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ABSTRACT
Small mammals play important roles in many ecosystems, and understanding their

response to disturbances such as cattle grazing is fundamental for developing

sustainable land use strategies. However, how small mammals respond to cattle

grazing remains controversial. A potential cause is that most of previous studies

adopt rather simple experimental designs based solely on the presence/absence of

grazing, and are thus unable to detect any complex relationships between diversity

and grazing intensity. In this study, we conducted manipulated experiments in the

Hulunber meadow steppe to survey small mammal community structures under

four levels of grazing intensities. We found dramatic changes in species composition

in native small mammal communities when grazing intensity reached intermediate

levels (0.46 animal unit/ha). As grazing intensity increased, Spermophilus dauricus

gradually became the single dominant species. Species richness and diversity of small

mammals in ungrazed and lightly grazed (0.23 animal unit/ha) area were much

higher than in intermediately and heavily grazed area. We did not detect a humped

relationship between small mammal diversity and disturbance levels predicted by

the intermediate disturbance hypothesis (IDH). Our study highlighted the necessity

of conducting manipulated experiments under multiple grazing intensities.

Subjects Biodiversity, Conservation Biology, Ecology

Keywords Hulunber, Grazing, Small mammals, Meadow steppe, Diversity, Intermediate

disturbance hypothesis

INTRODUCTION
As one of the most widespread forms of land use (Dı́az et al., 2007), cattle grazing can

shape the structure and functioning of grassland systems in many ways. Generally, grazing

can remove plant biomass and decrease canopy height or coverage (e.g. Hickman &

Hartnett, 2002; Rickart, Bienek & Rowe, 2013). Selective feeding and trampling of cattle

may change relative abundance of different plant species, and alter composition and

diversity of local plant communities (Augustine &McNaughton, 1998;Olff & Ritchie, 1998;

How to cite this article Cao et al. (2016), Effects of cattle grazing on small mammal communities in the Hulunber meadow steppe.

PeerJ 4:e2349; DOI 10.7717/peerj.2349

Submitted 1 June 2016
Accepted 20 July 2016
Published 23 August 2016

Corresponding author
Zhi-Gao Zeng, zengzhg@ioz.ac.cn

Academic editor
Michael Somers

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.2349

Copyright
2016 Cao et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.2349
mailto:zengzhg@�ioz.�ac.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2349
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Ausden et al., 2005). Cattle grazing and trampling may also affect some ecologically

important traits of substrate such as soil hardness (Greenwood & McKenzie, 2001;

Steffens et al., 2008) and nitrous oxide fluxes (Yan et al., 2016).

These habitat modifications caused by cattle can affect other sympatric organisms such

as small mammals. Although, small in body size, small mammals are usually abundant

in number and engaged in many important ecological processes such as seed dispersal

(Li & Zhang, 2003), nitrogen cycling (Bakker et al., 2004) and carbon exchange (Liu et al.,

2013). Small mammals feed on plants, fungi and insects, while provide food for many

predators (Verts & Carraway, 1998), suggesting that effects of cattle grazing on small

mammals can be further transferred to other trophic levels through trophic cascade.

Sometimes, small mammals also act as efficient ecological engineers and profoundly alter

surrounding landscape (e.g. Davidson & Lightfoot, 2006). Considering the important roles

that small mammals play in ecosystems, it is necessary to explore their response to grazing

if we hope to fully understand the ecological consequences of cattle grazing and develop

sustainable land use strategies.

Manipulated experiments have proved to be an important method to answer this

question. Although there seems to be no simple answer, a large body of studies using

cattle-proof enclosures or exclosures detects more or less negative effects of cattle grazing

on small mammal species richness or diversity (e.g. Keesing, 1998; Eccard, Walther &

Milton, 2000; Schmidt & Olsen, 2003; Giuliano & Homyack, 2004). However, most of

these studies are based on relatively simple experimental design and only consider the

presence/absence of grazing, thus unable to detect any complex relationship between small

mammal communities and grazing intensity. From a practical viewpoint, an experimental

design involving multiple levels of grazing intensity is also required if we want to find

a suitable grazing intensity when developing sustainable rangeland use strategies.

In this study, we investigate small mammal communities under four grazing levels

in the Hulunber meadow steppe. The Hulunber meadow steppe is one of the most

important stockbreeding bases in China (Guo et al., 2010) and provides essential habitats

for many wildlife (Wang et al., 1997). Just like in many other grassland systems, cattle

grazing is one of the most commonplace types of land use in meadow steppe and can

significantly alter plant biomass, habitat structure and plant species composition (e.g. Zhu

et al., 2012; Yan et al., 2015). However, to this date, no study has yet assessed the response

of small mammals to cattle grazing in this area, hindering a comprehensive understanding

in the dynamics and functioning of the Hulunber meadow steppe. Our present study

should be a starting point.

MATERIALS AND METHODS
Study area
Our study area is located in a transitional zone between the foothills in western Greater

Khingan Mountains and the Mongolian Plateau, with an altitude of 660–680 m (49�95′N,
119�33′E). The climate here is characterized by a long, severe winter and a wet, warm

summer. Annual temperature is 2 �C, ranging from -25 �C in January to 19 �C in July.

Average annual precipitation is about 250 mm, approximately 70% of which occurs in
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July, August and September. The soil substrate is Chernozem or chestnut soil and the

vegetation is dominated by Leymus chinensis, Stipa baicalensis, Carex pediformis, Galium

verum, and Bupleurum scorzonerifolium.

Manipulation of grazing intensity
Wemanipulated grazing intensity by using twelve cattle-proof pens (each of 200� 250 m2),

3 km away from the Xiertala farm in northeastern Inner Mongolia, China. These pens were

owned and maintained by the Hulunber Grassland Ecosystem Observation and Research

Station (Yan et al., 2015). Each pen received one of the four treatments: G0 (not grazed, 0.00

Animal unit/ha, an animal unit means 500 kg of cattle body weight, hereafter Au), G1

(lightly grazed, 0.23 Au /ha), G2 (intermediately grazed, 0.46 Au/ha) and G3 (heavily

grazed, 0.92 Au/ha). Since 2009, pens of G1, G2 and G3 were grazed from late May to early

October in each year while pens of G0 were kept inaccessible for cattle. Small mammals,

however, as well as predators (e.g. Vulpes vulpes, Mustela eversmanii, Bubo bubo and Buteo

buteo), were free to move through the pens.

Data collection
We carried out five monthly trapping sessions in the pens from June to October, 2013. Each

trapping session lasted for five consecutive days. To avoid the potential effects of moonlight

on small mammal activity, live-trapping was conducted during new moon periods. Two

transects spaced 100 m were placed in each pen and each transect consisted of 25 trapping

stations set at 10m interval. A locally-made wire cage (12� 15� 30 cm3) was placed at each

station and baited with fried peanuts. A piece of cotton was placed in each cage to keep

captured animals warm during the night. Traps were checked twice a day (900–1,000 h and

1,600–1,700 h) and each trapped animal was weighed, sexed, toe-clipped or marked with

hair dye in a unique pattern (if captured for the first time), and then released at the point of

capture immediately. No trap was left in the pens between sessions.

Habitat characteristics within each pen were measured within ten 1 � 1 m2 quadrates

one day after each trapping session. The positions of the quadrates were close to ten trap

stations randomly selected. We identified all the plant species, measured canopy height

(to the nearest 1 cm) and estimated total plant coverage in each quadrate. We harvested all

the aboveground vegetation in each quadrate and measured its dry weight (to the nearest

0.1 g) to get the aboveground plant biomass in each quadrate. More specifically, grass

species were classified and their total aboveground biomass (determined by their total

aboveground dry weight) was recorded. We further divided grass aboveground biomass

by total aboveground plant biomass to obtain the proportion of grass in local plant

community. We also measured the soil hardness in each quadrate by using a soil

penetrometer (TYD-1; Hangzhou HR, Hangzhou, China). The soil hardness was

represented by the force on unit area (in kg/cm2) required to insert the steel awl (length:

40 mm) of the penetrometer into the soil.

Our study adheres to the guidelines of the American Society of Mammalogists (Sikes

et al., 2011). Ethics approval was given by the Animal Ethics Committees at the Institute of

Zoology, Chinese Academy of Sciences. The approval number is IOZ14001.
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Statistical analysis
Our analyses were based on pen-level measures per session. For each session, the values of

each habitat variable measured in each pen were pooled together and averaged. For each

small mammal species, the number of different individuals captured in each pen per

session was used as a surrogate of its monthly relative abundance. We used unique

individuals instead of captures to avoid potential biases caused by difference in intrinsic

recapture possibility among species. We did not use a population estimator (e.g. in

Program MARK) here, since we were more interested in relative difference in abundance

rather than estimations of absolute abundance. Species richness of small mammals

was represented by bias-corrected Chao 2 index, an asymptotic richness estimator

representing the lower end of potential species richness (Chao, 2005). Diversity of small

mammals was expressed by Hill’s N2 or Simpson’s reciprocal index and Shannon’s

diversity index (H′), with the former more sensitive to the abundance of abundant species

and the latter more sensitive to the abundance of rare species. Hill’s N2 and Shannon’s

diversity index were calculated as 1/D = 1/SPi
2 (Hill, 1973) andH′ = -SPiLnPi (Shannon &

Weaver, 1949), respectively.

To explore the effects of grazing level on small mammal communities, we conducted

repeated measures ANOVA on abundance (sum of respective relative abundance for all the

species captured, log transformed prior to ANOVA to meet the assumptions of ANOVA),

Chao 2 richness index and Shannon’s diversity index (square root transformed), with

grazing level as the between-subjects factor and month as the within-subjects factor. Tukey

HSD tests were conducted for multiple comparisons. Similar ANOVA procedures were

also used to test for the effects of grazing level for all the seven habitat variables (values

of aboveground plant biomass and soil hardness were square root transformed prior

to ANOVA). A significance level of 0.05 was adopted and mean values were reported as

mean ± standard error throughout the paper.

In order to explore the role of habitat characteristics in shaping small mammal

community structure, we conducted a canonical correspondence analysis (CCA) with

species captured. CCA is a direct ordination method which relates variation in species

assemblage (the dependent variables) to variation in habitat characteristics (the

independent variables). CCA has been widely used in community ecology and its

advantages and robustness have been verified (Palmer, 1993). In our study, the

independent variables was a matrix with habitat variables (plant coverage, canopy

height, plant species richness, aboveground plant biomass, aboveground grass biomass,

grass proportion and soil hardness) as columns. The dependent variables included a

matrix with abundance of small mammal species as columns. Since the influence of rare

species on the analysis is often exaggerated in CA/CCA ordination, it is necessary to

exclude rare species prior to CA/CCA (Legendre & Gallagher, 2001). One species

(Allactaga sibirica) was therefore excluded from CCA procedure because of its too low

capture rate.

We used EstimateS for Windows 9.1.0 (Colwell, 2013) to calculate the Chao 2 richness

estimator. The other statistical work was performed by using the R statistical package
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(R Development Core Team, 2015) version 3.1.3 including the VEGAN package (Oksanen

et al., 2016).

RESULTS
Table 1 summarizes habitat characteristics in pens with different grazing levels. Consistent

with Yan et al. (2015), canopy height (F3,6 = 265.96, P < 0.001), coverage (F3,6 = 78.22,

P = 0.001) and aboveground biomass (F3,6 = 170.56, P < 0.001) significantly decreased

with increasing grazing intensity, while plant species richness was not significantly

affected by grazing intensity (F3,6 = 2.28, P = 0.18). On the contrary, soil hardness

monotonically increased with increasing grazing intensity (F3,6 = 48.68, P < 0.001,

Table 1). In regards to the two variables related to grass, G0 pens were similar to G1 pens

whilst G2 pens were similar to G3 pens (Table 1).

In total, we conducted 15,000 trapping days and 326 individuals representing five

small mammal species were captured: Spermophilus dauricus (daurian ground squirrel,

189 individuals), Ochotona dauurica (daurian pika, 55 individuals), Microtus gregalis

(narrow-headed vole, 43 individuals), Cricetulus barabensis (striped hamster, 33

individuals) and Allactaga sibirica (five-toed jerboa, 6 individuals). No individual

appeared in more than one pen. There were 34 S. dauricus and 7 M. gregalis captured

in more than one session.

Cattle grazing dramatically affected local small mammal communities (Fig. 1; Table 2).

A. sibirica was found exclusively in G3 pens. S. dauricus was significantly more frequently

captured in G2 and G3 pens than in G0 and G1 pens, while O. dauurica, C. barabensis

and M. gregalis showed the opposite pattern (Fig. 1; Table 2). Species richness (Chao 2

index: F3,6 = 39.07, P < 0.01) and diversity (Shannon’s index: F3,6 = 23.27, P < 0.01; Hill’s

N2: F3,6 = 24.58, P < 0.01) varied among grazing levels, with all the indices significantly

higher in G0 and G1 pens than in G2 and G3 pens (Table 2). However, no significant

relationship was detected between total abundance of small mammals and grazing level

(F3,6 = 2.58, P = 0.15, Table 2).

Temporal variation in small mammal community also existed (Fig. 2). Small mammals

were least abundant in June (38 individuals captured) but soon reached their peak in

Table 1 A summary of habitat characteristics (mean value ± standard error) across four grazing

levels (n = 15 for each) in the Hulunber meadow steppe. Means with different letters after the error

data are statistically different (Tukey HSD tests for post-hoc comparisons).

Habitat variables

Grazing levels

G0(0.0 Au/ha) G1(0.23 Au/ha) G2(0.46 Au/ha) G3(0.92 Au/ha)

Canopy height (cm) 21.18 ± 1.19a 18.65 ± 1.20a 10.52 ± 0.76b 9.11 ± 0.94b

Plant coverage (%) 59.76 ± 4.16a 59.94 ± 3.03a 50.54 ± 2.65ab 47.70 ± 2.34b

Aboveground plant biomass (g) 203.71 ± 12.15a 164.75 ± 11.39b 96.88 ± 5.58c 89.35 ± 10.15c

Plant species richness 16.22 ± 1.21a 17.07 ± 1.15a 18.28 ± 1.13a 18.40 ± 1.31a

Aboveground grass biomass (g) 71.95 ± 13.20a 64.77 ± 10.38a 19.37 ± 1.99b 15.93 ± 1.84b

Grass proportion (%) 33.04 ± 5.36 37.13 ± 4.49a 20.04 ± 1.88 19.27 ± 1.96

Soil hardness (kg/cm2) 265.99 ± 7.25c 313.25 ± 6.92b 361.85 ± 11.14a 396.03 ± 13.68a
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number in July (110 individuals captured). S. dauricus was most abundant in July

(84 individuals captured) and least abundant in October (10 individuals captured), while

M. gregalis and C. barabensis were most abundant in October (22 and 18 individuals

captured, respectively) and least abundant in June (one and zero individual captured,

respectively). Significant differences among months were detected in small mammal

abundance (F4,32 = 10.64, P < 0.001), species richness (Chao 2 index: F4,32 = 17.10,

P < 0.001) and diversity (Shannon’s index: F4,32 = 5.03, P < 0.01; Hill’s N2: F4,32 = 6.66,

Figure 1 Species composition of small mammal communities across four grazing levels.Mean value

± standard error of relative abundance (represented by number of individuals captured) are presented by

different species (SD, Spermophilus dauricus; OD, Ochotona dauurica; MG, Microtus gregalis; CB, Cri-

cetulus barabensis; AS, Allactaga sibirica).

Table 2 A summary of small mammal community structure (mean value ± standard error) across

four grazing levels (n = 15 for each) in the Hulunber meadow steppe. Relative abundance was

represented by number of individuals captured in a pen. Means with different letters after the error data

are statistically different (Tukey HSD tests for post-hoc comparisons).

Community parameters

Grazing levels

G0(0.0 Au/ha) G1(0.23 Au/ha) G2(0.46 Au/ha) G3(0.92 Au/ha)

Abundance 5.07 ± 0.76a 6.13 ± 0.92a 5.33 ± 1.03a 9.00 ± 2.09a

Chao 2 richness index 2.86 ± 0.30a 3.05 ± 0.18a 1.82 ± 0.34b 1.52 ± 0.19b

Shannon’s diversity index (H′) 0.68 ± 0.13a 0.79 ± 0.08a 0.12 ± 0.07b 0.11 ± 0.04b

Hill’s N2 index 2.09 ± 0.23a 2.13 ± 0.14a 1.13 ± 0.08b 1.07 ± 0.03b

S. dauricus (relative abundance) 1.00 ± 0.35b 1.53 ± 0.47b 4.87 ± 0.96a 8.53 ± 1.98a

O. dauurica (relative abundance) 1.60 ± 0.24a 1.73 ± 0.25a 0.27 ± 0.15b 0.07 ± 0.07b

M. gregalis (relative abundance) 1.33 ± 0.43a 1.87 ± 0.58a 0.13 ± 0.13b 0.06 ± 0.00b

C. barabensis (relative abundance) 1.13 ± 0.39a 1.00 ± 0.43a 0.07 ± 0.07b 0.00 ± 0.00b
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P < 0.01). On average, small mammal diversity and species richness reached their

maximum values (Shannon’s index: 0.65 ± 0.15; Hill’s N2: 2.04 ± 0.27; Chao 2 index:

3.01 ± 0.44, respectively) in September and minimum values in June (Shannon’s index:

0.16 ± 0.08; Hill’s N2: 1.19 ± 0.10; Chao 2 index: 1.40 ± 0.22, respectively).

The CCA based on 1,000 Monte Carlo permutations suggested that a significant

relationship between habitat variables and species abundance existed for the first

canonical axis (CCA axis 1: eigenvalue = 0.62, P = 0.001; Fig. 3). This canonical axis alone

explained 53% of total variance in small mammal abundance data. CCA axis 1 was

positively related to plant species richness (R = 0.71) and soil hardness (R = 0.65), and

negatively related to canopy height (R = -0.57), plant coverage (R = -0.23), aboveground
plant biomass (R = -0.63), aboveground grass biomass (R = -0.75) and grass proportion

(R = -0.75). We found that all of the four species possessed CCA scores larger than

0.5 on this axis (S. dauricus: 0.59; O. dauurica: -0.77;M. gregalis: -1.11 and C. barabensis:

-1.30). The abundance of S. dauricus was positively related to soil hardness and plant

species richness, while negatively related to other habitat variables. On the contrary, the

abundance of O. dauurica was positively related to canopy height, plant coverage and

aboveground plant biomass, while the abundance of M. gregalis and C. barabensis were

most closely associated with grass proportion (Fig. 3).

DISCUSSION
Our data indicate that four-year manipulation of cattle grazing in the Hulunber meadow

steppe resulted in dramatic changes in both habitat characteristics and the small mammal

community. Generally, as grazing intensity increases to 0.46 Au/ha, grass dramatically

Figure 2 Species composition of small mammal communities across five months. Mean value ±

standard error of relative abundance (represented by number of individuals captured) are presented by

different species (SD, Spermophilus dauricus; OD, Ochotona dauurica; MG, Microtus gregalis; CB,

Cricetulus barabensis).
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decreases both in quantity and in proportion. Such alteration in vegetation structure, may

have profound impacts on small mammal communities since structural complexity

provided by vegetation is often crucial for small mammals (Kerley, 1992; Fitzherbert et al.,

2007; Avenant & Cavallini, 2007). Our results clearly support this: when grazing intensity

reaches 0.46 Au/ha, small mammal diversity significantly decreases, and S. dauricus

becomes dominant in number. Consistent with many previous studies (e.g. Bakker, Olff &

Gleichman, 2009; Bueno et al., 2012), response of small mammals to grazing is variable

among species. S. dauricus and A. sibirica seem to prefer habitats with lower plant

coverage and canopy height, contrary to the other three species. According to trapping

records, S. dauricus and O. dauurica are two most common species widely distributed

in the study area (both species appear in all treatments). However, S. dauricus and

O. dauurica show quite different habitat association, with the former preferring heavily

grazed grassland and the latter preferring intact or lightly grazed grassland. Both species

are abundant in this region and their densities are easy to estimate, which makes them

suitable indicators of ecological integrity. Using small mammals as ecological indicators is

both effective and easy (Avenant & Cavallini, 2007) and it is therefore valuable to keep

monitoring population dynamics of these species.

We think that perceived predation risk may play an important role in determining

these different patterns of habitat selection. Previous studies suggest that predation risk

often accounts for a large portion of foraging costs perceived by small mammals

Figure 3 Biplots of canonical correspondence analysis (CCA) linking habitat characteristics with

small mammal abundance. Abundance of Allactaga sibirica is not included in this analysis because

of its too low trapping frequency. Triangles represent the optimal niches of four species (SD, Spermo-

philus dauricus; OD, Ochotona dauurica; MG, Microtus gregalis; CB, Cricetulus barabensis) in regard to

the first and second CCA axes. Habitat variables are represented by vectors (H, canopy height; C, plant

coverage; PB, aboveground plant biomass; PR, plant species richness; GB, aboveground grass biomass;

GP, grass proportion; SH, soil hardness). The strength of the habitat-species relationship is indicated by

distance between triangles (species) and vectors (habitat characteristics).
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(e.g. Brown, Kotler & Valone, 1994) and the pattern of habitat/microhabitat use in many

small mammals can be partly explained by predation risk (e.g. Grant et al., 1982; Cassini &

Galanthe, 1992; Eccard, Walther & Milton, 2000). Some of the difference in predation

risk perceived by small mammals can be related to the difference in morphology,

locomotion modes and anti-predation strategies (Kotler, Brown & Mitchell, 1994). Larger

body size is often related to faster movement and bipedal locomotion allows for changing

directions more erratically while escaping from predators (Djawdan & Garland, 1988).

These two characteristics therefore might be favored in the open microhabitat but at the

cost of lower foraging efficiency in bush microhabitat, which is safer for small-size and

quadrupedal species (Brown et al., 1988). We think, this may also be the case in our

system. Being a large-sized bipedal species, A. sibirica is morphologically similar to

kangaroo rats in North America and it is not surprising to find it exclusively on open area

such as the heavily grazed pens in our study. S. dauricus is the largest rodent species in

the study area. Like other ground squirrels, it often stands on its hindlegs to watch around

when vigilant (Ling-Ying Shuai, 2011–2013, personal observation). This suggests that,

S. dauricus may rely on early detection of predators and fast speed rather than vegetation

cover to decrease predation risk. Tall grass or thick vegetation cover may not be very

effective in providing refuges for large species such as S. dauricus but instead prevent it

from successfully detecting approaching predators, especially terrestrial carnivores. Thick

vegetation cover may also decrease running speed of ground squirrels and further increase

their perceived risk (Schooley, Sharpe & Van Horne, 1996). On the contrary, voles (e.g.

M. arvalis and M. agrestis) are well-known to prefer thick herbaceous cover and rely on

shortcuts under cover to quickly retreat to their burrows (e.g. Jacob & Brown, 2000; Fey,

Banks & Korpimäki, 2006). As a result, changes in habitat structure caused by overgrazing

may generate small mammal communities dominated by large-sized species, whose

perceived risk is low in heavily grazed area.

Other ecological factors, such as interspecific competition, may also be important in

shaping small mammal community. In this sense, the scarcity of species such asM. gregalis

and O. dauurica in highly grazed area may be attributed to the competitive exclusion by

S. dauricus, the individually dominant species. This seems reasonable since our trapping

data suggests the existence of temporal partitioning among these species on a seasonal

basis, with different species reaching its peak in different season. If this is true, the number

ofM. gregalis and O. dauurica should increase in the heavily grazed area, once S. dauricus

is removed. Although we have not conducted experiments to directly test this

prediction, we think it is less likely to happen.M. gregalis and O. dauurica are either small

in body size or quadrupeal (which is also true for C. barabensis), which makes them

less efficient in detecting and escaping from predators when foraging in open

microhabitat. In this sense, overgrazed grassland is still not a suitable habitat for them

even if S. dauricus is absent. However, one of our previous experiments (Ling-Ying Shuai,

2011–2013, personal observation) suggests that interference competition does exist

between S. dauricus andM. gregalis, with the latter dramatically decreasing its activity level

when the former is present. It seems that in our system, interspecific competition plays

an important role in temporal partitioning rather than in habitat selection.
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Our experimental design involves multiple levels of disturbance (four levels of grazing

intensity) and thus enables us to assess the validity of the intermediate disturbance

hypothesis (the IDH), a classic ecological theory but associated with long-term debates

(Mackey & Currie, 2001). The IDH predicts that communities under intermediate

intensities or frequencies of disturbance should possess higher species diversity than that

under low levels of disturbance or severe disturbance (Connell, 1978). In the present study,

cattle grazing can be viewed as a type of chronic and regular disturbance. If the IDH is

correct, species richness or diversity in native small mammal community should be

significantly higher under light or intermediate grazing pressure than under two extremes

of grazing intensity (not grazed and heavily grazed). Our study does not fully support

the IDH. Although, G1 and G2 treatments possess significantly higher small mammal

species richness and diversity than G3 treatment, none of these two treatments produce

significantly higher small mammal species richness or diversity than G0 treatment. In

other words, the peaked pattern predicted by the IDH does not actually appear.

The alteration in small mammal communities associated with cattle grazing may bring

profound effects to the other parts of local ecosystems. For example, S. dauricus is active

only during daytime (Shuai et al., 2014) while C. barabensis is mainly nocturnal and

M. gregalis and O. dauurica are active in both daytime and nighttime (Ren, 2010).

A community dominated by S. dauricus may therefore be beneficial for diurnal predators

such as B. buteo but disadvantageous for nocturnal and crepuscular predators such as

B. bubo and V. vulpes. In this sense, alteration in small mammal community structure may

cause further changes in local fauna through trophic cascade. Although, we have not

conducted experiments to directly assess the response of predators, we think such effects

are likely to happen, considering that activity patterns are often evolutionarily constrained

(Kronfeld-Schor et al., 2001; Roll, Dayan & Kronfeld-Schor, 2006), and predators well

adapted for nocturnal hunting are often less adapted to forage during daytime (Kronfeld-

Schor & Dayan, 2003). On the other hand, the changes in small mammal community may

be further mediated to plant community and landscape structure. Previous studies find

that available burrow densities of plateau pika (O. curzoniae) significantly affect

characteristics and distribution pattern of plant, soil organic carbon and nitrogen content

in Kobresia pygmaea community (Pang et al., 2015a; Pang et al., 2015b). Net ecosystem

carbon exchange and soil moisture in alpine meadow steppe are also significantly affected

by population density of O. curzoniae (Liu et al., 2013). In our system, O. dauurica is

similar to O. curzoniae both in ecology and morphology, and can be expected to play

similar ecological roles. The alteration in abundance and distribution of O. dauurica

caused by cattle grazing should also have profound implications in some aspects of

the Hulunber meadow steppe. Further studies are required to explore these possible

outcomes.

Practically, anthropogenic disturbance is often unavoidable and a critical step is thus to

find a suitable frequency and intensity of disturbance. In our study, small mammal

communities under light grazing intensity (0.23 Au/ha in the present study) possess

highest diversity. This grazing level also helps to maintain the aboveground grass biomass

and grass proportion. However, when grazing intensity increases to only 0.46 Au/ha,
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things greatly change. In terms of both the plant and the small mammal community, a

critical transition point seems to exist between two disturbance levels (0.23 Au/ha and

0.46 Au/ha, Table 1; Fig. 1). Meanwhile, changes in grass proportion caused by cattle

grazing seem to be important in shaping small mammal communities. These results

should provide useful information for developing suitable land use strategies, given that

small mammals play an important role in shaping the structure and functioning of

ecosystems.
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