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1. Introduction

Pyrethroids are widely applied to control insect pests of 
agriculture (particularly on crops), public health, home, 
and garden (Amweg et al., 2005; Oros and Werner, 2005; 
U.S. Department of Agriculture, 2007). In spite of the 
relatively low mammalian toxicity and biodegradability 
(Leahay, 1985), environmental pollution and food safety 
problems are concomitant with the increase in pyrethroid 
pesticide application amounts. Moreover, pyrethroids 
have been found to occur in waters (0.04 to 24 μg/L) and 
animals (3 to 50ng/g) (Pawlisz et al., 1998), and their 
biological effects have received increasing scientific 
attention (Mubarak et al., 2006; Righi, et al., 2009). 
Endocrine disruption by pesticides has raised concerns 
about their potential health hazard. The majority of 
pyrethroid pesticides belong to the “environmental 
hormones” group, and their long-term exposure can cause 
chronic disease and even have teratogenic, carcinogenic, 
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and mutagenic effects (Sinha et al., 2004). 
Deltamethrin, an important synthetic pyrethroid and 

a highly effective pesticide, has been widely applied 
in public health and agricultural programs (Moretti et 
al., 1997; McKinlay et al., 2008). Deltamethrin has 
been reported to be ecotoxic to various animals such as 
copepods (Tidou et al., 1992), mussels (Thybaud, 1990; 
Kontreczky et al., 1997), freshwater fish (Delistraty, 2000; 
Datta and Kaviraj, 2003; Svobodova et al., 2003), and the 
leopard frog (Bridges, 2000). Deltamethrin has already 
been reported to affect behavior (Kontreczky et al., 
1997; Lazarini et al., 2001), growth (Datta and Kaviraj, 
2003), reproduction (Presibella et al., 2005), and the 
nervous system of animals (Aziz et al., 2001). However, 
few studies have reported the effect of deltamethrin on 
the growth and development of reptiles, and especially 
embryos.

Rept i l e  embryos  a re  ex t remely  sens i t ive  to 
environmental conditions. The environment experienced 
by embryos can significantly influence the developmental 
rate and hatching success of embryos as well as the 
phenotype, functional performance, and fitness of 
offspring (Deeming 2004). Since most oviparous reptiles 
deposit their eggs in underground nests, embryonic 
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development is affected by environmental contaminants, 
including pesticides (Deeming, 2004; Sparling et al., 
2006; Hopkins and Winne, 2006). Nonetheless, the effects 
of deltamethrin on embryonic development and offspring 
traits of reptiles remain unexplored. 

In this study, we investigated the effect of deltamethrin 
on egg incubation in two turtle species, Trachemys scripta 
and Chinemys reevesii. T. scripta produces parchment-
shelled eggs, whereas C. reevesii lays rigid-shelled eggs. 
Given the fact that the rigid shell is heavily mineralized 
and displays highly reduced permeability (liquid, 
vapor, and gas) than the parchment shell (Deeming 
and Thompson, 1991; Deeming and Unwin, 2004), we 
hypothesized that parchment-shelled eggs would be more 
vulnerable to deltamethrin than rigid-shelled eggs in 
turtles. 

2. Materials and Methods

2.1 Egg collection and incubation   Eggs of T. scripta 
and C. reevesii were purchased from a commercial 
supplier and transported to the laboratory. We assigned 
eggs in groups of 10 to plastic boxes (16 × 11.5 × 4 cm3) 
containing a 2 cm layer of moist vermiculite (at water 
potentials of approximately –220 kPa). Eggs were 
incubated in an air-conditioned room under constant 
temperature of 28°C, which is the optimal temperature 
for egg incubation in this species and produces 
hatchlings with a balanced sex ratio (Du et al., 2007). We 
weighed boxes with moist vermiculite to evaluate water 
evaporation once a week, and added water to maintain 
relatively constant vermiculite moisture. We changed the 
position of boxes daily to avoid any potential shelf effects 
from temperature gradients. 

Eggs were assigned randomly to three deltamethrin 
treatment groups (0.1, 0.02, and 0.004 mg/L of 
deltamethrin dissolved in ethanol) and one control group 
(ethanol). Sample sizes were 174 (forty-two clutches) of 
T. scripta, and 170 (forty-two clutches) of C. reevesii. 
Sample sizes of T. scripta for the treatments of 0, 0.004, 
0.02, and 0.1 mg/L were 42, 42, 45, and 45, respectively. 
Sample sizes of C. reevesii for the same treatments 
were 40, 43, 44, and 43, respectively. Eggs were spotted 
with 5 μL of different doses of deltamethrin (treatment) 
or ethanol (control) to the eggshell using a pipettor, 
which was applied once at approximately stage 17 of 
development (Crews and Bergeron, 1994; Wibbels et al., 
1994). The deltamethrin dosage is based on governmental 
limits of permissible levels in accordance with Chinese 
national standards for drinking water quality (GB 

5749–2006) and Chinese national environmental quality 
standards for surface water (GB 3838–2002), in which 
the water quality standard limit value is 0.02 mg/L. 
Therefore, we selected the standard value as the dosage of 
the moderate concentration treatment group (0.02 mg/L). 
The dosages of the other two (high and low concentration) 
treatment groups were 5 and 1/5 times the standard value, 
respectively (0.1 and 0.004 mg/L).

2.2 Embryonic development and hatchling traits   
Hatching success was calculated as the percentage of 
successfully-hatched eggs. After hatching, each turtle 
was weighed and placed in a separate cup labeled 
with an individual number. Hatchling mass (0.001 g), 
carapace length, and width (0.01 mm) were measured. We 
examined each hatchling for morphological deformities 
(e.g. underdeveloped head and tail, carapace and plastron 
abnormalities, extra or missing scutes). The locomotor 
performance (swimming speed) of hatchlings was tested 
at 28 °C in the first week after hatching. We gently placed 
a hatchling turtle into a 1-m-long glassed sink. The sink 
was marked at 250 mm intervals, and filled with 10 cm 
height of water. We recorded the time that a turtle swam 
through the 1 m sink. Each hatchling was tested twice and 
the average swimming speed through the 1 m sink was 
calculated. The hatchlings were kept in cups individually 
at room temperature. An excess amount of commercial 
food were provided each day. Four months later,  We 
dissected hatchlings to identify the sex of each individual 
by checking gonads. Female gonads are long and thin, 
whereas male gonads are short and well vascularized 
(Yntema, 1976; Crews et al., 1991). 

2.3 Statistical analysis   Mixed-model ANOVA was used 
to test the effect of treatments on heart rate of embryos, 
with clutch as the random factor. Hatching success, 
morphological deformity and sex ratio were analyzed 
by using chi-square tests. Hatchling mass was compared 
using mixed-model ANCOVA with initial egg mass as 
the covariate, and clutch as the random factor. When 
significant differences were found among treatments, a 
posterior Tukey’s Honestly Significant Difference (HSD) 
test for multiple comparisons of means was carried out 
(Zar, 1999). For all tests, differences at α = 0.05 level 
of confidence were considered significant. All statistical 
analyses were performed using SPSS software (version 
17.0, SPSS Inc., Chicago. IL, USA).

3. Results

Deltamethrin exposure did not affect hatching success 
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in both species (C. reevesii: X2 = 4.40, df = 3, P = 0.22; 
T. scripta: X2 = 0.81, df = 3, P = 0.85) (Figure 1a). 
Deltamethrin exposure did not affect morphological 
deformities of hatchlings in T. scripta (X2 = 4.18, df = 3, 
P = 0.24), nor in C. reevesii (X2 = 3.74, df = 3, P = 0.29) 
(Figure 1b), nor hatchling size and mass in both species 
(Table 1). The sex ratio of hatchlings was not affected 
by deltamethrin exposure in both species (C. reevesii: 
X2 = 1.87, df = 3, P = 0.60; T. scripta: X2 = 1.12, df = 3, 
P = 0.77) (Figure 1c). However, deltamethrin exposure 
during embryonic development significantly decreased 
the swimming speed of T. scripta hatchlings, but not of C. 
reevesii hatchlings (Table 1).

4. Discussion

Animal embryos are extremely sensitive to pesticides. 
Some studies have shown that pesticides or herbicides 
might significantly affect hatching success of embryos 
in oviparous species. For example, treatments containing 
high concentrations of Glypro induce more frequent 
embryonic fatalities (Sparling et al., 2006). Different 
concentrations of cypermethrin significantly affected 
hatching success of amphibians (Greulich et al., 2003). 
Carbaryl significantly reduced survival of bullfrog 
(Rana catesbeiana) tadpoles in the laboratory (Puglis 
and boone, 2007). Our study indicated that deltamethrin 
exposure did not affect hatching success of turtle eggs. 
This result is inconsistent with other previous studies on 
other oviporous species. For example, Kenan et al. (2004) 

found that deltamethrin could significantly influence 
the hatching success of common carp (Cyprinus carpio) 
embryos and larvae. The relative insensitivity of the 
hatching success of turtle embryos to environmental 
contaminants has also been found in other species. For 
example, dichlorodiphenyldichloroethylene (DDE) failed 
to influence the hatching success in the marine turtle 
(Chelonia mydas) (Podreka et al., 1998), and the toxicity 
of pesticides (chlorothalonil, S-metolachlor, metribuzin, 
and chlorpyrifos) did not influence the hatching success 
of the common snapping turtle (Chelydra serpentina) 
(Solla et al., 2014). 

Endocrine disruptor treatments during embryonic 
development could have profound impacts on the 
morphological deformity, offspring size, and offspring 
performance. For example, high application rate of the 
pesticide tefluthrin increased deformity rates of exposed 
snapping turtle embryos and hatchlings (Solla et al., 
2011); 17α-Ethinylestradiol, genistein, and fadrozole 
could induce malformations in zebrafish (Santos et al., 
2014); cadmium and EC50 caused lower hatchling weight 
in snail species (Coeurdassier et al., 2003, Schirling 
et al., 2006); Hopkins and Winne (2006) reported that 
high concentrations of carbaryl significantly reduced 
swimming performance of four species of natricine 
snakes. Our study indicated that exposure to deltamethrin 
did not affect hatchling morphology including carapace 
size and body mass, but reduced hatchling locomotor 
performance (average swimming speed) of T. scripta. 
This suggests that deltamethrin may have long-term 

Table 1  Effect of deltamethrin exposure on hatchling morphometrics (hatchling mass, carapace length and width) and swimming speed of 
Trachemys scripta and Chinemys reevesii. 

Traits Species Control
Deltamethrin

P-value
0.004 mg/L 0.02 mg/L 0.1 mg/L

Hatchling mass (g) T. scripta 7.704 ± 0.121 8.224 ± 0.174 8.057 ± 0.169 7.957 ± 0.184 F3,41 = 0.71, P = 0.55

C. reevesii 4.996 ± 0.120 5.165 ± 0.121 5.160 ± 0.104 5.083 ± 0.120 F3,41  = 0.26, P = 0.86

Carapace length (mm) T. scripta 30.87 ± 0.27 31.64 ± 0.22 31.02 ± 0.36 30.83 ± 0.37 F3,41  = 1.45, P = 0.23

C. reevesii 26.83 ± 0.36 27.04 ± 0.29 26.61 ± 0.36 26.72 ± 0.29 F3,41  = 0.74, P = 0.53

Carapace width (mm) T. scripta 29.68 ± 0.31 30.52 ± 0.24 30.04 ± 0.34 29.50 ± 0.49 F3,41 = 1.88, P = 0.14

C. reevesii 22.14 ± 0.27 21.95 ± 0.22 21.77 ± 0.31 21.87 ± 0.29 F3,41 = 1.13, P = 0.34

Average swimming T. scripta 0.082 ± 0.008a  0.056 ± 0.005b  0.047 ± 0.003b  0.066 ± 0.007ab F3,26 = 5.79, P = 0.002
speed (m/s)

C. reevesii 0.042 ± 0.003 0.050 ± 0.005 0.050 ± 0.003 0.050 ± 0.004 F3,31 = 1.09, P = 0.47
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effects on offspring fitness-related phenotypes, and 
therefore, presumably have a negative impact on offspring 
fitness. Such effects of environmental hormones on reptile 
embryos and offspring are largely unexplored and warrant 
further investigation.  

The between-species difference in the effect of 

deltamethrin on embryonic development and offspring 
traits may be attributable to two aspects: species-specific 
sensitivity of embryos in response to deltamethrin and 
different types of eggshell (thickness and permeability). 
First, the sensitivity of reptile embryos to environmental 
stress differs among species. For example, reptile 
embryos have different optimal temperatures for 
developments (Du and Shine, 2015). Analogously, the 
response of reptile embryos to pesticides may also differ 
among species (Bishop et al., 1998; Sparling et al., 2006). 
Pesticide (e.g. atrazine) exposure could negatively affect 
embryonic development in T. scripta (Willingham, 2005), 
but not in the snapping turtle (Chelydra serpentina) 
(de Solla et al., 2011).  Second, parchment- and rigid-
shelled eggs may have different responses to pesticides. 
Most reptiles lay eggs in beach sand or land soil, where 
the eggs are exposed to residual pesticides. Reptile eggs 
are able to absorb pesticides from soil because their 
eggshells are permeable and polyporous (Solla et al., 
2011). The shell of parchment-shelled eggs is thinner 
and more permeable to environmental substances like 
water, gas, and contaminants than that of rigid-shelled 
eggs (Deeming and Thompson, 1991; Oftedal, 2002; 
Belinsky et al., 2004). As a result, the effect of pesticides 
on embryonic development and offspring traits is likely 
stronger in parchment-shelled eggs than in rigid-shelled 
eggs. In the two species we studied, the eggshell of 
C. reevesii (0.18 ± 0.02mm) is thicker than that of T. 
scripta (0.14 ± 0.01mm) (Kusuda et al., 2013), and 
deltamethrin exposure during embryonic development 
affected functional performance of T. scripta hatchlings, 
but not C. reevesii. This result supports the hypothesis 
that parchment-shelled eggs are more vulnerable to 
deltamethrin than rigid-shelled eggs. Similarly, embryonic 
development in other turtle species having parchment-
shelled eggs is also sensitive to pesticides (Solla et al., 
2011). Nonetheless, further verification of this hypothesis 
requires more data comparing parchment-shelled and 
rigid-shelled eggs across a wide range of reptile species.
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