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Eliminate mitochondrial diseases by gene
editing in germ-line cells and embryos
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Nuclease-based gene editing technologies have opened
up opportunities for correcting human genetic diseases.
For the first time, scientists achieved targeted gene
editing of mitochondrial DNA in mouse oocytes fused
with patient cells. This fascinating progression may
encourage the development of novel therapy for human
maternally inherent mitochondrial diseases.

In recent years, remarkable advances in nuclease-based gen-
ome editing technologies including helper-dependent aden-
ovirus vector (HDAdV), zinc finger nuclease (ZFN),
transcriptional activator-likeeffector nucleases (TALEN), and the
newly developed clustered regularly interspaced short palin-
dromic repeats (CRISPR)/Cas system, have offered unprece-
dented possibilities of precise gene editing in a variety of
organisms, which is promising for not only basic researches but
also therapeutic studies of human diseases. Nowadays, scien-
tists have attempted to apply gene editing approaches to fight
against HIV/AIDS, sickle cell anemia, β-thalassaemia, Fanconi
anemia (FA), laminopathies, andother genetic diseases (Li et al.,
2011; Liu et al., 2011; Liu et al., 2012; Xu et al., 2012; Hu et al.,
2014; Liuet al., 2014;Mandal et al., 2014;Suzuki et al., 2014;Xie
et al., 2014; Ousterout et al., 2015). Besides successful appli-
cations in somatic cells and pluripotent stem cells, gene editing
techniques have also been used in animal embryos to produce
gene modified rodents, pigs, and monkeys (Wang et al., 2013;
Yang et al., 2013; Hai et al., 2014; Niu et al., 2014) to create
valuable research models for human genetic diseases.

Dysfunction of mitochondria, the energy-producing orga-
nelle of eukaryotic cells, may lead to mitochondrial diseases
with severe symptoms in many organs, such as Leber
hereditary optic neuropathy (LHON), mitochondrial

myopathy, encephalopathy, lactic acidosis and stroke-like
episodes (MELAS), myoclonic epilepsy and ragged-red
fibres (MERRF), etc. Some mitochondrial diseases arise
from disorders of nuclear genes which are involved in mito-
chondrial metabolism as well as in the maintenance of
mitochondrial DNA (mtDNA). It has been found that a num-
ber of mitochondrial diseases are caused by mutations in
mtDNA, a multi-copy, circular dsDNA molecule which
encodes 13 essential polypeptides of the mitochondrial
respiratory chain as well as the necessary RNA machinery
(2 rRNAs and 22 tRNAs) for mitochondrial protein translation
(Taylor and Turnbull, 2005; Xu et al., 2013). Since mtDNA is
exclusively transmitted through maternal inheritance, a tra-
ditional approach of therapy is to transfer the nuclear
genomic DNA to a enucleated donor oocyte or zygote with
the normal mtDNA (Paull et al., 2013; Tachibana et al., 2013;
Wang et al., 2014). This approach involves the mtDNA from
a third individual thereby may trigger both ethical and tech-
nical conflicts. The most recent report by Reddy et al., for the
first time, has prevented the germ-line transmission of
mitochondrial disease by selectively eliminating the mutant
mtDNA in situ in oocytes and one-cell embryos (Reddy et al.,
2015). Using mitochondria targeted restriction endonucle-
ases, the authors first tested their system by selectively
eliminating the mtDNA haplotype in mouse oocytes and one-
cell embryos. Cheerfully, the progenies from the modified
embryos were verified to be free of the mtDNA haplotype
which was supposed to be selectively cut and degraded.
After the successful manipulation in mouse oocytes and
embryos, the authors subsequently succeeded in specifically
reducing the mutant mtDNAs responsible for LHOND and
NARP (neurogenic muscle weakness, ataxia, and retinitis
pigmentosa) by applying mitochondria-targeted TALENs in
artificial mammalian oocytes, which were derived by fusion
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of patient cells with mouse oocytes. The highly efficient
targeting mutant mtDNA in both animal model and human
cells demonstrated in this study is cheerful. As being widely
commented in the field, this report may fundamentally shape
the future development of mitochondrial disease therapies. It
is exciting to imagine that in the future by applying this
technology in human, healthy babies will be able to born
from patient oocytes where most mutant mtDNA are cleaned
and the copy number of residual mutant mtDNA is reduced
to below the threshold needed for a disease manifestation.
Compared with other mitochondrial replacement therapies
currently under development, this new technology no longer
requires donor oocytes from an independent individual, and
is a less complex procedure which would be less traumatic
to the oocytes. Despite all potential advantages discussed,
the authors also warned a risk that the embryos might fail to
implant in uterus when mtDNA copy number in the “edited”
embryos was below a specific threshold. Nevertheless, it
was the first time that gene editing of mtDNAs in germ-line
cells is achieved, which may encourage and promote the
future studies towards new therapies for maternally inherited
mitochondrial diseases (Fig. 1).

Apart from the work of gene editing in mtDNA, a pioneering
work editing nuclear DNA of human embryos has also been
recently published and attracted tremendous attentions. Due to
essential ethical and safety concerns, gene editing of nuclear
DNA in human germ cells and embryos is traditionally dis-
couraged or even banned in many countries. Liang et al. have
reported for the first time testing the feasibility of CRISPR/Cas9
system in human tripronuclear zygotes (Liang et al., 2015), a
type of embryo cells that would theoretically fail to develop
in vivo and are routinely discarded in the conventional in vitro
fertility (IVF) procedures. The authors applied the CRISPR/
Cas9 system to edit the gene HBB, which encodes the human
β-globin protein whose mutations are responsible for β-tha-
lassaemia. Their results indicated that the CRISPR/Cas9-
based gene editing was achievable in human tripronuclear
zygotes. However, a notable amount of off-target effects of
CRISPR/Cas9-based editing in human embryos was
observed. Another major safety concern arose from the high
rate of non-crossover homology directed repair (HDR) with
adjacent endogenous HBD gene. The HBD gene whose
sequence is highly homologous to the HBB gene might effec-
tively compete with exogenous donor templates (or endoge-
nous HBB wild-type sequence) for DNA recombination,
resulting in unpredicted and unwanted mutations. More
importantly, most edited embryos were genetically mosaic,
which is both technically and ethically unacceptable for any
clinical application. In view of the high efficiency of editing of
HBB in the previous study (Xie et al., 2014), more efficient
gRNAs for HBB gene than the ones tested in this study might
exist, and thewhole targeting strategy couldbemorecautiously
optimized.Nevertheless, despite being controversial, this study
sounds an alarm that CRISPR/Cas9-mediated precise gene
editing technique is still premature and needs further investi-
gation and improvement before any clinical application.

Although it has been evidenced that genome editing
techniques have minimal impacts on genomic mutational
load in human pluripotent stem cells using whole-genome
sequencing (Smith et al., 2014; Suzuki et al., 2014; Veres
et al., 2014; Yang et al., 2014), the safety issue of gene
editing in germ line cells still deserves extreme cautions as
such changes are permanent and heritable. For the mito-
TALEN-based gene editing technique in germ cells or
embryos, the concentration of injected mRNA should be
precisely optimized in order to guarantee good incision effi-
ciency while avoiding increasing off-target risks. On the other
hand, in order to test if the mitochondria-locating TALEN
could leak to nucleus which may lead to unpredicted incision
and mutation on nuclear DNA, a thorough examination of
whole-genome sequence is likely to be the ideal solution.
Besides those mentioned challenges, we still don’t know
whether this mito-TALEN-based gene editing technique
would work efficiently on human oocytes or embryos con-
taining mutant mtDNA. Therefore, even if ethical obstacles
could be set aside, a comprehensive technical and safety
evaluation is required before any clinic trial of this new
technique.
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Figure 1. A schematic representation of genetic approaches

used for preventing mitochondrial DNA-based disease

transmission inmammaliangerm-linecells. (A) The traditional

mitochondrial replacement therapy is performed by transferring

the patient nuclear DNA to the enucleated donor oocyte contain-

ing normal mtDNAs, or transferring the pronuclei from patient

zygote to the enucleated healthy zygote of a third individual.

(B) According to the newly developed approach, the mutant

mtDNAs in the oocyte or zygote are selectively eliminated by

mitochondrion-locating TALENs.
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Recently, mitochondrial DNA transfer was approved by
UK government in February, 2015. This progress sets an
excellent precedent for how to solve the controversy related
to newly developed therapeutic technologies. Targeted gene
editing of the mutant mitochondria in germ cells and
embryos, which may eventually prevent the inheritance of
devastating human genetic diseases, will definitely be of
great interest and of benefit to the human society. Hence,
though serious problems exist, it is important for both the
public and scientific society to have an open mind, and keep
the research in this field moving forward.
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