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Abstract Recent studies have revealed that graph heterogeneity can considerably affect
evolutionary processes and that it promotes the emergence and maintenance of cooperation
in social dilemmas. In this paper, we analytically derive the evolutionary dynamics and the
evolutionarily stable strategy (ESS) condition for 2 × 2 games on heterogeneous graphs
based on “pairwise comparison” updating. Using pair approximation, we introduce a new
state variable tomeasure the evolutionary process. In the limit ofweak selection, we show that
the evolutionary dynamics can be approximated as a replicator equation with a transformed
payoff matrix, and the ESS condition depends on both the mean value and the variance of the
degree distribution. These results are subsequently applied to the Prisoner’s Dilemma game
and the Stag Hunt game. In both games, we find that the variance plays a determinant role in
the evolution of cooperation: Cooperative strategy cannot evolve in regular graphs, but it is
favored by natural selection in strongly heterogeneous graphs.

Keywords Graph heterogeneity · Evolutionary dynamics · ESS · Cooperation

1 Introduction

Understanding the evolution of cooperation is a fundamental problem in evolution-
ary biology and social science [3,16]. It is well known that in a well-mixed popula-
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tion where all individuals have the same chance of interacting with one another, nat-
ural selection favors defectors over cooperators [16]. However, in more realistic pop-
ulations, different individuals interact with different subsets of the whole population.
This type of structure can be described by means of complex networks (or graphs),
in which players of an evolutionary game occupy the vertices of a graph, and the
edges denote the links between individuals [15,30]. Recent developments in statisti-
cal physics have shown that most real-world networks of contacts are highly heteroge-
neous, and many of them are conjectured to be scale-free, where the degree distribu-
tions exhibit power-law characteristics (e.g., computer networks and biological networks)
[1,2,4,6,9].

A great deal of research has revealed that graph heterogeneity dramatically enhances
cooperation in complex networks [27–29], in particular for scale-free networks [11,20,
23,24,26,31]. In 2 × 2 social dilemma games, such as the Prisoner’s Dilemma, increas-
ing heterogeneity not only catalyzes the emergence of cooperation but also changes the
direction of the evolutionary process such that cooperators can resist the invasion of
defectors [21,22,27,29]. Most of these studies considered so-called “pairwise compar-
ison” updating, i.e., an individual randomly chooses one of its neighbors and imitates
the strategy of the neighbor with a probability depending on their payoff difference [21–
24,27–29,31]. Although the degree distributions, network clusterings or payoff structures
in these models are different, one of the main reasons behind the increase of cooper-
ation levels in heterogeneous networks is that hubs are usually occupied by coopera-
tors, which ensures their long-term success in the evolutionary process (see [20] for a
review).

Recently, Ohtsuki et al. [17–19] developed a theoretical model to investigate evolu-
tionary games on regular graphs. They described the evolutionary process by using pair
approximation and obtained the replicator equation on graphs in the limit of weak selec-
tion. They then applied their results to several examples (e.g., the Prisoner’s Dilemma
game, the Stag Hunt game and the Hawk Dove game) and showed that “pairwise
comparison” updating can never favor cooperation in 2 × 2 social dilemma games.
However, Ohtsuki et al.’s model is based on regular graphs only and therefore can-
not explain how cooperation prevails in heterogeneous graphs. Thus, a greater chal-
lenge is to incorporate the graph heterogeneity into the evolutionary dynamics and
establish a relation between the evolution of cooperation and the graph heterogene-
ity.

In this paper, we derive the evolutionary dynamics for 2 × 2 games on heterogeneous
graphs based on “pairwise comparison” updating. The paper is organized as follows. Sec-
tion 2 defines games on graphs and introduces pair approximation for heterogeneous graphs.
Section 3 derives the evolutionary dynamics under “pairwise comparison” updating. In the
limit of weak selection, the evolutionary dynamics can be approximated as a modified repli-
cator equation that involves both the mean value and the variance of the degree distribution.
Section 4 applies these results to the Prisoner’s Dilemma game and the Stag Hunt game.
In both games, the variance of the degree distribution plays a key role in the evolution of
cooperation.We show that cooperative strategy cannot evolve in regular graphs but is favored
by natural selection in strongly heterogeneous graphs. These predictions are compared with
numerical simulations for random graphs and scale-free graphs. Section 5 discusses the main
results.
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2 Model

2.1 Games on Graphs

Consider a directed graph with N vertices. We label these N vertices as vertex 1, vertex 2,
. . ., vertex N , respectively, and the degree of vertex i is denoted by ki for i = 1, 2, . . . , N .
The average degree of the graph, denoted by z, is then written as z = ∑N

i=1 ki/N . The degree
distribution of a graph, denoted by p(k), gives the frequency of vertices with degree k (for
k = 1, 2, . . .). Therefore, the average degree could also be expressed as z = ∑

k kp(k). In
a graph, if there exists an edge between two vertices i and j for 1 ≤ i, j ≤ N , then we use
(i, j) to denote a directed edge from vertex i to vertex j . For the interaction between two
individuals at vertices i and j , we consider the two directed edges (i, j) and ( j, i) equivalent.

Consider a game between two strategies, A and B, with the payoff matrix

A B
A
B

(
a11 a12
a21 a22

)
. (1)

Suppose that the individual at each vertex uses either strategy A or strategy B in interactions
with all of its neighbors. We denote the strategy of the individual at vertex i by si with
si ∈ {A, B} for i = 1, 2, . . . , N . The fitness of individual i is the sum over all interactions
with its ki neighbors.

Notice that the total number of directed edges in the graph is zN , and the proportion
of the directed edges starting from individuals who use strategy A out of the total directed
edges, denoted by φA, is given by φA = ∑

si=A ki/zN . In particular, if ki = z for all
i = 1, 2, . . . , N (i.e., a regular graph), then φA exactly represents the frequency of strategy
A in the population.

2.2 Pair Approximation

Under pair approximation, the conditional probability that a neighbor of an arbitrary Y
individual is an X individual (X, Y ∈ {A, B}) is derived from the frequencies of AA, AB,
BA and BB pairs [10,17]. Denote the number of directed edges (i, j) with si = X and
s j = Y by ΦXY = ∑

si=X ki,Y , where ki,Y is the number of vertex i’s neighbors with
strategy Y . Thus, the proportion of directed edges with strategy pair (X, Y ) in the total set
of directed edges is φXY = ΦXY /(ΦAA + ΦAB + ΦBA + ΦBB) = ΦXY /zN . Furthermore,
the conditional probability that a neighbor of a vertex with strategy X is a Y -individual
is given by qY |X = ∑

si=X ki,Y /
∑

si=X ki . Interestingly, φXY = qY |XφX for any X, Y ∈
{A, B}. This implies that, under pair approximation, a heterogeneous graph is characterized
by the variables φX , qY |X and φXY , where X, Y ∈ {A, B}. Notice that these variables satisfy
identities as follows

φA + φB = 1,

qA|X + qB|X = 1,

φXY = qY |XφX ,

φAB = φBA, (2)

and the entire system can be described by only two variables, φA and φAA [10].
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3 Evolutionary Stability

3.1 Pairwise Comparison Updating

In this paper, we consider so-called “pairwise comparison” updating [17–19]. In each time
step, one individual is chosen at random, and then, one of its neighbors is chosen. The first
individual will adopt the strategy of the second individual with a probability that is given by
(1 + exp(−ω( f2 − f1)))−1, where ω measures the intensity of selection, and f1 and f2 are
the fitness of the first individual and the second individual, respectively [17–19,21,22,27–
29]. For ω → 0, selection is weak and individual fitness is only a small perturbation to
the neutral drift. In contrast, for ω → +∞, selection is strong, and an updating individual
always imitates the neighbor with a higher fitness and never imitates the neighbor with a
lower fitness. The case of strong selection has been studied by many authors [21,22,27–29].
In this paper, we consider weak selection.

3.2 Evolutionary Dynamics

If a B individual with degree k is randomly chosen to update, the probability that this
individual has exactly kA neighbors with strategy A and kB neighbors with strategy B is

k!
kA !kB ! (qA|B)kA (qB|B)kB , and its fitness is given by f0 = kAa21 + kBa22. Let f A denote the
fitness of its A neighbors. Under pair approximation, f A = (z−1)(qA|Aa11+qB|Aa12)+a12.
Thus, the probability that the change of φA exactly equals �φA = k/zN in one time step is

Pr

(

�φA = k

zN

)

= p(k)φk,B

×
∑

kA+kB=k

k!
kA!kB ! (qA|B)kA (qB|B)kB

kA
k

1

1 + exp (−ω( f A − f0))
, (3)

and the probability that the change of φAA exactly equals �φAA = 2kA/zN is

Pr

(

�φAA = 2kA
zN

)

=
∑

k≥kA

[

p(k)φk,B

× k!
kA!(k − kA)! (qA|B)kA (qB|B)k−kA kA

k

1

1 + exp(−ω( f A − f0))

]

, (4)

where φk,B denotes the proportion of vertices with degree k that are using strategy B.
Similarly, if an A individual with degree k is randomly chosen to update, the probability

that this individual has kA A neighbors and kB B neighbors is k!
kA !kB ! (qA|A)kA (qB|A)kB , and

its fitness is written as g0 = kAa11 + kBa12. Let gB denote the fitness of its B neighbors,
where gB = (z − 1)(qA|Ba21 + qB|Ba22) + a21. Then, the probability that the change of φA

exactly equals �φA = −k/zN is

Pr

(

�φA = − k

zN

)

= p(k)φk,A

×
∑

kA+kB=k

k!
kA!kB ! (qA|A)kA (qB|A)kB

kB
k

1

1 + exp(−ω(gB − g0))
. (5)
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and the probability that the change of φAA exactly equals �φAA = −2kA/zN is

Pr

(

�φAA = −2kA
zN

)

=
∑

k≥kA

[

p(k)φk,A

× k!
kA!(k − kA)! (qA|B)kA (qB|B)k−kA k − kA

k

1

1 + exp(−ω(gB − g0))

]

, (6)

where φk,A = 1−φk,B denotes the proportion of vertices with degree k that are using strategy
A.

In summary, from Eqs. (3)–(6), the time derivatives of φA and φAA can be written as

dφA

dt
=

N−1∑

k=1

k

zN
Pr

(

�φA = k

zN

)

−
N−1∑

k=1

k

zN
Pr

(

�φA = − k

zN

)

, (7)

dφAA

dt
=

N−1∑

kA=1

2kA
zN

Pr

(

�φAA = 2kA
zN

)

−
N−1∑

kA=1

2kA
zN

Pr

(

�φAA = −2kA
zN

)

. (8)

3.3 Local Equilibrium

Under weak selection ω → 0, Eqs. (3)–(6) can be approximated as

Pr

(

�φA = k

zN

)

= 1

2
p(k)φk,BqA|B

[
1 + ω

2
( f A − lB)

]
+ O(ω2),

Pr

(

�φAA = 2kA
zN

)

= 1

2

∑

k≥kA

p(k)φk,B
k!

kA!kB ! (qA|B)kA (qB|B)kB
kA
k

+ O(ω),

Pr

(

�φA = − k

zN

)

= 1

2
p(k)φk,AqA|B

[
1 + ω

2
(gB − hA)

]
+ O(ω2),

Pr

(

�φAA = −2kA
zN

)

= 1

2

∑

k≥kA

p(k)φk,A
k!

kA!kB ! (qA|A)kA (qB|A)kB
kB
k

+ O(ω), (9)

where hA = (k − 1)(qA|Aa11 + qB|Aa12) + a12 is the fitness of a B individual’s k degree A
neighbor and lB = (k − 1)(qA|Ba21 + qB|Ba22) + a21 is the fitness of an A individual’s k
degree B neighbor. Applying Eq. (9), Eqs. (7)–(8) can then be simplified as

dφA

dt
= ω

2zN
×

N−1∑

k=1

kp(k)
[
φk,BqA|B(hA − lB) − φk,AqB|A(gB − hA)

] + O(ω2), (10)

dφAA

dt
= 1

zN
×

N−1∑

k=1

p(k)
[
φk,BqA|B(kqA|B + qB|B) − φk,AqA|AqB|A(k − 1)

] + O(ω).

(11)

In addition, φk,A and φk,B in Eqs. (10)–(11) are also variables of time t . For each degree k,
the time derivative of φk,A is given by

dφk,A

dt
= 1

Np(k)
Pr

(

�φk,A = 1

Np(k)

)

− 1

Np(k)
Pr

(

�φk,A = − 1

Np(k)

)

= φAB

NφAφB
(φA − φk,A) + O(ω). (12)
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Notice that the dynamics ofφAA andφk,A include the termω0, in the limit ofweak selection
(i.e., ω → 0), and φAA and φk,A should be considered to be fast variables compared with φA

[10,17–19]. To be precise, the dynamical system quickly converges onto a slow manifold at
a rate of order ω0, where, on this manifold, the global frequency φA is regarded as constant
(because it changes at a rate of order ω) and the evolution of local frequencies φAA and
φk,A is described by Eqs. (11)–(12). From Eq. (12), φk,A converges to φA + O(ω) for any
0 < φA < 1 (i.e., dφk,A/dt = 0). Therefore, Eq. (11) can be simplified as

dφAA

dt
= φAB

zN

[
1 + (z − 1)(qA|B − qA|A)

] + O(ω). (13)

As shown in [17], Eq. (13) converges to dφAA/dt = 0. Thus, the local equilibrium on this
slow manifold satisfies dφAA/dt = 0 and dφk,A/dt = 0. From dφk,A/dt = 0, we obtain

φA − φk,A = O(ω), (14)

and from dφAA/dt = 0 and Eq. (14), we obtain

(z − 1)
(
qA|A − qA|B

) = 1 + O(ω). (15)

In addition, from Eqs. (2) and (15), the equilibrium local frequency qA|A is calculated as

qA|A = φA + 1 − φA

z − 1
+ O(ω). (16)

3.4 Evolutionary Stability

We now derive the evolutionary dynamics of the global frequency φA. Because φAA and φk,A

converge to the local equilibrium at a rate of order ω0 (which is faster than φA), we could
substitute qA|A and φk,A in Eq. (10) with the equilibrium local frequencies of Eqs. (14)–(16).
From φk,BqA|B = φk,AqB|A = φAB , Eq. (10) becomes

dφA

dt
= ωφAB

N

[
(z − 1)

(
qA|Aa11 + qB|Aa22 − qA|Ba21 − qB|Ba12

) + a12 − a21
]

+ ωφABvar(k)

2zN

(
qA|Aa11 + qB|Aa22 − qA|Ba21 − qB|Ba12

) + O(ω2), (17)

and from Eqs. (15)–(16), we finally obtain

dφA

dt
= ω

2zN

z − 2

z − 1
φA(1 − φA) ×

[

φA(z − 2)(a11 + a22 − a21 − a12)

(

2z + var(k)

z − 1

)

+ a11

(

2z + var(k)

z − 1

)

− a22(z − 1)

(

2z + var(k)

z − 1

)

+ a12

(

2z(z − 1) + var(k)
z − 2

z − 1

)

− 2za21

]

+ O(ω2), (18)

where var(k) is the variance of the degree distribution p(k). Eq. (18) is called the global
dynamics of the evolutionary dynamics on the graph [18,19]. Interestingly, Eq. (18) has the
form of a replicator equation [7] with a transformed payoff matrix

(
a11 a12 + α

a21 − α a22

)

, (19)
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where

α = βa11 + a12 − a21 − βa22
β(z − 2)

,

β = 1 + var(k)

2z(z − 1)
. (20)

It is evident that the global dynamics Eq. (18) have two boundary equilibria φA = 0 and
φA = 1, which correspond to all individuals adopting strategy B and all individuals adopting
strategy A, respectively. As pointed out byOhtsuki andNowak [18,19], evolutionary stability
on graphs can be derived from the transformed payoff matrix (19). If a11 > a21 − α, then
the boundary equilibrium φA = 1 is locally asymptotically stable, which means that rare B
mutants are selected against in an A population. In this case, A is an evolutionarily stable
strategy (ESS) when compared to B. Conversely, if a11 < a21−α, then B mutants can invade
the A population, and therefore, A is not evolutionarily stable.

In general, the heterogeneity of a graph can be measured by the variance of its degree
distribution var(k) [10,13]. If the graph is homogeneous (i.e., var(k) = 0), then α = (a11 +
a12 − a21 − a22)/(z − 2), and the ESS condition of strategy A (i.e., a11 > a21 − α) is

(z − 1)a11 + a12 > (z − 1)a21 + a22. (21)

This agrees with the results of Ohtsuki and Nowak [18,19] for regular graphs. Alternately, if
the graph is strongly heterogeneous (i.e., var(k) � 1), then α = (a11 − a22)/(k − 2). Thus,
A is evolutionarily stable if and only if

(z − 1)a11 > (z − 2)a21 + a22. (22)

Ohtsuki andNowak [19] gave a geometrical interpretation of Eq. (21), andwe next provide
an intuition for Eq. (22). In a strong heterogeneous graph, whether a B mutant can spread
depends crucially onwhether it can successfully invade an A hub [23,28]. Let us consider two
connected k degree (k � z) vertices i and j , where i is an A resident and j is a B mutant (see
Fig. 1b, where the two vertices are specified by the double-headed arrow). As discussed in
Sect. 3.2, evolutionary dynamics on graphs have two timescales. On a fast timescale, a local
equilibrium is formed around the B mutant, and, on a slow timescale, the global frequency
φA is changing. From Eq. (15), after the local equilibration process, the B mutant, whose
one neighbor is already A, has on average (k − 1)/(z− 1) B neighbors among its k − 1 other
neighbors (see Fig. 1). Thus, the payoff of the B mutant at the local equilibrium is

a21 + k − 1

z − 1
a22 + (k − 1)(z − 2)

z − 1
a21, (23)

and the payoff of the A resident is

a12 + (k − 1)a11. (24)

For k � z, the comparison of two payoffs, (23) and (24), immediately leads to the ESS
condition Eq. (22). In particular, both conditions (21) and (22) converge to a11 > a21 for z →
+∞. This makes sense because a well-mixed population can be approximately described by
a highly connected graph [18,19].
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Fig. 1 A geometrical interpretation of the ESS condition in a a regular graph and b a heterogeneous graph.
Both graphs have mean degree z = 3. A individuals and B individuals are denoted by blue balls and red balls,
respectively. Payoffs are shown next to the individuals. a At the local equilibrium, the B mutant (specified by
the double-headed arrow) whose one neighbor is already A has on average one B neighbor among its two
other neighbors. Thus, it can successfully invade the A neighbor if 2a21 +a22 > 2a11 +a12 [i.e., Eq. (22)]. b
At the local equilibrium, the B mutant (specified by the double-headed arrow) whose one neighbor is already
A has on average three B neighbors among its six other neighbors. Thus, it can successfully invade the A hub
if 4a21 + 3a22 > 6a11 + a12 [i.e., Eq. (23)] (Color figure online)

4 Examples

4.1 The Prisoner’s Dilemma Game

In this example, we consider the interaction between cooperators and defectors in a simplified
Prisoner’s Dilemma (PD) game [16,17]. A cooperator (denoted by C) pays a cost c for every
neighbor, and each of its neighbors receives a benefit b. A defector (denoted by D) pays no
cost and distributes no benefit. The payoff matrix is then given by

C D
C
D

(
b − c −c
b 0

)
. (25)

Under the payoff matrix (25), the global dynamics Eq. (18) is written as

dφC

dt
= ω

2zN

z − 2

z − 1
φC (1 − φC )

(

b
var(k)

z − 1
− c(2z2 + var(k))

)

, (26)

and the ESS condition of cooperation is

b

c
> (z − 1)

(
2z2

var(k)
+ 1

)

. (27)

It is easy to check that dφC/dt > 0 (for any 0 < φC < 1) if and only if Eq. (27) is satisfied.
Therefore, cooperation is an ESS that implies that selection favors the increase of cooperation
almost always.

Under “pairwise comparison” updating, Ohtsuki et al. [17–19] indicated that defectors
always win over cooperators in regular graphs (i.e., dφC/dt < 0 for any 0 < φC < 1
when var(k) = 0). However, our result shows that cooperators could dominate defectors
if the graph is strongly heterogeneous. Because the right hand of Eq. (27) is decreasing in
var(k), graph heterogeneity in general promotes the evolution of cooperation (see Fig. 2). In
particular, if var(k) � 1, the ESS condition becomes b/c > z − 1. This condition is even
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Fig. 2 Simulation results for the evolution of φC in (a) scale-free graphs (z = 10, generated according to
[4]) and b random graphs (z = 14, generated according to [14]) with different heterogeneities. Each data
point is plotted using the average of 105 simulations (based on 102 graphs and 103 simulations per graph). In
each simulation, we run “pairwise comparison” updating for 10 × N time steps (i.e., each individual updates
on average 10 times) starting from φC = 0.5, and we record φC in the last step. a The variances of the red
points and the blue points are var(k) = 187 and var(k) = 275, respectively. The dashed lines represent the
theoretical predictions of b/c such that dφC/dt = 0 [i.e., Eq. (27)]. (b) The variances of the red points and the
blue points are var(k) = 15 and var(k) = 18, respectively. Again, the dashed lines represent the theoretical
predictions of b/c such that dφC/dt = 0. These figures show clearly that graphs with higher heterogeneities
promote cooperation better (Color figure online)

weaker than the “simple rule” for the evolution of cooperation on graphs, which says that
selection favors cooperation if b/c > z [10,17].

4.2 The Stag Hunt Game

As a second example, we consider a Stag Hunt game given by the payoff matrix

S H
S
H

(
a 0
1 1

)
. (28)

In the game, two individuals can either jointly hunt a stag (denoted by S) or individually
hunt a hare (denoted by H ). We assume that the parameter a satisfies 1 < a < 2. In this
case, both strategies S and H are strict Nash equilibria, where the cooperative strategy S is
Pareto-efficient and the self-safety strategy H is risk dominant.

In a well-mixed population, “pairwise comparison” updating can be approximately
described by the canonical replicator dynamics when selection is weak [32]. Because the
risk-dominant strategy always has a larger basin of attraction under the replicator dynamics,
if individuals choose their initial strategy randomly, the population will eventually converge
to the noncooperative strategy H [7].

For the payoff matrix Eq. (28), the global dynamics Eq. (18) is written as

dφS

dt
= ω

N

z − 2

z − 1
φS(1 − φS) (a(z − 2)βφS − (z − a − 1)β − 1). (29)

It is easy to verify that the two boundary equilibria φS = 0 and φS = 1 are locally asymp-
totically stable, and Eq. (29) also has an unstable interior equilibrium at

x∗ = 1

a
− a − 1 − 1/β

a(z − 2)
. (30)

Thus, the sizes of the basins of attraction of strategies S and H under Eq. (29) are 1− x∗ and
x∗, respectively.
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Fig. 3 Simulation results for the evolution ofφS in scale-free graphswith different heterogeneities. 1100 scale-
free graphs with z = 16 and var(k) ∈ [1700, 2700] are generated according to [4]. We run 103 simulations
on each graph, where, in each simulation, the population updates on average 3 × 105 time steps (i.e., each
individual updates on average 10 times) starting from φS = 0.5. a The i− th data point is the average φS of the
graphs with variances in the interval [1700+ 100× (i − 1), 1700+ 100× i], i = 1, . . . , 10. The dashed line
represents the theoretical prediction of var(k) such that dφS/dt = 0 at 1/2 (i.e., x∗ = 1/2). b φS in the 1100
scale-free graphs. Again, the dashed line represents the theoretical prediction of var(k) such that dφS/dt = 0
at 1/2. These figures show that, in graphs with high heterogeneities, dφS/dt > 0 at 1/2 (i.e., the cooperative
strategy has a larger basin of attraction)

In a regular graph where β = 1, we always have x∗ > 1/a, i.e., the basin of attraction
of H is even larger than in a well-mixed population [18]. However, from Eq. (30), the size
of the basin of attraction of H decreases to (z − a − 1)/a(z − 2) as β goes to infinity. In
this limit, the cooperative strategy S has a larger basin of attraction if z < 2/(2 − a). This
implies that graphs with lowmean degree z and high heterogeneity var(k) favor the evolution
of cooperation (see Fig. 3).

5 Discussion

In this paper, we derive evolutionary dynamics on heterogeneous graphs. We use a new state
variable, φA (i.e., the proportion of directed edges starting from A individuals out of the
total directed edges), to measure the evolution of strategy A instead of the frequency of A
individuals. The reason is twofold. On the one hand, in a spatial game where individuals only
play with their neighbors, the influence of strategy A depends on how often individuals have
A neighbors. In a regular graph where all vertices have the same degree, this probability is
positively related to the frequency of A individuals. Therefore, it is natural to describe the
evolution of strategy A by its frequency [15,17–19,30]. However, in a heterogeneous graph,
a high frequency of A individuals does not always imply that individuals are more likely to
meet A neighbors. In this case, φA rather than the frequency of A is a sensible measurement
for the influence of strategy A in the evolutionary process [10]. On the other hand, two core
concepts of the pair approximation, the frequency of pairs XY (i.e., φXY ) and the conditional
probability that a neighbor of an X individual is using strategy Y (i.e., qY |X ), are perfectly
linked by φA (X, Y ∈ {A, B}). Under pair approximation, we show that evolutionary games
on a heterogeneous graph can be characterized by only two variables, φA and φAA.

When selection is weak, we find that φAA evolves much faster than φA, and a local
equilibrium is formed before φA is changing. From Eq. (15), at a local equilibrium, a k
degree A individual has on average k/(z−1)more A neighbors than a k degree B individual,
and a k degree B individual has on average k/(z − 1) more B neighbors than a k degree
A individual. Thus, “pair comparison” updating together with weak selection can give rise
to homophily, which is the tendency to interact with others of similar strategy [8,12]. Both
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theoretical and empirical studies have highlighted that homophily (or assortative matching)
can preserve cooperation in social dilemmas because a cluster of cooperators has a higher
average payoff than a cluster of defectors [5,25]. Ohstuki et al. [17–19] indicated that this
would be the key reason that spatial structure promotes cooperation. However, our results
cannot be easily extended to the situation of strong selection because the calculation of local
equilibrium depends crucially on the separation of fast and slow variables.

By using the local equilibrium condition, we derive the time evolution of φA. Interest-
ingly, the evolutionary dynamics on a heterogeneous graph are represented by a modified
replicator equation (although φA does not represent the frequency of A). Furthermore, the
ESS condition can be obtained directly from the transformed payoff matrix (19). We show
that the evolutionary stability of a strategy depends on both the mean value and the variance
of the degree distribution. These results are then applied to the Prisoner’s Dilemma game and
the Stag Hunt game.

Many recent studies have observed that graph heterogeneity enhances cooperation in the
Prisoner’s Dilemma [21,22,27,29]. Our analysis provides insight for understanding these
results. Equation (27) shows that the variance of the degree distribution plays a determinant
role in the evolution of cooperation. In regular graphs where var(k) = 0, cooperation cannot
evolve. In large scale-free graphs where var(k) → ∞, selection favors cooperation if the
benefit-to-cost ratio is larger than z−1. The reason behind this is that, at a local equilibrium,
the average number of C (D) neighbors of a k-degree C (D) individual is linearly increasing
with k. Therefore, C hubs usually have higher payoff than D hubs, which ensures the long-
term success of cooperation in the evolutionary process. Furthermore, Eq. (27) implies that
heterogeneous graphs with low mean degree and high variance are better for the evolution of
cooperation. Thus, it is not a surprise that scale-free graphs promote cooperation better than
small-world graphs and random graphs [20] (see also Fig. 2).

Like the Prisoner’s dilemma game, the Stag Hunt game also describes a conflict between
social cooperation and self-safety. If an individual hunts a stag, it must have the cooperation
of the other individual to succeed. In contrast, an individual can get a hare by itself, but a hare
is worth less than a stag. Ohtuski and Nowak [18] noted that under “pairwise comparison”
updating, the basin of attraction of Stag in a regular graph is always smaller than in a well-
mixed population (i.e., a regular graph inhibits cooperation). However, our study shows that
its size increases with the variance of the degree distribution, and the basin of attraction
of Stag could be larger than Hare if the graph is strongly heterogeneous. This supports the
simulation results of Santo et al. [27,29] that showed that graph heterogeneity promotes the
evolution of cooperation in the Stag Hunt game.

Our study analyzes the effect of graph heterogeneity on “pairwise comparison” updating.
A further question is then whether our results hold for other update rules, such as Birth-Death
(BD), Death-Birth (DB) and imitation (IM) updating [17–19]. Recent studies have shown that
graph heterogeneity does not change the evolutionary results of BD and DB updating: BD
updating can never favor cooperation [17] and DB updating favors cooperation if b/c > z
[10]. Why does graph heterogeneity affect the condition for the evolution of cooperation
under pairwise comparison, but not under DB and BD? Because individuals who have the
chance to birth in DB and BD updating need not be direct neighbors of each other, as their
(excepted) fitness is decided by local density qX |Y only [10,17]. Notice that qX |Y equilibrates
independently of var(k) in the limit of weak selection (see Eq. (15) and [10]), and DB and BD
updating are then not affected by the graph heterogeneity. However, in “pairwise comparison”
updating, two connected individuals are chosen to compare their fitness. In a heterogeneous
graph, the fitness difference between two connected low-degree individuals mainly depends
on the payoff that they obtained from their direct interaction. In contrast, the fitness difference
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between two connected high-degree individuals mainly depends on the payoff that they
obtained from their other neighbors. Thus, under “pairwise comparison” updating, the payoff
matrix (1) should be modified by a factor that includes the graph heterogeneity parameter
var(k) in order to measure the weight of the direct interaction between two individuals [see
the transformed payoff matrix (19)]. Because graph heterogeneity weakens (enhances) the
role of direct interaction between two connected high (low)- degree individuals in general, we
can expect that the evolutionary result of IM updating on a heterogeneous graph is different
from that of a regular graph because the individual that is chosen to update has to compare
its payoff with neighbors [17–19].
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