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Abstract CD74 (MHC class II invariant chain, Ii) is a non-

polymorphic type II transmembrane glycoprotein. It is

clear that, in addition to be an MHC class II chaperone,

CD74 has a diversity of biological functions in physio-

logical and pathological situations. CD74 also participates

in other non-MHC II protein trafficking, such as angio-

tensin II type I receptor. In addition, CD74 is a cell

membrane high-affinity receptor for macrophage migration

inhibitory factor (MIF), D-dopachrome tautomerase (D-

DT/MIF-2) and bacterial proteins. CD74 also regulates

T-cell and B-cell developments, dendritic cell (DC)

motility, macrophage inflammation, and thymic selection.

The activation of receptor complex CD74/CD44 may lead

to multiple intracellular signal pathways, such as the acti-

vation of the extracellular signal regulated kinase (ERK) 1

and 2, the PI3K-Akt signal transduction cascade, NFjB,
and the AMP-activated protein kinase (AMPK) pathway.

CD74 plays important roles in many inflammatory dis-

eases, such as liver fibrosis, type I diabetes, systemic lupus

erythematosus, and Alzheimer disease. In this study, we

will focus on the immunological functions of CD74

molecules and its roles in immune-relevant disorders.
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Introduction

CD74 (MHC class II invariant chain, Ii) is a non-poly-

morphic type II transmembrane glycoprotein. It was

initially identified to act mainly as an MHC class II

chaperone. However, it is clear that CD74 has a much wide

range of biological functions in physiological and patho-

logical situations in addition to its regulatory roles on cell

surface MHC II expression [1, 2]. CD74 also participates in

other non-MHC II protein trafficking. Importantly, CD74

molecule is a cell membrane high-affinity receptor for

macrophage migration inhibitory factor (MIF), D-dopa-

chrome tautomerase (D-DT/MIF-2), and bacterial proteins

that also behave as an accessory signaling molecule, which

undergoes regulated intramembrane proteolysis (RIP) upon

its ligand binding [1, 3–6]. In this study, we will focus on

the immunological functions of CD74 molecule and its

roles in immune disorders.

The expression of CD74 in immune cells

Mouse CD74 molecule has a short N-terminal cytoplasmic

tail of 28 amino acid (aa), a 24-aa transmembrane region

and an approximately150-aa luminal domain [7]. The

intracellular domain of CD74 molecule lacks homology
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with tyrosine or serine/threonine kinases, so CD74 likely

lacks intracellular signaling motifs, but it may signal

through binding to signaling proteins [6]. Furthermore, it

may undergo phosphorylation and regulate intramembrane

proteolysis (RIP) [6]. Splicing of the transcription products

of CD74 gene in mice generates two different isoforms,

p31 and p41. Human CD74 molecule has 29–46 NH2-

terminal intracytoplasmic residues, a 26-aa hydrophobic

transmembrane region, and a 160-aa extracytoplasmic

domain containing two N-linked carbohydrate chains

[8–10]. The most common isoform is 33 kDa (p33), but

there are also p35, p41, and p43 isoforms in humans [11].

CD74 molecules are predominantly localized intracellu-

larly and about 2–5 % resides on the monocyte cell surface

independently of MHC class II expression [3]. The surface

half-life of CD74 molecule is less than 10 min in a human

B-cell line due to the rapid internalization, indicating that

CD74 remains on the cell surface for a very short period

[12].

MHC class II-positive cells, including dendritic cells

(DCs), monocytes/macrophages, langerhans cells, B cells,

thymic epithelial cells, and gastric epithelial cells express

CD74 molecules on cell surface. In addition, CD74 is

expressed in a number of cell types independently of MHC

class II [13]. CD74 expression is increased in diverse tissue

injury disorders, such as heart ischemia–reperfusion injury,

Alzheimer disease, atherosclerotic plaques, toxin-induced

liver fibrosis, and a broad range of malignant cells [14–22].

Thus, CD74 may modulate tissue injury and homeostasis of

immune system and beyond. The expression of CD74

molecule may be used as an independent prognostic factor

for survival and therapeutic target in patients with malig-

nancy [18].

The expression of CD74 molecule is regulated by mul-

tiple pathways. In immature DCs, the cytoplasmic domain

of CD74 molecule is exposed to the proteolytic activity of

caspases, such as caspase-1 and caspase-4. The degradation

of CD74 molecule by caspases in immature DCs was

inhibited upon treatment with nitric oxide (NO) donor.

Inducible nitric-oxide synthase (iNOS, NOS2) can directly

interact with the cytoplasmic domain of CD74 and cat-

alyzes the production of NO, which inhibits caspases and

protects CD74 from proteolytic degradation, promoting the

cell surface expression of MHC class II molecules in

maturing DCs [23]. Thus, the increasing cell surface

localization of MHC class II molecules in maturing DCs is

partially due to the increased CD74 protein expression

caused by iNOS and NO. It was recently demonstrated that

intramembrane proteolysis of the final membrane-bound

N-terminal fragment (NTF) of CD74 molecules is cat-

alyzed by signal peptide peptidase-like 2a (SPPL2a) and

that this process is indispensable for the development and

function of B cells in mice [24, 25].

The bio-functions of CD74

A wide range of biological functions of CD74 have been

described over the years [1, 2]. CD74 was initially identi-

fied to function mainly as an MHC class II chaperone.

However, it later became clear that CD74 also participates

in other non-MHC II protein trafficking. In addition, CD74

is a cell membrane receptor for MIF, D-dopachrome tau-

tomerase (D-DT/MIF-2), and bacterial proteins, so that

CD74 also acts as an accessory signaling molecule which

undergoes regulated intramembrane proteolysis (RIP) upon

its ligand binding [3–6].

CD74 molecule, as an MHC class II chaperone, directly

associates with the MHC class II a and b chains in the

endoplasmic reticulum (ER) forming a complex, prevents

peptide binding in ER, promotes the exit of the complex

from ER, directs transport of the complex to the endosomal

compartments, and contributes to peptide editing in the

MHC class II compartment [26, 27]. The class II-associated

invariant chain peptide region of CD74 molecule lies in the

binding groove of the MHC class II a and b heterodimer

and prevents binding of peptides prior to the arrival of the

non-americ complex at the endosomal compartments

where the digested exogenous antigenic proteins are loca-

ted [1]. While CD74 molecule is degraded by proteases and

released from MHC class II molecules in endosomes, MHC

class II molecules form dimers that bind antigenic peptides

and subsequently traffic to the cell surface for antigen

presentation. Inhibition of CD74 phosphorylation greatly

impairs the trafficking of newly synthesized MHC class II

molecules to antigen processing compartments. CD74

molecule is also required for an MHC class I endolysoso-

mal cross-presentation pathway [28].

In addition to the essential role of CD74 molecules in

antigen presentation pathway, CD74 also regulates traf-

ficking of additional molecules, such as angiotensin II type

I receptor (AT1) (Table 1). CD74 directly associates with

AT1 early in the biosynthetic pathway, and impedes its

intracellular trafficking. Consequently, coexpression of

CD74 molecules causes AT1 accumulation in the ER and

AT1 proteasomal degradation [29]. The longer molecules

(p41 and p43 in humans) have a thyroglobulin type I

domain that binds to and stabilizes cathepsin L, allowing

accumulation of the resulting CD74-cathepsin L complex

in the extracellular space [28].

CD74 significantly regulates B-cell development, DC

motility, and thymic selection [30]. CD74 controls the

maturation of B cells through NF-jB p65/RelA homodimer

and its coactivator TAFII105 [6, 7]. Peripheral B-cell

homeostasis is disturbed by the accumulation of the

unprocessed CD74 NTF in SPPL2a-deficient mice. The

absence of SPPL2a at the protein level in human B cells
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also promotes an accumulation of the CD74 NTF [24, 25].

Thus, SPPL2a may regulate B-cell development through

CD74-dependent manner in mice and humans.

MIF is a key cytokine closely involved in autoimmune

and inflammatory diseases. MIF attracts and subsequently

retains activated immune cells from the periphery to the

inflamed tissues [31]. The biological effects of MIF are

predominately mediated through its primary receptor,

CD74 (Fig. 1) [32]. The comprehensive analysis recently

shows that MIF controls the activation of CD74 [33]. MIF

inhibits the directed migration of monocytes to chemoki-

nes, such as monocyte chemoattractant protein 1. MIF

promotes the arrest of monocytes and T cells in vitro [34].

MIF increases the secretion of proinflammatory cytokines

like IL-1, IL-2, IL-6, IL-8, INF-c, and TNF-a, and the

expression of adhesion and inflammatory molecules such

as iNOS [35–38]. All these actions of MIF are mediated

through CXCR2 and CXCR4 which are closely magnified

by CD74 [32, 34]. MIF counteracts glucocorticoid inhibi-

tion of proinflammatory cytokine secretion in response to

lipopolysaccharide in macrophages [39, 40]. T cells and

macrophages release MIF in response to glucocorticoid and

autocrine MIF then overrides glucocorticoid inhibition of

T-cell proliferation and cytokine secretion [41, 42]. The

antagonistic ability of MIF on the anti-inflammatory effects

of glucocorticoids is observed in mouse models of exper-

imental arthritis and acute respiratory distress syndrome

[43–45]. The underlying mechanisms for such antagonism

are not fully understood. MIF fails to change the gluco-

corticoid receptor expression and affinity [46], but it

prolongs the activation of ERK and p38 MAP kinases,

which may result in molecular antagonism on glucocorti-

coid receptor signals [46].

In addition, CD74 is also involved in many inflamma-

tory diseases by various mechanisms. HIV-1 Vpu can

downregulate MHC class II through Vpu binding to the

cytoplasmic domain of CD74 [47]. CD74 molecule binds

to the amyloid-b (Ab) precursor protein and can suppress

Ab processing. CD74-induced alteration of Ab processing

could improve Alzheimer’s disease-associated memory

deficits in mice [48]. Cathepsins S regulates CCL2

expression in tumor cells through CD74 [49]. CD74-defi-

cient NOD mice fail to spontaneously develop type 1

diabetes. The numbers of CD4?CD25?Foxp3? regulatory

T (Treg) cells in the thymus and periphery of CD74-defi-

cient NOD mice are similar to those found in control NOD

mice, suggesting that Treg cells are unaffected in their

selection and survival by the absence of CD74. However,

the number of conventional effector CD4? T cells is

reduced in CD74-deficient NOD mice [50]. The alteration

in the balance of effector T cells to Treg cells may con-

tribute to diabetes prevention.

The intracellular signal pathways of CD74

The binding of MIF to its receptor complex CD74/CD44

leads to the activation of the extracellular signal regulated

kinase (ERK) 1 and 2 in the mitogen-activated protein

kinase (MAPK) pathway, and the PI3K/Akt/SRC signal

transduction cascade [3, 51, 52], which, in turn, increase

cell proliferation, decrease cell apoptosis, and enhance cell

migration [53, 54]. Inhibition of MIF activity or MIF

expression reduces microbial products-induced phospho-

rylation of p38 and ERK1/2 MAPKs and secretion of

cytokines. High doses of MIF counter-regulate adenosine

and prostaglandin E2-mediated inhibition of ERK1/2 acti-

vation and TNF-a production in newborn monocytes

Table 1 A brief summary of the CD74 biological functions

Ligand or partner molecule Function

1 MHC class I and II, AT1, cathepsins, NOS2 Regulation of protein trafficking, chaperone

2 MIF, D-DT/MIF-2, H. pylori urease B subunit Receptor (interactions with CD44 and CXCR2), accessory signaling molecule

MIF, MIF2, etl

CD74

CXCR2

Development and functions of
T cells, B cells, macrophages and DCs

CD44

ERK, MAPK, AMPK, NFkB, etl

Fig. 1 The signal pathways activated by CD74 molecule and its

partners on cell membrane. CD74 molecules expressed on cellular

surface can interact with CD44 or CXCR2/CXCR4 to form a

molecular complex. Ligands such as MIF, MIF2 et al. directly bind to

this complex, so as to activate intracellular pathways, such as ERK,

MAPK, AMPK and NFkB, which subsequently regulate the devel-

opment and functions of T cells, B cells, macrophages, and DCs
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exposed to Escherichia coli [55]. In contrast, other studies

show that MIF could activate the AMP-activated protein

kinase (AMPK) pathway to decrease cell proliferation, cell

viability, and metastatic ability in some cancers [56, 57].

Overexpression of CD74 leads to upregulation of NFjB-
dependent genes encoding cytokines in macrophages [58].

CD74 controls B-cell differentiation and maturation in

the spleen of mice [4, 59, 60]. Activation of CD74 by MIF

or activating antibodies results in a signaling cascade in B

cells that involved Syk tyrosine kinase, PI3K, and Akt and

leads to CD74 intramembrane cleavage and CD74 intra-

cellular domain (CD74-ICD) release, NFjB activation,

BclxL upregulation, and cell survival [4]. CD74 ectodo-

main undergoes a first proteolytic cleavage in the endocytic

compartment and a secondary intramembrane domain

cleavage by the c-secretase-presenilin complex to liberate

CD74-ICD from the lipid bilayer into the cytosol. Trans-

port to the endocytic compartment is essential for CD74

processing and intramembrane cleavage. CD74-ICD then

translocates to the nucleus and activates NF-jB p65/RelA

homodimer and the B-cell-enriched coactivator, TAFII105

[59, 60]. The signal is terminated by degradation of the

active CD74-ICD fragment [61]. Clearance of the final

membrane-bound N-terminal fragment (NTF) of CD74 is

mediated by the intramembrane protease signal peptide

peptidase-like (SPPL)2a, which is a process critical for

B-cell development. SPPL2a deficiency provokes the

accumulation of CD74 NTF in endocytic vesicles, which

leads to a B-cell maturation arrest at the transitional 1 stage

in mice [62, 63]. Mechanism studies showed that SPPL2a-

deficient B cells had a compromised BCR-induced PI3K/

Akt activation and a dysregulation of the transcription

factor forkhead box class O (FOXO) 1, causing enhanced

transcription of proapoptotic genes. This pathway is the

major cause of the B-cell maturation defect in SPPL2a-

deficient mice [64]. Therefore, SPPL2a-mediated process-

ing of CD74 NTF is indispensable to maintain appropriate

levels of BCR signaling to promote B-cell maturation.

Since CD74 signaling is significantly inhibited in SPPL2a-

deficient mice, SPPL2a inhibitors may offer new approa-

ches to block CD74 signaling [65].

MIF can blocks JAB1-mediated rescue of fibroblasts

from cell growth arrest. MIF remarkably inhibits JAB1-

induced JNK and AP-1 activity by enhancing p27Kip1

expression through stabilization of p27Kip1 protein. Fur-

ther studies showed that optimal composition and function

of the Skp, Cullin, F-box containing complex, a multi-

protein E3 ubiquitin ligase complex catalyzing the ubiq-

uitination of proteins destined for proteasomal degradation,

is essential for MIF-mediated downregulation of JAB1

[66]. When an MIF [50–65] peptide was endocytosed, it

will override the effects of glucocorticoids and enhance

cell proliferation by its direct bound to JAB1 to stimulate

ERK1/2 phosphorylation and increase p27Kip1 levels

[67, 68]. Pretreatment of aged mesenchymal stem cells

(MSCs) with MIF enhances cell growth, cell survival, and

secretion of VEGF, bFGF, and HGF. MIF increases CD74-

dependent phosphorylation of AMPK and FOXO3a in

MSCs [69]. Further studies indicate that MIF can rejuve-

nate MSCs from a state of age-induced senescence by

interacting with CD74 molecules and subsequently acti-

vating AMPK-FOXO3a signaling pathways [69].

Ribosomal protein S19 (RPS19), a component of the

40S small ribosomal subunit, can bind MIF and behaves as

an endogenous blocker of MIF binding to CD74 [70]. The

small molecule MIF antagonist 3-(3-hydroxybenzyl)-5-

methylbenzooxazol-2-one (MIF098) decreases MIF-CD74

binding and attenuates MIF-dependent ERK1/2 phospho-

rylation in human synovial fibroblasts [71]. MIF098

promotes hyperoxia-induced lung injury in vivo [72],

supporting the tissue-protective properties of MIF/CD74

pathway. The HLA-DRa1 domain binds to and downreg-

ulates CD74 expression on monocytes, so it directly

inhibits MIF binding to CD74 molecules and blocks

downstream inflammation in mouse autoimmune

encephalomyelitis.

Human B-lymphoma cells with decreased CD74

expression are more sensitive to FasL-induced apoptosis

and Fas signaling-dependent chemotherapies than control

cells [73]. On the other hand, overexpression of full-length

CD74 molecule in liver protected the mice from a lethal

challenge with agonistic anti-Fas antibody Jo2 [73]. A

detailed analysis of Fas signaling reveals that the absence

of CD74 increases Fas receptor expression on cell surface

and cleavage/activation of pro-caspase-8 and correspond-

ing enhancement of caspase-3 activation [73]. Thus,

targeting on CD74 molecules on the cell surface may

improve effectiveness of chemotherapy regimens for

hematological malignancies.

The involvement of CD74 in immune disorders

MIF is a proinflammatory cytokine involved in cell-medi-

ated immunity and delayed-type hypersensitivity.

Deficiency of MIF, one of the ligands of CD74, signifi-

cantly promoted interstitial fibrosis and inflammation

following ureteral obstruction, whereas treatment with

recombinant MIF reduced fibrosis [74]. CD74 deficiency

was also associated with increased interstitial fibrosis and

inflammation following ureteral obstruction and ischemia–

reperfusion [74]. By contrast, CD74 deficiency may be

beneficial for some inflammatory diseases. CD74-deficient

mice are protected from glomerular injury induced by anti-

GBM antiserum and liver fibrosis [15, 74]. However, there

is no protection from ureteral obstruction-induced kidney
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inflammation or fibrosis [75]. An oral small molecule MIF

antagonist, CPSI-1306, significantly decreased blood glu-

cose levels and reduced circulating proinflammatory

cytokines in diabetic animals [76]. MIF-deficient MRL/lpr

mice exhibited significantly prolonged survival and

reduced renal and skin manifestations of systemic lupus

erythematosus without detectable changes in T- and B-cell

activations and alterations in autoantibodies. However, the

monocyte chemokine MCP-1 and renal macrophage

recruitment were significantly reduced in MIF-deficient

MRL/lpr mice [77]. Thus, MIF is a critical effector of

nephritis, which is associated with reduction in systemic

lupus erythematosus in MIF-deficient MRL/lpr mice.

In acute and chronic mouse models of 12-O-tetra

decanoylphorbol-13-acetate (TPA)-induced earskin inflam-

mation, TPA directly causes cytotoxicity accompanied by

MIF release in mouse ear epidermal keratinocytes [78].

Treatment with MIF antagonist (S,R)-3-(4-hydroxyphenyl)-

4,5-dihydro-5-isoxazole acetic acid methyl ester considerably

attenuates TPA-induced ear swelling, and the dermal infil-

tration of IFN-c? NKT cells. The treatment with TPA and

MIF in vitro promotes IFN-c production and migration of

NKT cells, respectively [78]. MIF specifically triggers the

chemotaxis of NKT cells via CD74 and CXCR2, and

depletion of NKT cells abolished TPA-induced skin inflam-

mation [78]. Therefore, activation of CD74 on NKT cells by

proinflammatory MIF secreted by TPA-damaged cells is

closely involved in the skin pathogenesis in this model. MIF

or CD74-deficient mice had a decreased median survival time

following hyperoxia compared with wild-type mice. Treat-

ment with MIF receptor antagonist results in a significant

increase in bronchoalveolar lavage protein and lactate dehy-

drogenase, respectively [72]. Treatment with MIF decreases

hyperoxia-induced H2AX phosphorylation in a CD74-de-

pendent manner. Inhibition of CD74 in primary mouse lung

endothelial cells decreases hyperoxia-mediated AKT phos-

phorylation and a reduction in the anti-apoptotic effect of MIF

[72]. The MIF-CD74 axis in lung endothelial cells may be a

novel protective approach against acute oxidative stress.

Wild-type and MIF-deficient kidney or skin grafts trans-

planted into wild-type recipients or wild-type donor kidneys

or skin grafted to wild-type and MIF-deficient mice show a

similar degree of histological rejection, graft dysfunction, and

immune cell infiltration [79]. These data suggest that either

local or systemic MIF is not critically required for the

rejection of fully mismatched skin but not renal allografts at

least in mice.

Clinical trials using the anti-CD74 antibody hLL1, mila-

tuzumab, to treat malignancy are undergoing [80–82].

Milatuzumab binds to CD74 molecules and promotes

internalization of the antibody-CD74 complex, thus deliv-

ering conjugated anti-tumoral agents inside tumor cells with

high CD74 expression [81]. Milatuzumab alters B-cell

proliferation, migration, and adhesion molecule expressions

[83]. Milatuzumab immunoliposomes markedly induce cell

death in chronic lymphocytic leukemia by promoting accu-

mulation of CD74 molecules on the surface of B cells [84].

Conclusions

In addition to be an MHC class II chaperone, type II

transmembrane glycoprotein CD74 molecules also partic-

ipate in other non-MHC II protein trafficking and are cell

membrane high-affinity receptors for MIF, D-DT/MIF-2,

CXCR4, and bacterial proteins. With our understanding on

a wide range of biological functions of CD74 in physio-

logical and pathological situations, we believe that CD74

may be a therapeutic target to treat the relevant immune

disorders in the future.
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