-1 and transforming growth factor (TGF)-b
have been shown to promote Th17 cells [72–76]. TGF-b at
low doses does not directly promote Th17 cell differentia-
tion, but instead acts indirectly by blocking expression of the
transcription factors signal transducer and activator of
transcription-4 (STAT)-4 and GATA-binding protein-3
(GATA-3), thus preventing Th1 and Th2 cell differentiation,
the subsets of which suppress Th17 differentiation [77].

Researchers have investigated recently the hypothesis that
the cytokines secreted by human peripheral blood mono-
nuclear cells (PBMCs), in response to a subset of TLR
ligands, would influence Th17 polarization. Through com-
prehensive screening they confirmed that a subset of TLR
agonists induces a panel of proinflammatory cytokines that
combine to promote robust secretion of IL-17 upon activa-
tion of human naive CD4+ T cells in vitro [78]. Conditioned
medium from PBMCs stimulated with TLR-4 or TLR-8/7
agonists, but not from those stimulated with TLR-2/1, -3 or
-9 agonists, evoked robust secretion of IL-17 by T helper
cells, independent of co-culture with APCs [79]. This indi-
cates that ligation of a subset of TLRs generates proinflam-
matory cytokines that co-ordinate to potentiate human
Th17 differentiation. In addition, the synergy between
TLR-4 and TLR-7/8 in controlling the sequential production
of regulatory and proinflammatory cytokines by naive CD4+

T cells was detected [78]. The observed polymorphism in DC
responses to such TLR-mediated stimuli could explain dif-
ferences in the susceptibility to infectious pathogens or
autoimmune diseases within the human population. Fur-
thermore, using agonists specific for TLR-7 (i.e. Imiquimod,
Gardiquimod) or TLR-8 (ssPolyU), together with LPS, con-
firmed that a significant synergy in cytokine induction is
observed consistently after joint engagement of TLR-4 plus
TLR-7 and/or TLR-8 [80,81]. However, the TLR-7, which is
not present in DCs under normal conditions, is up-regulated
dramatically in selected donors after stimulation by LPS, in
agreement with a previous study [78,80]. Thus, the observed
polymorphism between high and low DC responders is due
probably to differences in TLR-7/8 up-regulation following
TLR-4 stimulation, suggesting that a threshold stimulation
of TLR-7 and/or TLR-8 is required to activate the joint secre-
tion of multiple cytokines by DCs. Taken together, TLR-3, -4,
-7 and -8 are required in the induction of Th17 cell differ-
entiation and subsequent biological effects, but the role of
TLR-9 is controversial, which urgently needs to be illustrated
(Fig. 3).

In mice, coincidental activation of complement and
several TLRs (TLR-3, -4, -7, -8 and -9) led to the synergistic
production of serum factors that promote Th17 differentia-
tion from anti-CD3/CD28 or antigen-stimulated T cells [82]
(Fig. 3). Although multiple TLR-triggered cytokines were
regulated by complement, Th17 cell-promoting activity in
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the serum was correlated with IL-6 induction, and antibody
neutralization of IL-6 abrogated the complement effect [82].
These data establish a link between complement/TLR inter-
action and Th17 cell differentiation, and provide new insight
into the mechanism of action of complement and TLR sig-
nalling in autoimmunity.

Although CD4+ T cells are considered to be the major
source of IL-17, especially in autoimmune diseases, recent
studies have indicated that other T cell subpopulations such
as CD8+ T cells, natural killer (NK) T cells and gd T cells can
also produce IL-17 [74,83]. It is reported that CCR6+ IL-17-
producing gd T cells, but not other gd T cells, express TLR-1
and TLR-2, but not TLR-4 [84,85]. Ligands that target these
pathogen recognition receptors can cause the selective
expansion of IL-17+ gd T cells and functional consequences,
such as neutrophil recruitment [86]. Studies have shown that
gd T cells activated by IL-1b and IL-23 are an important
source of innate IL-17 and IL-21 and may act in an amplifi-
cation loop for IL-17 production by Th17 cells [74,86].

However, no studies on the direct effects of TLRs in Th17
cells have yet been reported. Investigations on the direct
involvement of TLRs in Th17 cells are vitally required in the
near future.

Closing remarks and prospectives

It has long been recognized that TLR ligands play an impor-
tant indirect role in promoting T cell-mediated responses via
their effects on innate immune cells, including up-regulating
antigen presentation, co-stimulatory molecule expressions
and inflammatory cytokine productions. It has become
increasingly clear that TLR ligands can also act directly on T
cells, possibly as co-stimulatory molecules. In general, TLRs
enhance effector T responses including cytokine production,
proliferation and survival, while expanding the CD4+CD25+

Treg cell population with a transient loss of immunosuppres-
sive function. The molecular mechanisms for the TLR-
mediated function in T cells and the direct effect of TLRs on
Th17 cells need to be addressed in the future. More attention
should be paid to the significance of the direct role of TLRs
in T cells as, significantly, it will help us to understand fully
the biological function of so-called innate receptors and
develop more powerful adjuvants for controlling cellular
immunity on purpose.
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