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Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates
the accumulation of carbohydrates and increases the biomass and yield of C3
crop plants, it also reduces their nitrogen concentration. The consequent changes
in primary and secondary metabolites affect the palatability of host plants and the
feeding of herbivorous insects. Aphids are phloem feeders and are considered the
only feeding guild that positively responds to elevated CO2. In this review, we consider
how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by
altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene,
and abscisic acid. We will describe how these elevated CO2-induced changes
in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding,
including penetration, phloem-feeding, and xylem absorption. We conclude that a better
understanding of the effects of elevated CO2 on aphids and on aphid damage to crop
plants will require research on the molecular aspects of the interaction between plant
and aphid but also research on aphid interactions with their intra- and inter-specific
competitors and with their natural enemies.

Keywords: elevated CO2, aphid, nitrogen metabolism, plant defenses, water potential, legumes

INTRODUCTION

Since the industrial revolution, atmospheric CO2 concentrations have increased from 280 ppm to
approximately 400 ppm due to anthropogenic effects, i.e., deforestation and fossil fuel combustion.
These increases in atmospheric CO2 concentrations have serious implications for global warming
and climate change (Stocker et al., 2013). Although changes in climate have been anticipated to
greatly affect agricultural ecosystems (Fuhrer, 2003), increases in atmospheric CO2 concentration
alone can also be very important because they can directly affect plant physiology and indirectly
alter interactions between plants and herbivores and plant pathogens (Robinson et al., 2012). These
altered interactions may then lead to more severe and frequent outbreaks of pest insects and plant
diseases in agricultural ecosystems (Percy et al., 2002).

To understand how elevated concentrations of atmospheric CO2 could increase pest problems,
we must first recognize that increases in CO2 tends to increase the growth of plants by enhancing
their photosynthetic rate, resulting in higher yields for most C3 crops (Ainsworth and Rogers,
2007). Under elevated CO2, however, C3 crop plants exhibit decreases in nitrogen (N) and other
trace elements, i.e., zinc and iron (Bloom et al., 2010). These decreases reduce the nutritional value
for herbivorous insects and may therefore change their feeding behaviors (Myers et al., 2014). For
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those insects that chew leaves, a reduction in the N concentration
in crop tissue and the resulting increase in the carbon/nitrogen
ratio (C:N ratio) under elevated CO2 could cause these insect
pests to consume more leaves to meet their N needs (Bezemer
and Jones, 1998; Sun and Ge, 2011). In addition, leaves grown
under elevated CO2 decrease their ability to produce jasmonic
acid (JA), a hormone that contributes to plant defenses against
chewing insects (Zavala et al., 2008).

Elevated CO2 may also increase the damage to crops caused by
phloem-sucking insects including aphids. Aphids feed exclusively
on the phloem sap and are very sensitive to changes in
plant quality caused by climate change (Pritchard et al., 2007).
Recent meta-analysis result shows that aphids tend to perform
better under elevated CO2 on average (Robinson et al., 2012).
The conclusions from many statsitically signficant researches,
however, exhibit idiosyncratic responses of aphids in terms of
population abundance, fecundity as well as survival (summarized
in Table 1). Although predictions are difficult, it is nevertheless
useful to determine why some aphids are more fit while others
are less fit under elevated CO2. A mechanistic understanding
can help make sense of these contradictory results. Previous
study demonstrates that the effect of elevated CO2 on plant,
which includes C and N assimilation, secondary metabolism,
plant stomatal conductance as well as leaf temperature, could in
turn affect aphid population numbers and growth (Ainsworth
et al., 2006; May et al., 2013). Futhermore, the feeding behavior of
aphids and their interaction with host plant under elevated CO2
are largely ignored but should be crucial to the understanding
of idiosyncratic responses. The aim of this review is to
highlight overlooked processes and new discoveries that how
elevated CO2 affects the components of plant leaves and how
these effects alter the different feeding phases of aphids. We
also suggest some possible molecular mechanisms underlying
the interactions between aphids and their host plants under
elevated CO2.

APHID FEEDING BEHAVIOR

Recent advances indicate that complex molecular interactions
occur when aphids feed on plants. Unlike chewing insects
that remove large pieces of plant tissues, aphids use their
flexible and long stylets to obtain nutrients from the phloem
sap and only inflict slight physical damage (Jaouannet et al.,
2014). The specialized feeding behavior of aphids can be
detected with electrical penetration graph (EPG) methods,
i.e., EPG methods can be used to determine the locations
and activities of aphid stylets, including pooled pathway
phase activities, probing, salivation into sieve elements,
passive uptake of the phloem sap, and xylem absorption
(Tjallingii and Esch, 1993). Data on the initiation and duration
of these feeding phases provide valuable cues regarding
aphid activities and plant responses (Alvarez et al., 2006).
Rather than simply withdrawing food from hosts, aphids
can change their feeding location to avoid plant defenses
or can secrete ‘effector’ proteins to suppress plant defenses
(Hogenhout and Bos, 2011). To enhance their feeding,

aphids can also alter host physiological traits, e.g., they can
induce changes in host primary metabolism and in stomatal
movement, and suppress the plant defenses (Giordanengo
et al., 2010). Thus, a better understanding of aphid feeding
behavior, its effects on hosts, and host responses is critical for
understanding how elevated CO2 is likely to affect plant–aphid
interactions.

APHID PROBING AND PENETRATION
STAGE AND ITS RELATION TO PLANT
RESISTANCE

Influence of Plant Physical Barriers
Once they have arrived on a plant leaf, aphids must conquer
host physical defenses including trichomes and waxes before
they can insert their stylets into the host (Wang et al., 2004).
Surface resistance is the first barrier of plant defense against
aphid attack. The time that aphids spend between arriving on
a leaf and making their first probe mainly reflects the physical
barriers of the leaf surface including trichomes, repellent volatiles,
and a thick or tough leaf surface (van Helden and Tjallingii,
1993). Plants can deter aphid attack by releasing secondary
metabolites such as glucose esters and sesquiterpenes from
glandular trichomes (Avé et al., 1987; Goffreda et al., 1989;
Neal et al., 1990). Furthermore, a specifically expressed gene,
NtLTP1, in the glandular trichomes of Nicotiana tabacum could
enhance the plant’s defense against aphids (Choi et al., 2012). The
changes in trichome density in response to CO2 are idiosyncratic.
For example, trichome density increased in Brassica rape and
Medicago truncatula (Karowe and Grubb, 2011; Guo et al., 2014a)
but decreased in Arabidopsis and wheat under elevated CO2
(Masle, 2000; Bidart-Bouzat et al., 2005; Lake and Wade, 2009).
In the legume M. truncatula under elevated CO2, the increased
density of non-glandular and glandular trichomes caused aphids
to spend more time before they made their first probe and to
experience a prolonged pathway phase (Guo et al., 2014a). CO2
concentrations may affect trichome development by affecting the
levels of gibberellic acid (GA), JA, and the microRNA molecule
miR156. Elevated CO2 tends to increase plant GA content and
decrease plant JA content (Teng et al., 2006; Zavala et al.,
2008) and to decrease expression of miR156 (May et al., 2013).
Additional research is needed, however, to clarify whether the
effects of elevated CO2 on glandular trichome development and
surface resistance to aphids is due to changes in GA, JA, and
miR156.

Phytohormone-Mediated Defenses
When the aphid stylet penetrates the plant epidermis and
mesophyll, it forms a channel that permits the delivery of saliva
into the phloem (Jaouannet et al., 2014). On the one hand,
elicitors in aphid saliva could trigger the formation of reactive
oxygen species (ROS), which in turn could induce plant defenses
(Giordanengo et al., 2010). On the other hand, “effectors” in
aphid saliva could suppress plant resistance and manipulate
host cell processes to favor aphid feeding and colonization (Bos
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TABLE 1 | Potential mechanisms regarding aphid performance respond to elevated CO2

Potential mechanism Aphid–host plant system Response Parameter Reference

Alters absorption of foliar amino acid or Acyrthosiphon pisum – Medicago sativa Positive Population abundance Ryalls et al., 2015

changes the sap flow of plant Acyrthosiphon pisum – Medicago
truncatula

Positive Population
abundance,feeding
efficiency

Guo et al., 2013

Aphis gossypii – Gossypium hirsutum Unchanged Growth rate Sun et al., 2009

Rhopalosiphum padi – Hordeum vulgare Positive Population abundance,
intrinsic rate of population

Ryan et al., 2015

Aphis fabae – Cardamine pratensis Positive Population abundance Salt et al., 1996

Myzus persicae – Solanum dulcamara Positive Population abundance Salt et al., 1996

Acyrthosiphon pisum – Medicago sativa Depend on plant
genotypes

Population abundance Johnson et al., 2014

Changes of nitrogen concentration or
whole plant quality of host plant

Myzus persicae – Bell pepper Negative Pre-reproductive period,
fecundity

Dáder et al., 2016

Phyllaphis fagi – Fagus sylvatica Negative Fecundity, nymph weight,
nymph weight

Docherty et al., 1997

Rhopalosiphum padi – Triticum aestivum Positive Weight, relative growth rate,
life span

Oehme et al., 2013

Myzus persicae – Brassica napus Negative Weight, relative growth rate,
life span

Oehme et al., 2013

Rhopalosiphum maidis – Hordeum vulgare Positive Developmental duration,
fecundity

Xie et al., 2014

Increase of photosynthesis Myzus persicae – four plant species
(Careamine hirsute, Poa annua, Senecio
vulgar, Spergula arvensis)

Positive Population abundance Bezemer et al., 1998

Plant endophyte induced resistance Rhopalosiphum padi – Festuca arundinacea Negative Population abundance,
aphid density

Newman et al., 1999;
Ryan et al., 2014a,b

Decrease of phytohoemone resistance Myzus persicae – Arabidopsis Positive Population abundance Sun et al., 2013

Acyrthosiphon pisum – Medicago
truncatula

Positive Mean relative growth rate;
feeding efficiency

Guo et al., 2014a,b

R-gene mediated resistance decreased Amphorophora idaei - Rubus idaeus Positive Population abundance,
adult mass

Martin and Johnson,
2011

Increase of leaf temperature Aphis glycines – Glycine max Positive Population abundance O’Neill et al., 2011

Decrease of stomatal aperture Acyrthosiphon pisum – Medicago
truncatula

Positive Population abundance,
feeding efficiency

Sun et al., 2015

Sensitivity to alarm pheromone Amphorophora idaei – Rubus idaeus Negative Escape response to
predator

Hentley et al., 2014

Sitobion avenae – Triticum aestivum Negative Sensitivity to
(E)-β-farnesene

Sun et al., 2010

et al., 2010a,b; McLellan et al., 2013; Gimenez-Ibanez et al.,
2014; King et al., 2014). Parameters of aphid feeding behavior
revealed by EPG could reflect the intensity of plant resistance;
these parameters include the minimum duration of pathway
phase activity, the number of test probes, and the total time
before phloem ingestion begins (Alvarez et al., 2006). In the
M. truncatula–pea aphid system, elevated CO2 increased the
number of test probes but decreased the total time before phloem
ingestion began (Guo et al., 2014a). The inconsistent effects
of elevated CO2 on aphid feeding parameters may result from
the contrasting effects of elevated CO2 on the defense signaling
pathways involving the phytohormones JA, salicylic acid (SA),
and ethylene (ET) (Guo et al., 2014a). Elevated CO2 tends to
enhance SA-dependent defense but reduce JA- and ET-dependent
defenses in plants (Zavala et al., 2009; Guo et al., 2012; Sun
et al., 2013). Furthermore, the enhanced SA signaling pathway
under elevated CO2 caused aphids to spend more time before

the first probe and reduced aphid fitness (Casteel et al., 2012;
Guo et al., 2014a). The suppression of the JA signaling pathway
under elevated CO2, however, reduces the time required by
aphids to reach the phloem. In addition, elevated CO2 down-
regulates the expression of the ET signaling pathway genes ACC,
SKL, and ERF in M. truncatula under attack by the pea aphid
system; this downregulation, decreases the accumulation of H2O2
and the activities of key enzymes related to ROS (Guo et al.,
2014b).

Moreover, elevated CO2 potentially disrupts the homeostatic
cross-talk between SA and JA/ET pathways by directly activating
the NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED
GENES1) gene (DeLucia et al., 2012; Zavala et al., 2013).
NPR1-mediated suppression of JA signaling is regulated by
glutathione biosynthesis (Spoel and Loake, 2011). Elevated CO2
changes the expression of genes that encode thioredoxins and
glutathione S-transferase, which may activate the expression
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of NPR1 (DeLucia et al., 2012). However, Sun et al. (2013)
found that when the NPR1 gene was knocked down, the
JA-dependent defenses of Arabidopsis were not enhanced by
elevated CO2, suggesting that the activation of NPR1 may not
explain the response of SA, JA, and ET signaling pathways to
elevated CO2. Clearly, the upstream network regulating plant
immunity against aphids is complex. The elicitors secreted
from aphid salivary glands were recognized by the host co-
receptor BRI-ASSOCIATED RECEPTOR KINASE 1 (BAK1)
which subsequently phosphorylates BOTRYTIS INDUCED
KINASE1 (BIK1). The BAK1 and the BIK1 complexes could
jointly modulate the downstream phytohormone-mediated
defense signaling pathway (Chaudhary et al., 2014; Lei et al.,
2014; Prince et al., 2014). In addition to BAK/BIK, other
kinases such as mitogen protein kinases (MAPKs) are also
important for regulating plant defense responses against
insect herbivores (Hettenhausen et al., 2015). A number
of studies reported that MAPKs could regulate the JA,
SA, and ET signaling pathways by activating WRKY genes
(Zavala et al., 2013). It is still unknown whether elevated
CO2 affects the JA- and SA-dependent signaling pathways
by regulating upstream BAK/BIK or MAPK signaling. Thus,
additional research is needed to determine how elevated CO2
affects these regulatory molecules in phytohormone signaling
networks.

Secondary Metabolite-Mediated
Resistance
Many plant secondary metabolites may help plants resist
aphid attack by negatively affecting the penetration pathway
stage of aphid feeding. These secondary metabolites include
alkaloids, steroids, foliar phenolic esters (rutin, cholorogenic
acid, etc.), terpenoids, cyanogenic glycosides, glucosinolates,
saponins, flavonoids, and pyrethrins (Sharma et al., 2000;
Urbanska et al., 2002). For example, aphids that fed on high-
saponin lines of alfafa required a prolonged time to penetrate
the epidermis and mesophyll (pattern C wave) and showed
a significant reduction in phloem sap ingestion (Goławska,
2007). Furthermore, different phenolic compounds seem to have
different effects on the feeding parameters of aphids. Caffeic
and gallic acids in cereals, for example, drastically shortened the
probing phase of the grain aphid, whereas catechin prolonged
the pathway phase and also decreased the number of probes by
the grain aphid (Urbanska et al., 2002). On average, elevated
CO2 increases the total phenolicsin plants by an average
of 19%, condensed tannins by 22%, and flavonoids by 27%
(Robinson et al., 2012). The excess of secondary metabolites in
plants may help explain the increased epidermis and mesophyll
resistance of plants during pathway and probing feeding stages
of aphids under elevated CO2 (Guo et al., 2014a). Despite of
increasing tannin content and phenolic compounds in whole
host plant leaves, the bird cherry-oat aphid Rhopalosiphum
padi performed better under elevated CO2 (Bezemer and Jones,
1998; Zhang et al., 2003). This result suggested that the
tricky feeding strategy of the aphid allows it to avoid some
potential defensive components. Thus, it is hard to predict

the impact on aphid fitness only through surface or pathway
effects.

Phenylalanine ammonialyase (PAL) and polyphenol oxidase
(PPO) are two key enzymes involved in the synthesis of phenolic
compounds that may be absorbed by the salivary sheath of the
aphid stylet. The further polymerization of phenolic compounds
causes browning of cells in contact with the saliva; such browning
was associated with aphid probing activity during penetration
of the epidermal and mesophyll tissues (Jiang and Miles, 1993;
Urbanska et al., 1998; Han et al., 2009). PAL and PPO activities
are changed by elevated CO2. For example, elevated CO2 tends to
increase PAL activity but decrease PPO activity in M. truncatula.
However, it is still unknown how changes in PPO and PAL
activities under elevated CO2 affect the penetration phase of
aphid feeding (Guo et al., 2014b).

Resistance Expressed in the Phloem
After overcoming defenses associated with the plant epidermis
and mesophyll, the aphid stylet may finally reach the phloem,
but plants have ways to prevent or reduce the ingestion of
phloem sap. Phloem sap contains carbohydrates, proteins, and
amino acids that are essential for plant development (Gündüz
and Douglas, 2009). If the phloem is impaired, plants could suffer
loss of nutrients, disturbance of translocation, and increased
vulnerability to infection by microbial pathogens (Dinant et al.,
2010). Therefore, plants have evolved a range of defenses to
inhibit phloem feeding by aphids (Will et al., 2013). The
most common defense involves the occlusion of sieve tubes
by the plugging of sieve pores (Knoblauch and van Bel,
1998). Two groups of sieve-tube occlusion mechanisms can
be found in plants: callose deposition and protein plugging
(e.g., Will and van Bel, 2006; Furch et al., 2007). The Ca2+

signaling pathway in plants plays a key role in sieve-tube
occlusion during aphid penetration. When the stylet penetrates
the sieve membrane, the high concentration gradient of Ca2+

between the apoplast and the sieve element lumen leads to
an influx of Ca2+into the sieve element lumen, which induces
occlusion (Knoblauch and van Bel, 1998). When this occurs,
aphids must secret watery saliva into the phloem; the saliva
contains proteins that bind Ca2+ and counteract sieve element
occlusion. Thus, the time spent during salivary secretion into
sieve elements reflects the defenses located in the phloem (Will
et al., 2013).

Phloem resistance against aphids may be affected by elevated
CO2. The key gene involved in callose biosynthesis is up-
regulated in Arabidopsis under elevated CO2 (Li et al., 2008).
Furthermore, cytosolic free Ca2+ is increased by elevated CO2
in Commelina communis (Webb et al., 1996). The increased
production of callose and free Ca2+ in cells may cause aphids
to spend more time in overcoming phloem resistance. EPG data
consistently showed that elevated CO2 increased the time of
salivary secretion into sieve elements when pea aphids fed on
M. truncatula (Guo et al., 2013). Still, there is no direct evidence
confirming that elevated CO2 increases the phloem resistance
against pea aphids because of increases in callose deposition and
in the Ca2+ signaling pathway.
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Aphid Phloem Ingestion and Its Relation
to Plant Nutrition
The efficiency with which aphids feed on phloem sap is
determined by the nutritional composition of the sap (Douglas,
2003). Sucrose is the dominant organic compound in the
phloem sap and is a crucial C source for aphids (Fisher and
Cash-Clark, 2000; Douglas, 2003). Sucrose is the principal
energy source for aphids and also provides the C skeleton for
lipid, amino acid, and protein synthesis (Rhodes et al., 1996;
Febvay et al., 1999). In potato, a mutation of the sucrose
transporter StSUT1 gene reduced the phloem sucrose content
and simultaneously reduced the performance of the potato
aphid (Pescod et al., 2007). Nevertheless, high concentrations
of soluble carbohydrates in plant tissues often reduce aphid
performance because they dilute other nutrients such as
amino acids and proteins; as a consequence, the aphids
must increase their consumption of phloem sap and excrete
the excess sucrose as honeydew (Wilkinson et al., 1997). In
contrast to carbohydrate-based nutrients, N nutrition is a
limiting factor for aphid growth. The phloem sap ingested
by aphids has a protein/carbohydrate ratio (w/w) as low as
0.1 while the leaf tissue ingested by chewing insects has a
protein/carbohydrate ratio ranging from 0.8 to 1.5 (Behmer,
2008).

Increases in atmospheric CO2 accelerate photosynthesis and
synthesize and transport of sucrose into the phloem, which
dilutes the N concentration and increases the C:N ratio in
the phloem of non-legumes (Barbehenn et al., 2004). The
decreased nitrogen concentration of plants could prolonged the
pre-reproductive period and decrease the fecundity of some
aphids under elevated CO2 (Dáder et al., 2016). However,
Sun et al. (2009) found that although amino acid relative
concentration in the phloem of cotton plants was lower under
elevated CO2 than under ambient CO2, higher amounts of
free amino acids were found in cotton aphids fed on cotton
grown in elevated CO2. These results suggested that cotton
aphids under elevated CO2 will ingest increased quantities of
phloem sap to satisfy their nutritional requirements. Moreover,
the relative concentrations of predominantly essential amino
acids in the phloem of barley are increased under elevated
CO2 (Ryan et al., 2015). The latter result is consistent with
the large increases in the levels of minor amino acids (most
of which are considered essential) in tobacco seedlings under
elevated CO2 (Geiger et al., 1998). These results suggest that
although the total N concentration of plants is decreased,
amino acids biosynthesis and translation in some non-legumes
may increase under elevated CO2. Moreover, the mathematic
model constructed by Newman et al. (2003) predicted that
aphid populations tend to be larger under elevated CO2 if
host plants have higher N supplementation, that the nitrogen
requirement of aphids is low and that the density-dependent
response is weak. Thus, a general explanation for the species-
specific responses of aphids to elevated CO2 remains to be
elucidated.

In legumes, elevated CO2 leads to a 38% increase in the
quantity of N fixed from the atmosphere, which can compensate
for decreases in plant N under elevated CO2 and cause

the legumes to maintain a C:N ratio similar to that under
ambient CO2 (Lam et al., 2012). When M. truncatula was
infested by pea aphids, elevated CO2 significantly increased
the concentration of total amino acids in leaves and of
most individual amino acids in the phloem by enhancing the
enzyme activities of N transamination (Guo et al., 2013). The
increased amino acids, however, are mostly nonessential, and
require the aphid endosymbiont Buchnera to convert them
into essential amino acids (Nikoh et al., 2010). When the
N-fixation ability was reduced by artificially induced mutation,
the individual amino acid relative concentration in the phloem
of M. truncatula was decreased such that Buchnera could
no longer convert the nonessential amino acids into essential
amino acids (Guo et al., 2013). These results with legumes
suggest that elevated CO2 may increase the phloem feeding
time of the pea aphid by altering amino acid metabolism, and
that this response depends on a functional N fixation system.
Responses of different cultivars, varieties, or genotypes of the
same species to elevated CO2, however, can also vary. For
example, Johnson et al. (2014) found elevated CO2 increased
86% and 56% essential amino acid concentrations and pea
aphid colonization success on the high resistant cultivar ‘Sequel’
of M. sativa. However, elevated CO2 decreased 53% and 33%
essential amino acid concentrations and aphid colonization on
the moderate resistant cultivar ‘Genesis’. This result suggested
some cultivars may become more or less susceptible to
aphid attack under climate change conditions, an important
consideration for determining future outcomes (McKenzie et al.,
2013).

The ability to fix N is regulated by several hormone signaling
pathways including the ET signaling pathway (Ma et al., 2002;
Penmetsa et al., 2008). When the key gene Mtskl in the
ET-perception pathway was mutated in M. truncatula, the
nitrogenase activity was increased about two times (Penmetsa
and Cook, 1997). Previous study has shown that elevated
CO2 decreases the ET signaling pathway in Arabidopsis (Sun
et al., 2013). The suppression of the ET signaling pathway in
M. truncatula increased nodulation and N fixation ability, which
thereby satisfied the increased demand for N by plants growing
under elevated CO2. The down-regulation of the ET signaling
pathway, however, is accompanied by decreased ET-mediated
host resistance against the pea aphid (Guo et al., 2014b). This
result suggested that in the M. truncatula–pea aphid system
under elevated CO2, both nutritional and resistance effects would
increase the fitness of the pea aphid by suppressing the ET
signaling pathway (Figure 1).

APHID XYLEM ABSORPTION AND ITS
RELATION TO PLANT WATER STATUS

Aphids occasionally ingest xylem to increase their phloem
feeding efficiency (Tjallingii and Esch, 1993; Douglas, 2006).
Because the sugar-enriched phloem sap has an osmotic pressure
that is as much as 4 to 5 times greater than that of the aphid’s
haemolymph, continuously passive uptake of the phloem sap
could result in aphid dehydration. To avoid self-dehydration and
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FIGURE 1 | Potential effects of elevated CO2 on host plant, and the cascading effects on aphid feeding using Medicago truncatula-pea aphid as
examples. Elevated CO2 affects aphid feeding efficiency in three ways. First, elevated CO2 modifies the phytohormone-dependent induced defenses and plant
secondary metabolites derived defense. Enhancement of the salicylic acid-dependent defense pathway increased surface and epidermis resistance while the
impairment of the jasmonic acid/ethylene-dependent defense pathway decreased mesophyll and phloem resistance. The changes of resistance facilitate the
penetration feeding phase (the feeding phase that occurs before the stylet reaches the phloem). Second, the impairment of ethylene signaling pathway enhanced N
fixation inroot, elevated CO2 tends to increase N assimilation and non-essential amino acid supple in the phloem. Furthermore, the aphid endosymbiont Buchnera
could transform non-essential amino acid into essential amino acids, which increases the output of essential amino acid for aphids. Therefore, the increased amino
acid supply benefits the phloem feeding of aphids. Third, elevated CO2 decreases stomatal conductance and transpiration, which increases the water potential in
M. truncatula. As a result, aphid xylem feeding and osmotic pressure regulation are enhanced under elevated CO2. These three effects of elevated CO2 (alteration of
host plant defenses, of amino acid supply in the phloem, and of host and aphid water status) greatly affect aphid feeding efficiency. AA, amino acid; BAK1,
BRI-ASSOCIATED RECEPTOR KINASE 1; ER, epidermis resistance; ET, Ethylene; MAPK, mitogen protein kinases; JA, jasmonic acid; MR, mesophyll resistance;
PR, phloem resistance; SA, Salicylic acid; SR, surface resistance; +, positively affected by elevated CO2; −, negatively affected by elevated CO2.

osmotic stress in the haemolymph during the phloem-feeding
phase (i.e., to balance haemolymph osmolarity), aphids must
consume a certain amount of xylem sap, which has a lower
osmolarity than phloem sap (Pompon et al., 2011). This xylem-
feeding behavior requires that the host plant has a relatively
high plant water potential because the feeding is passive, i.e.,
fluid moves from plant to aphid because of a water potential
gradient (Huberty and Denno, 2004; Daniels et al., 2009; Nalam
et al., 2012). Aphids, like pathogens, can trigger stomatal closure,
decrease leaf transpiration, and maintain the water content of
the host plant by up-regulating the ABA signaling pathway. This
manipulation of host stomata helps aphids absorb water from
the xylem to neutralize phloem osmotic pressure (Sun et al.,
2015).

Under elevated CO2, plants also exhibit reduced stomatal
apertures and stomatal conductance. In FACE experiments,
elevated CO2 has decreased stomatal conductance by an
average of 22% for five functional plant groups that include
285 plant species (Ainsworth and Rogers, 2007). As noted,
the decreased stomatal conductance reduces water loss
from plants and increases plant water potential and water
content (Wullschleger et al., 2002; Pritchard et al., 2007).
Sun et al. (2015) found that the decreases in stomatal
aperture and increases in plant water potential induced
by elevated CO2 facilitated xylem feeding by aphids and
thereby decreased aphid haemolymph osmolarity, which
indicated a decreased cost of osmoregulation in aphids under
elevated CO2.

CONCLUSION AND PERSPECTIVES

Recent studies have provided evidence that elevated CO2 alters
plant resistance, nutritional value, and water status and that these
changes affect certain feeding stages of aphids (Figure 1). The
evidence also indicates that such changes and effects could be
mediated by the phytohormones JA, SA, ET, and ABA (Guo
et al., 2013, 2014a,b; Sun et al., 2015). In these and related
studies, elevated CO2 stimulated the SA signaling pathway and
thereby increased the epidermis and mesophyll resistance of
plants. However, elevated CO2 decreased JA and ET signaling
pathways, which reduced the total time required by aphids to
reach the phloem. The decreased ET signaling pathway also
increased the N fixation ability of legumes and thereby increased
their synthesis of amino acids, which in turn increased amino
acid acquisition by aphids (Guo et al., 2013). Moreover, elevated
CO2 decreased stomatal aperture and increased plant water
potential, which thereby increased aphid xylem absorption and
enhanced aphid osmoregulation (Sun et al., 2015). Nevertheless,
transcriptomic evidence shows that elevated CO2 has a wide
range of effects on plant metabolism (including C and N
assimilation, secondary metabolism, and transportation), all of
which may affect aphid performance (Ainsworth et al., 2006;
May et al., 2013). Thus, the effects of elevated CO2 on the
interaction between plants and aphids cannot be understood by
simply relating one aspect of plant quality to a specific feeding
phase of the aphid. Because the responses to elevated CO2 differ
among plant species, it is currently difficult to generalize about
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how further increases in concentrations in atmospheric CO2
affects aphid feeding and damage. An increased understanding
of the molecular mechanisms underlying the recognition and
interactions between plants and aphids should increase our
ability to predict aphid damage under elevated CO2.

In addition to changes in aphid feeding behavior, changes
in aphid physiology must be considered to understand how
aphid performance is affected by elevated CO2. Some studies
have reported increases in aphid growth rate and fecundity
under elevated CO2, which suggests that elevated CO2 increases
aphid fitness and increases the probability of aphid outbreaks.
At present, we have some understanding of what happens but
we do not know how it happens. Like chewing insects, aphids
could sense and respond to nutritional changes in host plants by
regulating a complex regulatory network involving the insulin-
related peptides, the target of rapamycin (TOR), ecdysteroids,
and juvenile hormone (Badisco et al., 2013). For example, TOR
acts as a central regulator of protein synthesis by sensing and
integrating signals from amino acid nutrition, while the insulin
signaling pathway is responsible for sensing carbohydrate-
derived nutrients (Grewal, 2009). Thus, research is needed on
how these two nutrient-sensing and regulatory pathways in
aphids affect vitellogenins and juvenile hormone/ecdysone when
aphids feed on plants with increased C:N ratios under elevated
CO2.

Herbivorous insects can be affected by environmental change
via changes in host physiology and chemical composition or
via changes in competitors or natural enemies (Awmack and
Leather, 2002). Elevated CO2 affects aphid performance from
the level of individual physiology or even molecular function
to the level of the ecosystem (Sun and Ge, 2011). The effects
of elevated CO2 on individual plants and aphids may differ
from the effects involving the entire ecosystem and multiple
trophic levels because responses to elevated CO2 may differ
among trophic levels. It is well known that elevated CO2 has
bottom-up effects on the feeding behavior and population size
of aphids, but the situation becomes more complicated when
aphid–aphid interactions or top–down effects involving natural
enemies are considered. For example, aphid species, or even
different genotypes within the same species, differ in their
responses to elevated CO2 (Mondor et al., 2005), and these
differences might affect the outcome of intra- or inter-specific
competition between aphid species or genotypes (Stacey and
Fellowes, 2002; Sun et al., 2009). Furthermore, some reports
indicate that parasitoids and predators are more abundant or

effective under elevated CO2 (Percy et al., 2002; Chen et al., 2005)
and that aphids are less sensitive to alarm pheromones under
elevated CO2 (Awmack et al., 1997; Mondor et al., 2004). It seems
that enhanced top-down effects on aphids under elevated CO2
may strongly alter the effects of aphids on host plants (Hentley
et al., 2014).

The different feeding strategies evident in aphid responses
to environmental changes are possibly driven by synchronous
adaptation to host and environment. Because it directly affects
herbivorous only weakly, elevated CO2 mainly influences
herbivorous insect by altering the host plant (Yin et al., 2010).
Thus, understanding plant–aphid interactions is likely to be
central to understanding how aphids respond to elevated CO2.
We suggest that molecular tools be used to better understand
how the host plant ‘recognizes’ the aphid and vice versa;
this research might focus on salivary secretions (the most
obvious ‘signal’ available), which could trigger various molecular
responses in the host that then affect the aphid in various ways.
Although the knowledge from literatures shows that aphids may
have species-specific molecular interaction with the hosts, it
is believed that the genetics and physiology governing plant–
aphid interactions have many commonalities rooted in their
phylogenies so that understanding the complexity of interaction
will provide meaningful insights into aphids acting on different
kinds of plants and aid us in using them to our best advantage.
Given increasing concentrations of atmospheric CO2 and climate
change, new crop varieties will be needed that can produce
sustainable yields in spite of the changing environment and the
potential for increased pressure from aphids and other pests. The
development of such crop varieties will be facilitated by a better
understanding of the interactions between plants and aphids at
molecular, community, and ecosystem levels.
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