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ABSTRACT

Testis cords, embryonic precursors of the seminiferous
tubules, are fundamental for testis structure and function. Delay
or disruption of testis cord formation could result in gonadal
dysgenesis. Although mechanisms regulating testis cord forma-
tion during sex determination have been well-studied, the genes
and signaling pathways involving in testis cord maintenance
after the cords have formed are not well characterized. It is now
clear that the maintenance of cord structure is an active process.
In this review, we summarize the recent findings regarding the
regulation of testis cord integrity by a series of Sertoli cell
transcription factors, including the WT1-SOX8/SOX9-beta-CAT-
ENIN-DHH network, GPR56, STIM1, and NR0B1 (also known as
DAX1). In particularly, we emphasize the underappreciated role
of peritubular myoid cells in testis cord maintenance and their
cooperation with Sertoli cells. The regulation of the size, shape,
and number of testis cords by Sertoli cell proliferation (e.g.,
SMAD4, GATA4, and TGF-beta signaling), Leydig cell products
(e.g., ACTIVIN A), vascular development (a lesson learned from
PDGF signaling), and available gonad space (as observed in
Ift144 mutant mice) is also addressed. Further efforts and new
genetic models are needed to unveil the gene networks and
underlying mechanisms regulating testis cord integrity and
morphology after sex determination.

maintenance, PTM cells, Sertoli cells, testis cord, Wt1

INTRODUCTION

The key structural components in mammalian testes are
seminiferous tubules, which provide physical barriers and

supply nutrients required for the survival and maturation of
germ cells. Seminiferous tubules begin to form during the
embryonic stage as testis cords, and the formation of
seminiferous tubules relies on cord remodeling during
development. Testis cords are formed from epitheliallike
Sertoli cells along with the associated myofibroblastlike
peritubular myoid (PTM) cells at the periphery. Sertoli cells
and PTM cells secrete specific extracellular matrix (ECM)
proteins (mainly laminin and collagen) and assemble a layer of
basement membrane to separate the testis cords from the
interstitial space [1]. Abnormalities in testis cord formation and
maintenance are associated with various diseases, including
infertility, disorders of sexual development, and a predisposi-
tion to testicular dysgenesis syndrome disorders [2].

The developmental process of testis cord occurs via two
main steps. The first step includes sex determination and testis
cord formation, and the second step involves testis maturation
through cord maintenance and remodeling.

In mice, the genital ridge increases in size due to increased
proliferation of somatic epithelial cells and interacts with
primordial germ cells to form the bipotential gonad at
approximately Embryonic Day 10.5 (E10.5) [3, 4]. The
expression of Sry (from E10.5 to E12.5) and Sox9 in the
developing XY gonads results in activation of the male
pathway via antagonism of female-determining genes [5–7].
DMRT1 maintains male fates by repressing multiple female-
promoting genes (Foxl2, Wnt4, and Rspo1) and activating
male-promoting genes (Sox9 and Sox8), revealed by genome-
wide chromatin immunoprecipitation data from postnatal
mouse testes [8, 9]. Cells in XY gonads undergo de novo
rearrangements over a period of approximately 24 h to form a
cord structure (from E11.5 to E12.5). The prevailing view of
testis cord morphogenesis by three-dimensional imaging
analyses supports a model of testis cord formation in which
1) SOX9-positive pre-Sertoli cells polarize, aggregate, and
assemble around germ cells to form a Sertoli-germ cell mass; 2)
endothelial cells migrate in streams from the mesonephros to
direct the partitioning of the XY gonad into cord domains and
form the testis-specific vasculature; and 3) the XY gonad is
patterned into definitive cords by PTM cells surrounding the
cords and forming a basement membrane [10–13]. It follows
that multiple cell types within the fetal testis play active and
synergetic roles in the process of testis cord formation.

Considerable progress has been made concerning the
understanding of sex determination and testis cord formation
(the first step) (reviewed in [7, 14]). What interests us the most
is that, even after cords are formed and stabilized, several genes
are essential to maintain their integrity. Morphological analyses
in mice revealed that testis cords undergo structural changes
(number, size, and shape) after the cords are formed. Testis
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cords appear as transverse circular loops at E14.5. Afterward,
the testis cords of normal embryos began to coil at E17.5 and
underwent further convolution by E19.5, the time of birth,
revealing numerous small cross sections of the cords [15].
Gene knockout and inhibitor treatment experiments discovered
several genes and signaling pathways that are required for testis
cord morphology (see below).

Genetic background influences the number and shape of
E15.5 testis cords in the fetal testis [16]. In 129T2/SvJ mice,
the cords were relatively few, large in size, and packed with
many germ cells. In contrast, the cords in C57Bl/6 mice were
small, more numerous and contained relatively few germ cells.
Accordingly, discrepancy in cord number and shape emerges in
different studies, where mice of mixed genetic backgrounds
were used. Although branched cord structures persist in some
species, testis cords in mouse and man are continuous tubules
[14].

Accordingly, this article presents an overview of the
growing list of genes and gene defects that cause the
breakdown of the basement membrane and/or a decreased
cord number and abnormal shape of the cord structure after the
cords are formed (the second step). Genes and signaling
pathways are classified based on their function and relation-
ship, and succinct information about their roles in mice is
provided.

WT1-SOX8/SOX9-b-CATENIN-DHH NETWORK IN SER-
TOLI CELLS

Sertoli cells acting as an organizing center for testis cord
maintenance has been further validated by recent Sertoli cell

ablation studies. In these studies, cord structures were totally
disrupted, and other cell types were severely affected [17–19].
The WT1-SOX8/SOX9-b-CATENIN-DHH network emerged
as one of the well-defined signaling pathway that was critical
for testis cord integrity (Fig. 1).

Active repression of the ovarian WNT signaling pathway
was necessary for the male pathway [20–22], whereas, Sertoli
cell-specific b-CATENIN stabilization (Ctnnbflox(e3)/þ, Amh-
Cre) caused testis cord disruption [23]. In Ctnnbflox(e3)/þ, Amh-
Cre testes, loss of Sertoli cell markers (Sox9 and Amh) and
elevated levels of Nr0b1 and Wnt4 were observed. However,
transcript levels of several important markers of Sertoli cells,
such as Sf1, Dhh, and Fgf9, were not significantly altered. The
investigators proposed that WT1 is a negative regulator of b-
CATENIN signaling because Sertoli cell-specific deletion of
Wt1 (Wt1�/flox, Amh-Cre) resulted in upregulation and nuclear
localization of b-CATENIN in Sertoli cells, and the observed
defects in b-CATENIN-stabilized mutants phenocopied the
abnormalities observed in the Wt1-deletion testes (see below)
[23]. However, whether the transcriptional factor WT1 directly
regulates Ctnnb (the gene coding b-catenin) is uncertain.

We, and others, suggest that WT1 is one of the few genes
identified that is required for the full formation of the genital
ridge through mitotic control of coelomic epithelial cells [4, 24].
Inactivation of Wt1 in Sertoli cells after sex determination
(Wt1�/flox, Amh-Cre) causes testis cord disruption and loss of
Sox9, Sox8, and Amh expression [25]. Our subsequent studies
have shown that WT1, together with SOX9, directly regulates
the expression of Col4a1 and Col4a2 (the genes coding
collagen IV, which is the main component of ECMs).
Therefore, loss of WT1 expression leads to a breakdown of
the basement membrane [26]. Very recently, Zhang et al. [27]
suggested that deletion of Wt1 resulted in the reprogramming of
Sertoli cells to Leydig-like cells, indicating that Sertoli and
Leydig cells most likely originate from the same progenitor
cells. Meanwhile, this intriguing study has caused researchers to
re-examine the real cause of testis cord disruption in Wt1�/flox,
Amh-Cre embryos. We believe that the mechanisms underlying
the regulation of testis cords by Sertoli cell WT1 are far more
complex and dynamic than was initially thought. Because 3b-
HSD, a Leydig cell marker, was expressed in Sertoli cells
within the residually intact testis cords in the study of Zhang et
al., the transdifferentiation of Sertoli cells into Leydig-like cells
is unlikely to be the driving factor of testis cord disruption.
Further studies are needed to determine the cause(s) and
underlying mechanisms.

Loss of Sox9 expression is observed in both Wt1 deletion
and Ctnnb-stabilized mutants. However, deleting Sox9 after
cord formation has no detrimental effect on testis cord
maintenance [23, 28]. Two recent studies from Scherer’s
laboratory revealed functional redundancy between SOX8 and
SOX9 to ensure intact testis cord structure [28, 29]. Sox9, Sox8
double mutant testes (Sox9D/D; Sox8�/�) exhibited a reduced
number of testis cords compared to controls at E17.5 and
Postnatal Day 0. In addition, Sox9D/D; Sox8�/� testes exhibited
upregulation of early ovary-specific markers (Wnt4, Rspo1)
and downregulation of Sertoli cell-specific markers (Amh, Sf1,
Dhh, and Gdnf) as well as cell adhesion molecules/ECM
components (Ncam, Connexin 43, Occludin, and Claudin 11)
at E15.5 [28]. Their subsequent study further revealed a
disruption of the basal lamina surrounding the testis cords that
starts at E17.5 and, at E15.5, reduced expression levels of
collagen IV, collagen IXa3, testatin, and scleraxis, structural
components of basal lamina and ECMs in Sox9D/D; Sox8�/�

testes [29]. In addition, downregulation of the expression of the
testis markers Sox10 and Dmrt1 and upregulation of the

FIG. 1. WT1-SOX8/SOX9-b-CATENIN-DHH network in Sertoli cells
regulates testis cord maintenance. A) The disruption of testis cord
structures after the cord is formed results in the breakdown of the
basement membrane. B) The WT1-SOX8/SOX9-b-CATENIN-DHH net-
work emerges as the only well-defined signaling pathway that is critical
for testis cord maintenance. WT1 is a negative regulator of b-CATENIN
signaling. Loss of SOX9 expression in observed in both the Wt1 deletion
and Ctnnb-stabilized mutants. DHH is significantly reduced in Wt1-
deletion and Sox9, Sox8 double nullizygous testes, but not in the testes of
Ctnnb-stabilized mutants.
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ovarian marker Foxl2 were observed in the mutant cords from
double nullizygous testes. These two studies identified a large
number of important genes under the control of SOX9 and
SOX8; however, the gene(s) that are directly regulated by
SOX9 and SOX8 remain largely undefined.

The phenotypes of the Wt1 deletion and Ctnnb-stabilized
mutants were more severe than the phenotypes of the Sox9,
Sox8 double nullizygous mutants, with disruption of testis
cords and a scatter of germ cells already observable at E15.5
(these phenotypes were only observed in the Sox9, Sox8 double
nullizygous mutants after E17.5). Considering that loss of Sox9
and Sox8 expression occurs in both the Wt1 deletion and the
Ctnnb-stabilized mutants, we conclude that SOX9 and SOX8
act as the downstream targets of WT1 and b-CATENIN.

Strikingly, gene expression analysis revealed that Dhh is
significantly reduced in Wt1-deletion and Sox9, Sox8 double
nullizygous testes, but not in the testes of Ctnnb-stabilized
mutants (Fig. 1). In addition, the phenotype of Dhh-null mice is
somewhat similar to that of the Wt1�/flox; Amh-Cre and Sox9D/D;
Sox8�/� mice. DHH is a secreted signaling factor that acts via its
receptor PTCH1 on interstitial compartment (PTM cells [30] and
Leydig cells [31]). Dhh-null and control testes are generally
similar during the period of early cord formation (E11.5–E12.5).
By E13.5, the basal lamina delimiting the cords is lacking in
some regions and is disorganized in Dhh-null testes, and
occasional germ cells are observed outside the cords [32].
Disruption of testis cords was also observed in DHH signaling
inhibitor-treated testes from the marsupial species the tammar
wallaby [33]. Additionally, a recent study showed that mutations
in the DHH palmitoyl-transferase (Hhat) gene (palmitoylation is
required for efficient DHH signaling) in both mice and humans
caused both decreases in testis cord numbers and alterations of
the size and shape of the testis cords [34]. Dhh knockout mice
display compromised PTM cells and compromised fetal Leydig
cell differentiation [32, 35], leading to the hypothesis that the
interstitium regulates the maintenance of the fetal testis cord in
vivo. This idea was further supported by a study of Hes1 mutants
that showed that the number of progenitor mesenchymal cells in
the interstitium was reduced and that testis cords were irregular
[36]. Additional studies are needed to address the following
questions: 1) whether Dhh is a direct target of WT1, SOX9, and
SOX8, 2) how DHH induces distinct cellular responses in PTM
and Leydig cell populations [37], 3) whether PTM cell-specific or
Leydig cell-specific Ptch1 knockout embryos exhibit disrupted
testis cord structure, 4) whether DHH stimulates the small
GTPase RhoA (noncanonical Hedgehog signaling) in endothelial
cells to regulate tubulogenesis [38], and 5) does noncanonical
Hedgehog signaling exist in Sertoli cells, and does it play a role in
testis cord maintenance?

GPR56 AND STIM1 IN SERTOLI CELLS

GPR56 is expressed in Sertoli cells, and, in its absence,
testis cords are partially disrupted between E14.5 and E18.5,
resulting in reduced male fertility [39]. Sertoli cells are
scattered and the basement membrane is fragmented in the
defective areas of Gpr56�/� testes. Morphometric analyses by
both the Koopman and Behringer laboratories [40, 41] suggest
that cord remodeling is distinct in different regions of the testis.
Cord size is wider in the distal part of the loops and narrower in
the proximal segments that connect to the rete testis near the
mesonephric border. Interestingly, disruptions of testis cords
were only observed on the mesonephric side of Gpr56�/�

gonads, indicating that remodeling of the testis cords on the
mesonephric side is dependent on the activity of GPR56.
However, neither GPR56 mRNA nor protein exhibited

asymmetric distributions in the testes. This study did not
investigate how these distinct remodeling processes are
regulated.

One recent study presents the possibility that reactive
oxygen species (ROS) in Sertoli cells may be important for
testis cord maintenance. Zheng et al. [42] showed that
suppression of STIM1 in the cultured fetal testis in vitro
increased ROS production and disorganized testis cord
structure. When the knockdown group was treated with the
antioxidant scavenger N-acetylcysteine, the defects in the
testicular morphology were partially rescued. The investigators
proposed that STIM1 could regulate b-CATENIN by ROS
signaling and could control testis cord structure. In support of
this proposed mechanism, b-CATENIN was shown to be
upregulated after Stim1 inhibition. However, the relationship
between b-CATENIN and ROS remains undefined, and b-
CATENIN in Sertoli cells disrupts testis cords (using Amh-Cre)
[23] or causes male-to-female sex-reversal (using Sf1-Cre)
[22], which is not identical to the phenotype observed in Stim1
knockdown testes. It will be interesting to generate Sertoli cell-
specific Stim1 knockout mice and to examine whether STIM1
regulates testis cord maintenance via ROS signaling and/or
other mechanisms in vivo.

NR0B1 IN PTM CELLS

In adult testes, PTMs have been suggested to influence
spermatogenesis and male fertility in PTM-specific Ar knockout
[43] and Lgr4-null mice [44]. In fetal testes, Sertoli cells work in
concert with PTM cells to deposit an intervening layer of ECMs
(also known as the basement membrane) to contribute to testis
cords. In vitro coculture experiments clearly demonstrated that
ECM deposition was robust only when both Sertoli cells and PTM
cells were allowed to interact [45]. When Sertoli cells or PTM
cells were cultured separately, ECM constituents were expressed
but remained intracellular [46]. Thus, PTM cells are required for
the functional development of the basement membrane in vitro.
However, it will be important to confirm the indispensable role of
PTM cells in testis cord maintenance in vivo using cell ablation
strategies to permit the deletion of PTM cells.

A previous study suggested that NR0B1 (also known as
DAX1) plays a crucial role in the development of intact testis
cords by regulating the development of PTM cells [47]. In
Nr0b1�/Y males, the gonad develops normally until E12.5.
However, by E13.5, the testis cords are disorganized and
incompletely formed, as indicated by disruption of the
basement membrane. Bromodeoxyuridine (BrdU) labeling of
PTM cells is low and consistent with decreased proliferation.
Sertoli cell proliferation is normal, as assessed by BrdU
labeling, and expression of the Sertoli-specific genes Sox9,
Dhh, and Amh is relatively unaffected in Nr0b1-deficient testis.
Because NR0B1 is mainly expressed in Sertoli cells, it is
curious that PTM cells were specifically affected and
accounted for testis cord disruption. The role of PTM in testis
cord in vivo maintenance is unclear.

MORPHOLOGY OF TESTIS CORDS-TGF-b

The results from several reports supported the role of the
TGF-b superfamily in the full development of testis cords. When
E12.5 testes were treated with inhibitors of TGF-b signaling
receptors, ALK4/5/7, for 72 h, testis cord growth was affected,
with the cords exhibiting a stunted and wider appearance [48].
The researchers proposed that a significant reduction in Sertoli
cell proliferation might account for the stunted testis cord
growth. In addition, the basement membrane of Tgfbr3 (a
coreceptor for TGF-b) knockout testes is thin and discontinuous
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[49]. However, mice lacking individual Tgfb genes (Tgfb1-3)
exhibit normal testis cord formation, indicating that functional
redundancy may obscure testicular phenotypes in these models
[50]. Recently, Sarraj et al. [51] showed that exogenous TGFb2
(a high-affinity ligand for TGFBR3) partially rescues the
dysgenic cord phenotype in Tgfbr3 knockout explants. Accord-
ingly, the compromised cord development in Tgfbr3-null fetal
testis is due, at least in part, to disrupted TGFb2 function.
Importantly, how TGFb1/2/3-TGFBR3-ALK4/5/7 signaling
modulates Sertoli cell proliferation is still unknown.

Furthermore, Nie and Arend [52] suggested that polycystic
kidney disease 1 (PKD1) and PKD2 regulate testis cord
development likely via TGF-b signaling. Testis cord growth of
Pkd1�/� and Pkd2�/� testes is inhibited, as indicated by a
decrease in the average number of testis cords per section at
E15.5 and E16.5. There is evidence that PKD1 and PKD2 are
linked to TGF-b signaling. The investigators showed that the
level of the TGF-b signaling member phospho-SMAD2 was
significantly reduced in Pkd1�/� and Pkd2�/� testes. However,
the mechanism by which PKD1/2 regulates TGF-b signaling is
still not completely clear.

MORPHOLOGY OF TESTIS CORDS-ACTIVIN A-SMAD4
SIGNALING

ACTIVIN A-SMAD4 signaling, also belonging to the TGF-
b superfamily, is thought to regulate testis cord coiling.
Specific disruption of ACTIVIN A in fetal Leydig cells
(Inhba�/flox, Amhr2-Cre) results in a failure of fetal testis cord
elongation and expansion due to decreased Sertoli cell
proliferation [15]. Before this study, fetal Leydig cells and
their products were not known to influence testis cord
morphogenesis. Interestingly, the postnatal coiling results in
the recovery of seminiferous tubule coiling, and grossly normal
spermatogenesis is observed in Inhba�/flox, Amhr2-Cre mice
[15]. The question of why and how testis cord coiling is
ensured by fetal and postnatal coiling is not clear. Finally, the
conditional inactivation of SMAD4, the central component of
TGF-b signaling, in Sertoli cells (Smad4�/flox, Amh-Cre)
eliminates ACTIVIN A signaling to the Sertoli cells and leads
to both a reduction in the number of testis cords and abnormal
shape of the testis cords, which is similar to those of Leydig
cell-specific Inhba knockout testes [15, 53].

MORPHOLOGY OF TESTIS CORDS-PDGF-BB-PDGFR
SIGNALING

A previous study suggest that inhibition of platelet-derived
growth factor (PDGF) actions by a PDGFR-specific tyrosine
phosphorylation inhibitor does not inhibit cord formation but
does alter normal cord development and morphology in rat fetal
testes [54]. A significant decrease in the number of cords per
testis area and increased cord diameter were noted in the treated
samples. PDGFR-a was expressed on cells of the mesonephros
and interstitial cells of the gonad. Pdgfr-a�/� XY gonads
displayed disruptions in the vasculature organization, testis cord
development, and fetal Leydig cell differentiation [55]. A recent
study suggests that endothelial-derived PDGF-BB, rather than
Sertoli-derived PDGF-AA, is the ligand that drives proliferation
of mesenchymal cells to form wedgelike structures that
subdivide the gonad [56]. Addition of recombinant PDGF-BB
rescued mesenchymal proliferation in the absence of the
vasculature or when adhesion of endothelial cells was blocked.

MORPHOLOGY OF TESTIS CORDS-GATA4

We, and others, find that the enlarged volume and decreased
number of testis cords in Sertoli cell-specific Gata4 knockout
testes (Gata4flox/flox; Amh-Cre or Gata4flox/flox; Sf1-Cre) are
remarkable [57, 58]. We observed that the number of BrdU-
positive Sertoli cells was significantly reduced in Gata4flox/flox;
Amh-Cre testes after E14.5, which might explain why the
reduced number and abnormal shape of testis cords were
observed (our unpublished data). However, the exact mecha-
nism of abnormal shape of the testis cords in Gata4flox/flox;
Amh-Cre embryos need further investigation. Morphological
analysis revealed a similar phenotype (failure of fetal testis
cord elongation and expansion) and possible mechanism
(decreased Sertoli cell proliferation) between Smad4 and
Gata4 conditional knockout testes, leading to the hypothesis
that GATA4 and SMAD4 may genetically interact in the
reproductive system. This idea was consistent with a report that
double heterozygous Gata4 and Smad4 embryos (Gata4flox/

þSmad4flox/þ; Tie2-Cre) displayed severe atrioventricular
defects [59]. However, our preliminary data suggested that
both the number and shape of the testis cords were normal in
Gata4flox/þSmad4flox/þ; Amh-Cre embryos and adults, indicat-
ing this genetic and functional interaction is not ubiquitous
between the cardiac system and the reproductive system.

MORPHOLOGY OF TESTIS CORDS-IFT144

An interesting recent study suggested that the number of
testis cords was also determined by the gonad size because
extension of the developing gonads in Ift144 mutant mice
resulted in a significant increase in testis cord number [60]. It is
now clear that the gonad is partitioned into a number of testis
cords that depends on the available space, rather than an innate
determination to generate a fixed number of cords, although the
pathways that mediate this effect require further study.

FIG. 2. Genes and signaling required for testis cord elongation and
expansion. Testis cords appear as transverse circular loops at E14.5.
Afterward, the testis cords of control embryos begin to coil and undergo
further convolution by E17.5 to ;E19.5, revealing numerous small cross
sections of the cords. The number, size, and shape of the testis cords are
regulated by a variety of factors, including Sertoli cell proliferation (e.g.,
SMAD4, GATA4, TGF-b signaling, and PDK1/2), Leydig cell products
(e.g., ACTIVIN A), vascular development (a lesson learned from PDGF
signaling), and available space (as observed in Ift144 mutant mice).
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PERSPECTIVES

This review synthesizes the current knowledge of how the
architecture of the testis cord is maintained and highlights the
questions that remain to be explored. The disruption of testis
cord structures after the cord is formed results in the
breakdown of the basement membrane (Fig. 1) or a decreased
number of testis cords and abnormal shape of the cord structure
(Fig. 2). Several transcription factors in Sertoli cells (such as
WT1, b-CATENIN, SOX9, SOX8, DHH, GPR56, and
NR0B1) have been suggested to play significant roles in the
stabilization of the basement membrane. Therefore, deficiency
of these genes causes a scatter of germ cells in the interstitial
region and is detrimental to spermatogenesis. The number, size,
and shape of the testis cords are regulated by a variety of
factors, including Sertoli cell proliferation (e.g., SMAD4,
GATA4, and TGF-b signaling), Leydig cell products (e.g.,
ACTIVIN A), vascular development (a lesson learned from
PDGF signaling), and available space (as observed in Ift144
mutant mice) (Fig. 2).

Although Sertoli cells have traditionally been considered the
key cell type responsible for maintaining, elongating, and
expanding the testis cord structures, other somatic cells (Leydig
cells, PTM cells, and endothelial cells) also contribute to testis
cord integrity and normal morphogenesis. ACTIVIN A, a
product of fetal Leydig cells, is a unique paracrine regulator of
testis cord expansion [15]. It is interesting to identify other
Leydig cell products and study their roles in testis cord
maintenance. Meeks et al. [47] suggest that the reduced
proliferation of PTM cells in Nr0b1-deficient testes accounted
for testis cord disruption. Further observation of PTM cell-
specific markers and the generation of PTM cell-specific Cre
transgenes could be helpful for investigating the function of
genes in PTM cells and for certifying the contribution of PTM
cells to basal lamina integrity. Vascular-mesenchymal cross
talk through VEGF and PDGF has been shown to drive
vascular development and testis cord morphogenesis [56].

We should note that fetal testis development is a continuous
and complex process. It will be problematic to view testis cord
maintenance as an independent process. Moreover, the specific
contribution of testis cord disorganization to functional
development of the testis needs further investigation.

The reconstruction of testis cord structure both in vitro and
in xenografts from immature, dissociated testicular cells during
neonatal periods was reported in several mammalian species,
including mice [61–63], rats [64, 65], pigs [66, 67], and
monkeys [68, 69]. Furthermore, Matoba and Ogura [70]
suggested that the cells of fetal gonads reconstructed the testis
cord structure, and even functional gametes, in the renal
subcapsular space. Most importantly, human fetal testis tissue
xenografts demonstrated normal structure, function, and
development after xenografting [71, 72]. In addition, human
fetal testes could be cultured on membranes [73, 74] or under
ex vivo hanging-drop conditions [75]. These methods provide
an in vivo system to study testis cord maintenance in normal
human fetal testes and to determine its susceptibility to
disruption by gene silencing and by the addition of exogenous
factors.

Further studies will be needed for a more detailed
understanding of the role of Sertoli and PTM cells (or other
cell types) in testis cord maintenance after sex determination. A
deeper analysis of the molecular mechanisms regarding the
breakdown of the basement membrane and the decreased
number and abnormal shape of testis cords will greatly improve
our understanding of the genetic causes underlying the

pathophysiological conditions of infertility and sexual devel-
opment and testicular dysgenesis syndrome disorders.
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