

Mitochondrial DNA The Journal of DNA Mapping, Sequencing, and Analysis

ISSN: 1940-1736 (Print) 1940-1744 (Online) Journal homepage: http://www.tandfonline.com/loi/imdn20

Complete mitochondrial genome of Hemisalanx brachyrostralis (Osteichthyes: Salangidae)

Jie Zhang, Mei Ding, Jiwei Qi, Haiping Chen & Baowei Zhang

To cite this article: Jie Zhang, Mei Ding, Jiwei Qi, Haiping Chen & Baowei Zhang (2014): Complete mitochondrial genome of Hemisalanx brachyrostralis (Osteichthyes: Salangidae), Mitochondrial DNA

To link to this article: http://dx.doi.org/10.3109/19401736.2014.919465

-					
Г					

Published online: 03 Jun 2014.

Submit your article to this journal 🗹

Article views: 13

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=imdn20

Mitochondrial DNA, Early Online: 1–2 © 2014 Informa UK Ltd. DOI: 10.3109/19401736.2014.919465

MITOGENOME ANNOUNCEMENT

Complete mitochondrial genome of *Hemisalanx brachyrostralis* (Osteichthyes: Salangidae)

Jie Zhang¹, Mei Ding^{1,2}, Jiwei Qi³, Haiping Chen⁴, and Baowei Zhang²

¹Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, ²School of Life Science, Anhui University, Hefei, China, ³Collage of Life Science, Capital Normal University, Beijing, China, and ⁴Fisheries Bureau of Tai Hu County, Anhui, China

Abstract

Hemisalanx brachyrostralis belonging to the family Salangidae is endemic to the Yangtze River. This species has been listed on the Chinese Red List because of the serious decrease in its resources. In this study, we analyzed the complete mtDNA (16588 bp long) of *H. brachyrostralis*. Overall base composition of the genome is 25.1% A, 25.4% T, 18.7% G, and 30.8% C. The complete mtDNA contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), and 1 control region. Apart from the *ND*6 gene and nine tRNA genes encoded on the L-strand, most of the genes are on the H-strand. *H. brachyrostralis* has the lowest genetic diversity among the Salangid species, so further studies on conservation genetics must be conducted.

Keywords

Genome, *Hemisalanx brachyrostralis*, mitochondrion

informa

healthcare

History

Received 14 April 2014 Accepted 26 April 2014 Published online 3 June 2014

The Salangidae family comprises six genera and approximately 17 species (Nelson, 2006; Zhang et al., 2007a), which inhabit both freshwater and marine areas in Eastern Asia; the species of this family are essential components of Chinese historical fisheries (Nelson, 2006; Zhu, 1985). *Hemisalanx brachyrostralis* is endemic to the Yangtze River and highly vulnerable to environmental changes and habitat degradation (Wang, 2005; Zhang et al., 2007b). This species has been listed on the Chinese Red List because of the serious decrease in its resources (Zhang, 2008). Mitochondrial DNA is a maternally-inherited circular genome that serves important functions in metabolism and population genetics (Boore, 1999). However, little is known about the complete mitochondrial genome of *H. brachyrostralis* in GenBank.

In this study, the complete mtDNA of *H. brachyrostralis* was amplified by polymerase chain reaction with 13 primer pairs. The complete mtDNA sequence of *H. brachyrostralis* (16,588 bp long; Accession Number KJ645979) has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), and 1 control region (Table 1). Apart from the *ND6* gene and nine tRNA genes encoded on the L-strand, most genes are on the H-strand.

Eleven of 13 protein-coding genes begin with ATG codon, whereas *ND2* and *COX1* begin with CGC and GTG, respectively. *ND1*, *COX1*, *ATP8*, and *ND4L* end with TAA; *ND2*, *COX2*, *ND3*, *ND4*, and *Cyt b* with T (incomplete stop codon); *ATP6* and *COX3* with TA (incomplete stop codon); *ND5* with AGA; and *ND6* with TAG. The 22 tRNA genes have lengths ranging from 66 bp ($tRNA^{Cys}$) to 76 bp ($tRNA^{Lys}$). The 12S rRNA and 16S rRNA genes are 945 and 1717 bp long, respectively. These genes are located between $tRNA^{Phe}$ and $tRNA^{Leu}$, and are separated by $tRNA^{Val}$. The control region is 900 bp long and located between $tRNA^{Phe}$.

H. brachyrostralis has the lowest genetic diversity among the salangid species (Si, 2012; Zhao et al., 2008, 2010). Therefore, further studies on conservation genetics must be conducted. We hope that our study can help conserve the genetic resources of this endangered species.

Correspondence: Jie Zhang, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China. Tel: +00 8610 64807076. Fax: +00 861064807099. E-mail: zhangjie@ioz.ac.cn

Baowei Zhang, School of Life Science, Anhui University, Hefei 230039, China. Tel: +86 05515107341. Fax: +86 0551 5107341. E-mail: zhangbw@ahu.edu.cn

Table 1. Characteristics of the <i>H. brachyrostralis</i> mitochondrial genome.	Table 1.	Characteristics	of t	the H	I. I	brachyrostralis	mitochondrial	genome.
---	----------	-----------------	------	-------	------	-----------------	---------------	---------

Gene name	Coding strand	Start position	End position	Intergenic nucleotides	Overlapping nucleotides	Size (bp)	No. of codons	Start codon	Stop codor
tRNA ^{phe}	Н	1	68			68			
12s rRNA	Н	69	1013			945			
tRNA ^{val}	Η	1014	1084			71			
16 s rRNA	Η	1085	2801			1717			
tRNA ^{Leu}	Η	2802	2875			74			
ND1	Н	2876	3850			975	324	ATG	TAA
tRNA ^{Ile}	Н	3853	3924	2		72			
tRNA ^{Gln}	L	3924	3994		1	71			
tRNA ^{Met}	Н	3994	4062		1	69			
ND2	Н	4067	5117	4		1051	350	CGC	T
$tRNA^{Trp}$	Н	5118	5189			72			
tRNA ^{Ala}	L	5191	5259	1		69			
tRNA ^{Asn}	L	5261	5333	1		73			
tRNA ^{Cys}	L	5361	5426	27		66			
tRNA ^{Tyr}	L	5427	5494			68			
COX1	Н	5496	7046	1		1553	516	GTG	TAA
tRNA ^{Ser}	L	7047	7117			71			
tRNA ^{Asp}	H	7122	7194	4		73			
COX2	Н	7209	7899	14		691	230	ATG	T
tRNA ^{Lys}	Н	7900	7975			76			
ATP8	Н	7977	8144	1		168	55	ATG	TAA
ATP6	Н	8135	8817	*	10	683	227	ATG	TA-
COX3	Н	8818	9602		10	785	261	ATG	TA-
tRNA ^{Gly}	Н	9603	9673			71	201		
ND3	Н	9674	10,022			349	116	ATG	Т
tRNA ^{Arg}	H	10,023	10,092			70	110	1110	1
ND4L	H	10,093	10,389			297	98	ATG	TAA
ND4	Н	10,383	11,763		7	1381	460	ATG	T
tRNA ^{His}	Н	11,764	11,832		7	69	100	1110	1
tRNA ^{Ser}	Н	11,833	11,901			69			
tRNA ^{Leu}	Н	11,903	11,975	1		73			
ND5	Н	11,976	13,815	1		1841	612	ATG	AGA
ND5 ND6	L	13,811	14,332		5	522	173	ATG	TAG
tRNA ^{Glu}	L	14,333	14,352		5	70	175	AIG	IAU
Cyt b	H	14,335	14,402	3		1141	380	ATG	T
$tRNA^{Thr}$	H	14,400	15,618	5		72	500	AIG	1
tRNA ^{Pro}	L	15,619	15,688			72			
D-loop	L H	15,689	16,588			900			
D-100p	п	15,069	10,300			900			

Acknowledgements

This paper has benefited from the help of Hui Wang, Ling Ding, Tao Pan, and Aihong Chai. We show our sincerely gratitude for their kindly assistance.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing style of this article. This study was funded by the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-EW-J-2).

References

- Boore JL. (1999). Animal mitochondrial genomes. Nucleic Acids Res 27: 1767–80.
- Nelson JS. (2006). Fishes of the world. 4th ed. New York: John Wiley and Sons, Inc.
- Si SL, Zhang Q, Huang Y, Ma B, Yue XL. (2012). Genetic diversity of *Salanx curvieri* in South China inferred from mtDNA cytb sequences. Mar Fisheries 34:1–6.

- Wang ZS, Lu C, Xu CR, Lei GC. (2005). Impact of river-lake isolation on the spatial distribution pattern of *Hemisalanx brachyrostralis*. Biodiv Sci 13:407–15.
- Zhang J, Li M, Xu MQ, Takita T, Wei FW. (2007a). Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome *b* sequences, with comments on estuarine fish evolution. Biol J Linn Soc 91:325–40.
- Zhang J, Wei FW, Li M, Xu MQ. (2007b). Threatened fishes of the world: *Hemisalanx prognathus* (Regan, 1908) (Salangidae). Environ Biol Fish 78:209–10.
- Zhang J. (2008). Biodiversity of Chinese icefishes (Salangidea) and their diversity conservation. Bull Biol 43:4–6 (in Chinese).
- Zhao L, Zhang J, Liu ZJ, Funk SM, Wei FW, Xu MQ, Li M. (2008). Complex population genetic and demographic of history the Salangid, Neosalanx taihuensis, based on sequences. cytochrome b BMC Evol Biol 8:201. [Online] Available http://www.biomedcentral.com/1471-2148/8/201 at: (Accessed 14 July 2008).
- Zhao L, Zhang J, Liu ZJ, Xu MQ, Li M. (2010). Population genetic structure and demographic history of *Neosalanx jordani* based on cytochrome *b* sequences. Biodiv Sci 18:251–61.
- Zhu CD. (1985). A preliminary study on growth and feeding habits of icefish in Taihu Lake. J Fish China 9:275–87 (in Chinese).