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serum leptin concentration, and delays reproductive development
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Abstract Cold commonly affects growth and reproductive
development in small mammals. Here, we test the hypothesis
that low ambient temperature will affect growth and puberty
onset, associated with altered hypothalamic Kiss-1 gene ex-
pression and serum leptin concentration in wild rodents. Male
Brandt’s voles (Lasiopodomys brandtii) were exposed to cold
(4±1 °C) and warm (23±1 °C) conditions from the birth and
sacrificed on different developmental stages (day 26, day 40,
day 60, and day 90, respectively). Brandt’s voles increased the
thermogenic capacity of brown adipose tissue, mobilized
body fat, decreased serum leptin levels, and delayed the
reproductive development especially on day 40 in the cold
condition. They increased food intake to compensate for the
high energy demands in the cold. The hypothalamic Kiss-1
gene expression on day 26 was decreased, associated with
lower wet testis mass and testis testosterone concentration on
day 40, in the cold-exposed voles compared to that in the
warm. Serum leptin was positively correlated with body fat,
testis mass, and testosterone concentration. These data sug-
gested that cold exposure inhibited hypothalamic Kiss-1 gene
expression during the early stage of development, decreased
serum leptin concentration, and delayed reproductive devel-
opment in male Brandt’s voles.

Keywords Brandt’s voles (Lasiopodomys brandtii) . Cold
exposure . Kiss-1 . Leptin . Reproductive development
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Introduction

Inhibition of reproductive function in winter occurs common-
ly among small mammals living in the temperate zones
(Bronson and Pryor 1983). Temperature is one of vital envi-
ronmental factors impacting on metabolism and reproduction
of small mammals (Bronson and Pryor 1983; Glądalski et al.
2014). In some rodents, it has been shown that cold exposure
could suppress the growth and delay the onset of breeding
(Bronson and Pryor 1983). Depression of fertility under harsh
environmental conditions may avoid futile maternal
investment.

For small mammals, increasing thermogenesis to maintain
body temperature is the main strategy for survival in the cold
environment. They usually increase food intake to compen-
sate for the high energy expenditure, but they might still lose
weight or grow slowly. They might also distribute less energy
to the development of reproductive organs, resulting in
delaying the onset of breeding (Bronson and Pryor 1983;
Goldman 2001). The energy limitation may cause the delay
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of reproductive development as suggested by the trade-off
theory (Garland 2014). For example, the very thin cows
showed a delay in post-calving return to cyclicity (Kruip
et al. 2001), and similar results were also found in rodents
(Bronson and Manning 1991). In addition, bilateral removal
of the epididymal white adipose tissue (EWAT) decreased
spermatogenic activity and markedly atrophied the seminifer-
ous tubules in rats (Srinivasan et al. 1986). These cases
demonstrated that the reduction of body fat reserve might
contribute to depression of reproductive function (Butler
2003).

Compelling lines of evidence point out that the adipocyte-
derived hormone leptin, in addition to its main role in energy
homeostasis, is also involved in the control of neuroendocrine
systems for gonadal, adrenal, thyroid, and growth axis (Ahima
et al. 2000). The absence of leptin led to infertility and lack of
pubertal development, whereas leptin administration main-
tained reproductive cyclicity, rescued puberty onset, and
prevented sterility in ob/ob mice (Chehab et al. 1996;
Mounzih et al. 1997). Leptin administration also increased
testicular mass and seminiferous tubule diameter and stimu-
lated testicular function and testosterone synthesis in mice
(Kus et al. 2005). Since its receptors (OB-Rb) exist in testis
and a variety of other tissues or organs, leptin might act
directly on the testicular tissue, or through a hypothalamic-
pituitary-gonad axis to regulate reproductive function (Ahima
et al. 2000). Some studies showed that leptin acted as a central
neuroendocrine effect rather than a direct effect on testicular
tissue (Barb et al. 2004; Soyupek et al. 2005). Leptin may in
part be communicated to GnRH neurons via Kiss-1/GPR54
system (Luque et al. 2007; Kirilov et al. 2013; Martin et al.
2014), which are mainly expressed in hypothalamic nuclei
and are potent stimulators of the GnRH⁄LH axis (Castellano
et al. 2006; Kumar et al. 2014). The seasonal modulation of
breeding in the temperate-zonemammals has been found to be
influenced by the Kiss-1/GPR54 system (Revel et al. 2006;
Janati et al. 2013; Boufermes et al. 2014).

Brandt’s vole (Lasiopodomys brandtii), a typical
nonhibernating herbivores, distributes mainly in the Inner
Mongolian grassland of China, Mongolia, and the region of
Baikal in Russia (Zhang andWang 1998). The average annual
temperature is 0–4 °C, andwinter lasts formore than 5months.
The voles showed seasonal reproduction, and the offspring
bred in the early spring would face with cold stress during
their development. We have found that cold exposure de-
creased body fat mass and serum leptin concentrations but
increased energy intake and thermogenic capacity in adult
voles (Li and Wang 2005; Zhang and Wang 2006). Further
study showed that hypoleptinemia in the cold condition con-
tributed to hyperphagia and body fat mobilization in male
adult voles (Tang et al. 2009). However, we still do not know
the mechanism for how cold exposure affects growth and
reproductive development under low ambient temperature.

In this study, we hypothesized that the effects of low ambient
temperature on growth and puberty onset would be associated
with altered hypothalamic Kiss-1 gene expression and serum
leptin concentrations in wild rodents. We predicted that the
growth, reproductive development, hypothalamic Kiss-1 gene
expression, and serum leptin concentrations would decrease
under low temperature in male Brandt’s voles.

Materials and methods

Animals and experimental design

All animal use procedures were permitted by the Institutional
Animal Care and Committee of the Institute of Zoology,
Chinese Academy of Science. Brandt’s voles were from our
laboratory breeding which were trapped in Inner Mongolian
grasslands in 1999. The voles were housed with same gender
sibling pairs in plastic cages (30×15×20 cm) and maintained
at 23±1 °C under a 16 L: 8 D photoperiod with lights on at
04:00 h. Commercial rabbit pellets (Beijing Hua Fukang Feed
Co.) and water were provided ad libitum.

The female voles were paired with males for 2 days to
allow insemination, and then, the males were removed. On the
day of parturition, the dams and their litters were transferred to
a room at 4±1 °C (lactating in the cold, n=8) for 3 weeks.
Other lactating females remained at 23±1 °C (lactating in the
warm, n=8). All the voles were given the same amount of
cotton (approximately 3–4 g) for their nest building. At
weaning (21 days old), male offspring of the warm (23±
1 °C) and cold (4±1 °C) groups were housed individually in
plastic cages with sawdust bedding and maintained respec-
tively at its primary temperature until sacrificed on the days of
26, 40, 60, and 90 (n=10–12), respectively, by carbon dioxide
anesthesia. Body mass and food intake were monitored once a
week.

Body compositions

After collecting trunk blood to get serum, the hypothalamus
and inter-scapular brown adipose tissue (iBAT) were carefully
dissected, frozen in liquid nitrogen, and then stored at −80 °C.
The visceral organs, including the heart, lung, liver, kidneys,
spleen, testis, epididymis, and gastrointestinal tract (stomach,
small intestine, cecum, proximal colon, and distal colon), were
extracted and weighed (±1 mg) for body composition analy-
sis. The stomach and intestines were rinsed with 0.9 % saline
to eliminate all the gut contents and weighed before being
dried. At the same time, the WATs around the gonads, kid-
neys, and mesenterium were removed and weighed (±1 mg)
and then kept together with the carcass to get the carcass mass.
The remaining carcass and all the organs were dried in an oven
at 60 °C to constant mass (at least 3 days), and then weighed
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again to obtain the dry mass. The difference between the wet
carcass mass and dry carcass mass was the water mass of
carcass. Total body fat was extracted from the dried carcass
with a Soxtec Fat Extraction System (Avanti 2050, FOSS,
Hogänäs, Sweden) with petroleum ether following the manu-
facturer’s directions.

Measurement of UCP1 and COX4 contents in iBAT

For measuring total protein content, iBAT was homogenized
in the rate of 1:5 (m/v) with radio immunoprecipitation assay
(RIPA) lysis buffer containing 10 mM Tris (pH 7.0), 158 mM
NaCl, 1.0 % Triton X-100, 5 mM EDTA, 1 mM DTT, 1 mM
phenylmethylsulfonyl fluoride (PMSF), and protease inhibitor
cocktail (PIC, Sigma, dilution 1:1000). The soluble fractions
were obtained by centrifugation at 14,000g for 10 min at 4 °C.
The protein concentration of iBAT was measured with Folin
phenol method using bovine serum albumin as standards
(Lowry et al. 1951).

The uncoupling protein 1 (UCP1) and cytochrome c oxi-
dase IV (COX4) protein of iBAT was separated in a discon-
tinuous SDS-polyacylamide gel (12.5 % running gel and 3 %
stacking gel) according to the molecular weight with the same
90μg protein per lane (Li andWang 2005; Zhang et al. 2011a,
b). After electrophoresis, the protein was transferred to PVDF
membrane in Tris/glycine buffer (pH 9.2) containing 48 mM
Tris, 1.3 mM SDS, 21.3 mM glycine (Amresco, Solon, OH),
and 20 % methanol. For binding unspecific sites, membranes
were soaked in a blocking buffer [5 % nonfat dried milk in
phosphate-buffered saline (PBS, pH 7.6) containing 0.05 %
Tween-20] for 1 h at room temperature. After the membrane
was washed with TBS/T for three 10-min intervals, UCP1,
COX4, and β-tubulin (inner reference) were detected respec-
tively using rabbit anti-UCP1 (1:10000; Abcam), mouse anti-
COX4 (1:1000; Santa Cruz Biotechnology), and mouse anti-β-
tubulin (1:5000; DSHB) as a primary antibody overnight at
4 °C with gentle agitation. The membranes were washed with
TBS/T for three 10-min intervals and then incubated with
peroxidase-conjugated goat anti-rabbit IgG and goat anti-
mouse IgG as the secondary antibody (1:5000, Jackson
ImmunoResearch Inc., Baltimore, PA, USA) for 3 h at room
temperature. After three 10-min washes in TBS/T and two 10-
min washes in TBS, the antigen-antibody peroxidase complex
was detected by enhanced chemiluminescence (ECL;
Amersham Biosciences) and was used for detection. Quantifi-
cation of the immunoreactive bands was performed by using a
Quantity One Ver.4.4.0 Software (Bio-Rad, USA). UCP1 and
COX4 contents were expressed as relative unit (RU).

Serum assays

Serum leptin concentrations were measured by radioimmuno-
assay (RIA) with a [125I] multispecies kit (Cat. No. XL-85 K,

Linco Research Inc., USA), which had been validated previous-
ly in Brandt’s voles (Li and Wang 2005; Zhang et al. 2011a, b).
The measured range of the leptin concentrations that could be
detected by this assay kit was from 1 to 50 ng/mL, and the intra-
and inter-assay variations were <3.6 and <8.7 %, respectively.
Serum leptin concentrations were determined in a single RIA
and presented as nanogram per milliliter (see manufacturer’s
instructions for multispecies leptin RIA kit).

The concentrations of thyroid hormones (total T3 and T4)
were measured in 50 μL of serum according to the manufac-
turer’s instructions and determined by highly sensitive and
specific 3,3′,5-triiodothyronine and thyroxine RIA kit (Hu-
man NO. S10930040, Atom-hitech Inc. CN). Intra- and inter-
assay coefficients of variation were 2.4 and 8.8 % for T3 and
4.3 and 7.6 % for T4, respectively. The values are reported as
nanogram per milliliter and in a single RIA for total T3 and
total T4. All groups were assayed in the same run in order to
avoid inter-assay variations (Zhang et al. 2011a, b).

Testosterone in testis tissue assays

The testes were quickly removed, weighed, frozen in dry ice,
and kept at −80 °C. For the measurement of the testicular
testosterone concentrations, one testis of each male was
weighed and placed in tubes containing five times volume of
the testis mass ice-cold Dulbecco’s PBS buffer (NaCl 8.0 g/L,
KCl 0.2 g/L, Na2HPO4 1.15 g/L, KH2PO4 0.2 g/L, MgCl2 ·
6H2O 0.1 g/L, CaCl2 · 2H2O 0.1 g/L at pH 7.3–7.4) with
0.25M sucrose and homogenized (Korhonen et al. 2008). The
samples were centrifuged at 600g for 10 min at 4 °C to
precipitate nuclei and cellular debris. The supernatant was
collected and centrifuged at 10,000g for 20 min at 4 °C to
separate mitochondrial pellet. Finally, the supernatant was
collected and kept at −80 °C until used for measurement.
The concentrations of testosterone in testis homogenates were
assessed by [125I] testosterone RIA kit, and the intra- and inter-
assay coefficient of variance are <10.0 and <15.0 %, respec-
tively (Human NO. S10940093, BNIBT Inc. CN). The pro-
cess follows the manufacturer’s instructions of the testoster-
one RIA kit. The lowest limit of testosterone concentrations
that could be detected by this assay was 0.1 ng/mL using
50 μL of serum. All groups were assayed in the same run in
order to avoid inter-assay variations.

Hypothalamic Kiss-1 gene expression

Total RNA isolation and cDNA synthesis

Hypothalamus total RNAwas extracted using TRIzol reagent
(Cat.No.15596- 026, Invitrogen, USA) according to the man-
ufacturer’s instructions. RNA samples were treated with
RNase-free DNase I (Cat. No. M6101, Promega, USA) for
30 min at 37 °C in order to denature any contaminating DNA.
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Complementary DNA was generated from equal volumes
(4 μg) of total RNA for each sample using reverse transcrip-
tion kit (Cat. No. 1622, Fermentas, Lithuania) following the
manufacturer’s instructions, as described previously (Tang
et al. 2009).

RT-qPCR

Hypothalamic Kiss-1 messenger RNA (mRNA) expression
was assessed by reverse transcription-quantitative polymerase
chain reaction (RT-qPCR), optimized for semiquantitative
detection, used previously defined primer pairs and conditions
(Castellano et al. 2005). As internal control for reverse tran-
scription and reaction efficiency, amplification of primers set
for β-actin protein mRNAwas carried out in parallel in each
sample. To verify changes in Kiss-1 gene expression, RT-
qPCR was performed using the SYBR Green I qPCR kit
(Cat. NO. DRR041D, TaKaRa, Japan) in the Mx3000P quan-
titative PCR system (Stratagene, USA). The sample comple-
mentary DNA (cDNA) prepared as above was used as a
template for the PCR. General procedures for RT-qPCR of
Kiss-1 mRNAwere as previously described (Castellano et al.
2005). Real-time PCR was carried out in 12.5-μL reaction
agent composed of 6.25 μL 2× SYBR® Premix EX Taq™
master mix, 1-μL cDNA templates, and 0.2 μmol/L primers.
Each samplewas analyzed in triplicate. The primers usedwere
as follows: Kiss-1: (sense) 5′-ATGGGGAGGTCCTACGGG-
3′, (anti-sense) 5′-CGTTAATGCCTGGGAAAAGG-3′; β-ac-
tin: (sense) 5′-TTGTGCGTGACATCAAAGAG-3′, (anti-
sense) 5′-ATGCCAGAAGATTCCATACC-3′ (Tang et al.
2009). The Kiss-1 reaction conditions were as follows: 30 s
at 95 °C for 1 cycle, then 40 cycles of 95 °C for 5 s and 60 °C
for 20 s. At the end of the experiments, melting curve analysis
showed that there were no nonspecific amplifications. PCR
products were confirmed by melting curve information, 2 %
agarose gel electrophoresis, and further confirmed by DNA
sequencing. Standard curves were constructed for each gene
via serial dilutions of cDNA (fivefold dilution). Analysis of
standard curves between target genes and β-actin showed that
they had similar amplification efficiency, which confirmed the
validity of comparative quantity method. The data derived
from Mx3000P quantitative software were expressed as rela-
tive amounts, calculated by normalizing the amount of target
genemRNA levels to the amount ofβ-actin mRNA levels. No
amplification was detected in absence of template or in the no
RTcontrol. All RT-qPCR analysis standards and samples were
run in triplicates, and the results were subjected to statistical
analysis.

Statistical analysis

Data were analyzed using SPSS 13.0 software (SPSS Inc.,
Chicago, IL, USA). Prior to all statistical analyses, data were

examined for assumptions of normality and homogeneity of
variance, using Kolmogorov-Smirnov and Levene’s tests, re-
spectively. If not, data were log- or arcsine-square-root-trans-
formed. The differences in body mass and food intake during
development were analyzed by repeated measures analysis of
variance (ANOVA) and analysis of covariance (ANCOVA)
(body mass as a covariate) respectively, followed by least-
significant difference (LSD) post hoc tests. Group differences
at different time points between warm and cold were
analyzed by independent t test in body mass and one-
way ANCOVA in food intake with body mass as a
covariate. All morphological parameters and molecular
markers were analyzed by two-way ANCOVA (wet car-
cass mass as a covariate) and two-way ANOVA, respec-
tively, followed by LSD post hoc tests. Pearson corre-
lation analysis was performed to determine the correla-
tion of serum leptin concentrations with body fat mass,
hypothalamic Kiss-1 gene expression, and testis testos-
terone concentrations and the correlation between hypo-
thalamic Kiss-1 gene expression and testosterone con-
centrations in testis tissue. Data were reported as mean±
SE, and P<0.05 was considered to be statistically
significant.

Fig. 1 Changes of body mass (a) and food intake (b) in male Brandt’s
voles during development under cold and warm conditions. Values are
means±SE. *P<0.05; **P<0.01. Bars with different letters differed
significantly from each other among different ages (P<0.05)
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Results

Body mass, food intake, and body composition

Body mass on day 26 was 16.9±0.7 and 16.7±0.4 g at 23 and
4 °C, respectively, and there was no difference between two
groups (t=0.24, df=18, P>0.05). Body mass on day 40 (t=
10.192, df=18, P<0.01) and day 60 (t=2.308, df=18,
P<0.05) was lower significantly by 20.0 and 11.9 %, respec-
tively, in cold groups than in the warm groups. Body mass
increased during development and kept stable after day 60
(repeated measures ANOVA, P<0.01) (Fig. 1a).

Food intake increased significantly from weaning to days
40 and then kept stable (Repeated measure ANOVA,

P<0.01). Food intake increased by 42.9 (F1,20=43.841,
P<0.001), 81.8 (F1,20=380.474, P<0.001), 53.9 (F1,20=
72.775, P<0.001), and 55.6 % (F1,20=45.959, P<0.001) dur-
ing days 26, 40, 60, and 90 in the cold compared to the warm,
respectively (Fig. 1b).

Voles exposed to cold on day 40 had lower total body fat
mass (by 49.2 %, F1,32=11.698, P<0.01, Fig. 2a), epididymal
fat mass (by 63.0 %, F1,32=17.253, P<0.001, Fig. 2b), wet
carcass mass (t=6.965, df=32, P<0.001), and fat-free body
mass (t=6.576, df=32, P<0.001) (Table 1). Cold exposure
increased organmass, such as liver (P<0.01), colon (P<0.01),
and total gut mass (P<0.01) (Table 2). Wet testis mass on day
40 decreased by 36.4 % in the cold voles compared to the
warm (F1,32=15.343, P<0.01, Fig. 2c). However, there were
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Fig. 2 Changes of body fat mass (a), epididymal white adipose tissue
(EWAT) mass (b), and wet testis mass (c) in male Brandt’s voles during
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in male Brandt’s voles during development under cold and warm condi-
tions. Values are means±SE. *P<0.05; **P<0.01

Int J Biometeorol (2015) 59:679–691 683



no significant differences in testis mass between the two
groups on days 26, 60, and 90 (Fig. 2c). Body fat mass,
epididymal fat mass and wet testis mass increased significant-
ly during development (P<0.01) and kept stable after day 60
(Fig. 2a–c). Residual wet testis mass was positively correlated
with residual body fat mass (r=0.551, P<0.001, Fig. 2d) and
residual epididymal fat mass (r=0.656, P<0.001, Fig. 2e).
Wet testis mass was positively correlated with body mass (r=
0.665, P<0.001, Fig. 2f)

Serum thyroid hormone concentrations and UCP1 and COX4
contents in iBAT

Serum T3 concentrations increased significantly in the cold
especially on day 26 (by 2.94 times, P<0.001) and day 60
(by 64.2 %, P<0.01, Fig. 3a), but T4 concentrations decreased
especially on day 60 (by 51.0 %, P<0.05, Fig. 3b) compared to
those in the warm condition. The ratio of T3/T4 on days 26
(P<0.001), 40 (P<0.05), 60 (P<0.05), and 90 (P<0.001)
increased significantly in the cold than in the warm (Fig. 3c).
Serum T3 and T4 concentrations and the ratio of T3/T4 in-
creased significantly from weaning to day 40 (P<0.01,
Fig. 3a–c) and then kept stable both in cold and warm groups.

The absolute mass of iBAT increased by 16.3, 16.1, 10.1, and
8.8% on day 26 (P<0.05), day 40 (P<0.001), day 60 (P>0.05),
and day 90 (P>0.05) in the cold, respectively, compared to the
warm (Table 1). Cold exposure significantly increased UCP1
(by 12.9 %, P<0.05, Fig. 4a) and COX4 (by 48.4 %, P<0.01,
Fig. 4b) content of iBAT on day 40. However, there were no
significant differences in UCP1 and COX4 content of iBAT on
day 26, day 60, and day 90 between the two groups.

Hypothalamic Kiss-1 gene expression

Hypothalamic Kiss-1 mRNA levels on day 26 decreased sig-
nificantly in the cold than in the warm (by 74.1%,P<0.05). On
day 40, Kiss-1 mRNA levels in the cold decreased by 16.2 %
compared with those in the warm, but the difference between
warm and cold was not significant (P>0.05, Fig. 5). Kiss-1
mRNA expression was affected significantly by the interaction
of age and temperature (F1,64=4.677, P<0.05, Fig. 5). Kiss-1
mRNA level decreased significantly from weaning to day 40
(P<0.01, Fig. 5) and then kept stable in the warm, but theKiss-
1 mRNA in the cold kept a stable level during the whole
development (P>0.05, Fig. 5).

Serum leptin and testis testosterone assays

Voles in the cold on day 40 showed lower serum leptin (by
48.7 %, P<0.01, Fig. 6a) and testosterone concentrations in
testis tissue (by 52.5 %, P<0.01, Fig. 6b) than those in the
warm. There were no significant differences in serum leptin
and testis testosterone concentrations on day 26, day 60, andT
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day 90 between the cold and warm groups. Serum leptin
concentrations were not affected by the interaction of temper-
ature × age (F1,73=1.415, P>0.05), but testosterone

concentrations in testis tissue were affected (F1,73=3.851,
P=0.013). Serum leptin concentrations increased significantly
during development (P<0.01, Fig. 6a) and kept stable after

Fig. 3 Effect of cold exposure on
serum T3 (a), T4 (b), and T3 / T4

(c) in male Brandt’s voles during
development. Values are
means±SE. *P<0.05; **P<0.01;
***P<0.001
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day 60 both in cold and warm groups. Testis testosterone
concentrations increased significantly from weaning to day

40 (P<0.01, Fig. 6b) and then kept stable in warm, but the
time when testis testosterone concentrations in the cold kept
stable was delayed to day 60 (P<0.01, Fig. 6b).

Serum leptin concentrations were positively correlated
with testosterone concentrations in testis tissue (r=0.329,
P<0.01, Fig. 6c), wet testis mass (r=0.330, P<0.05,
Fig. 6d), and epididymal fat mass (r=0.451, P<0.001,
Fig. 6e). The testosterone concentration in testis tissue was
positively related to wet testis mass (r=0.496, P<0.001,
Fig. 6f).

Discussion

In this study, our data showed that cold exposure inhibited
hypothalamicKiss-1mRNA expression during the early stage
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male Brandt’s voles during development. Values are means±SE.
*P<0.05. RU relative unit
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of development, decreased serum leptin concentrations, and
delayed the growth and reproductive development in male
Brandt’s voles.

Small mammals, because of their large surface to mass
ratios, would experience a considerable thermoregulatory bur-
den at low temperature (Hart 1971; Sugimoto et al. 2000). The
increasing thermogenic capacity in BAT to maintain a stable
body temperature is essential for survival in small mammals
(Cannon and Nedergaard 2004; Cannon et al. 2000). UCP1
contents in BAT was enhanced in the cold in plateau pika
(Ochotona curzoniae) (Wang et al. 2006a), root vole
(Microtus oeconomus) (Wang et al. 2006b), Daurian ground
squirrel (Spermophilus dauricus), Mongolian gerbil
(Meriones unguiculatus), and Brandt’s vole (Li et al. 2001;
Li and Wang 2005). There were increases in the transcription

levels of COX4 and other mitochondrial-encoded genes in
hibernating ground squirrels (Fahlman et al. 2000). In this
study, UCP1 and COX4 contents in iBAT were significantly
higher in cold- than warm-reared young Brandt’s voles. The
rodents increased food intake and digestive function and
mobilized body fat reserve to meet the high energy demands
for thermoregulation in the cold (Bozinovic and Nespolo
1997; Zhang et al. 2011a). Thyroid hormones, critical in the
central regulation of body temperature, can increase energy
expenditure and stimulate basal thermogenesis by lowering
metabolic efficiency (Tomasi 1991). Metabolic adjustment of
thyroid hormones might correlate with BAT thermogenic
capacity in tree shrews (Tupaia belangeri) and Mongolian
gerbils exposed to cold (Li et al. 2001; Liu et al. 1997). Cold
acclimation resulted in increases in serum T3 concentration on
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day 26 and day 60 and the ratio of serum T3/T4 at all stages in
male Brandt’s voles. These data suggested that the increase in
the function of T3 was associated with the increase in cold-
induced BAT thermogenesis for survival in the cold.

The trade-off theory of life history presumes that the in-
crease in one function must be at the cost of the decrease in
some others as a consequence of partitioning limited resources
(Stearns 1992). The present study showed that the testis mass,
testis testosterone concentrations, and EWAT mass decreased
significantly in cold-reared male voles compared to their
warm counterparts especially on day 40. These results were
supported by the studies in mice, rats, Syrian hamster
(Mesocricetus auratus), prairie voles (Microtus ochrogaster),
and northern red-backed voles (Clethrionomys rutilus), which
showed that the reproductive functionwas impaired at cold- or
short-day exposure (Feist and Feist 1986; Kriegsfeld et al.
2000; Goldman 2001; Benderlioglu et al. 2006). These data
suggested that cold-exposed animals shifted their metabolic
priorities from development to basic survival, specifically
thermogenesis.

Studies showed that both the Kiss-1 and GPR54 mRNA
levels in the medial basal hypothalamus were the highest at
the time of puberty in male rats and monkeys (Navarro et al.
2004; Shahab et al. 2005). Kiss-1mRNA in the hypothalamus
decreased in short-day Syrian hamsters, and the chronic ad-
ministration of kisspeptin-10, encoded by the Kiss-1 gene,
restored the testicular activity of these hamsters (Revel et al.
2006), indicating that the hypothalamic Kiss-1 system is crit-
ical for the regulation of reproduction and required for puberty
onset (Kirilov et al. 2013; Martin et al. 2014). Our data
showed that hypothalamic Kiss-1 mRNA level on day 26
decreased significantly in the cold than that in the warm, prior
to the decrease in reproductive organs. Moreover, Kiss-1
mRNAs showed the highest level on day 26 in the warm but
kept at low levels during the whole stage of development in
the cold in male Brandt’s voles. These findings suggested that
the decreased expression of Kiss-1 in early stage of develop-
ment might be a key gatekeeper for the delay of the initiation
of puberty in the cold environment.

Some experiments in rodents have shown that the rise in
leptin concentration may be the earlier signal of the initiation
of puberty and may contribute to activation of the
hypothalamic-pituitary-gonadal (HPG) axis, resulting in the
testicular steroidogenesis (Gnessi et al. 1997). The adminis-
tration of leptin stimulated Kiss-1 expression in mouse hypo-
thalamic cell line N6 and also in ob/ob mice (Luque et al.
2007). Our data showed that serum leptin concentrations
decreased significantly in male Brandt’s voles exposed to cold
during the early stage of development, as indicated in the
previous studies in adult rats (Trayhurn et al. 1995), Brandt’s
voles (Zhang and Wang 2006, 2007), and Siberian hamsters
(Phodopus sungorus) (Larkin et al. 2001). The rising higher
stage of serum leptin concentrations was from weaning to day

40 in warm, but from day 40 to 60 in cold in the present study.
We also found that serum leptin concentrations were positive-
ly correlated with body fat mass, wet testis mass, and testis
testosterone concentrations. All these data indicated that the
lower serum leptin might link negative energy balance and
delayed reproductive development in the cold.

In summary, we found that Brandt’s voles increased ther-
mogenesis and restrained the development of reproduction,
supporting the trade-off between thermogenesis and reproduc-
tion in the cold environments. Serum leptin concentrations
were correlated positively with body fat mass, testis mass, and
testis testosterone concentrations, suggesting that lowered
serum leptin in the cold might act as a signal to link the energy
status to reproductive development. Importantly, the hypotha-
lamic Kiss-1 mRNA decreased only at the early stage before
the reproductive onset. Together, the present data suggest the
possible mechanism for leptin and Kiss-1 in mediating how
cold-exposed wild rodents shift their metabolic priorities from
development to basic survival, specifically thermogenesis,
and the exact mechanisms should be further investigated.
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