
Research

Comparison of Thermal Performance Equations in

Describing Temperature-Dependent Developmental Rates

of Insects: (II) Two Thermodynamic Models

Pei-Jian Shi,1,2 Gadi V. P. Reddy,3,4 Lei Chen,5 and Feng Ge2

1Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University,

Nanjing 210037, China (peijianshi@gmail.com), 2State Key Laboratory of Integrated Management of Pest Insects and Rodents,

Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (gef@ioz.ac.cn), 3Montana State University, Western

Triangle Ag Research Center, 9546 Old Shelby Rd, P. O. Box 656, Conrad, MT 59425 (reddy@montana.edu), 4Corresponding author,

e-mail: reddy@montana.edu and 5Graduate School of Environmental Science, Hokkaido University, N19W8, Sapporo 060-0819,

Japan (lei-chen1029@eis.hokudai.ac.jp)

Received 13 August 2016; Accepted 1 September 2016

Abstract

There are many descriptive statistical models describing the temperature-dependent developmental rates of in-

sects without derivation of biophysical processes; thus, it is difficult to explain how temperature affects develop-

ment from the thermodynamic mechanisms. Fortunately, two mathematical models (the Sharpe–Schoolfield–

Ikemoto [SSI] model and Ratkowsky–Olley–Ross [ROR] model) based on thermodynamics have been built to ex-

plain temperature-dependent reaction rates. Despite their differences in construction, both models produce similar

functions when used to describe the effect of temperature on the probability of a theoretical rate-controlling en-

zyme that is in its active state. However, the previous fitting method of the SSI model was unable to achieve global

optimization of parameter estimates; that of the ROR model usually underestimates the maximal probability of the

rate-controlling enzyme that is in its active state, as found in some empirical data sets. In the present study we im-

proved the fitting methods for these two models. We then used these two models to fit 10 data sets from published

references. We found the models based on the improved fitting methods agree with the empirical data well and

predict that the maximal probabilities of the rate-controlling enzyme that is in its active state are close to 1. The SSI

model produces a slightly better goodness-of-fit value for the model than the ROR model, whereas the latter pre-

dicts a more symmetrical curve for the probability of the rate-controlling enzyme that is in its active state. If thermo-

dynamic parameters of two or more different species are to be compared, we recommend that researchers use

one or the other of these two models and follow the same fitting methods for all species.
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The thermal performance curves of ecotherms are nonlinear and

highly asymmetrical, and the temperature that corresponds with max-

imal performance is usually right skewed (Martin and Huey 2008).

Typical performance curves of insects include the developmental

rates, intrinsic rates of increase, and net reproductive rates at various

constant temperatures. The developmental rate is the reciprocal of de-

velopmental time required to complete a certain developmental stage

at a given temperature, which is used to measure the developmental

speed over a period at a temperature (Uvarov 1931, Campbell et al.

1974). The intrinsic rate of increase and net reproductive rate of a

study species come from the calculation of life table parameters,

which are usually employed to reflect the fitness of insects (Huey and

Berrigan 2001). The intrinsic rate of increase is equivalent to the in-

stantaneous rate of increase in an exponential growth of population

(Shi et al. 2012, 2013). These three biological measures have similarly

shaped curves, but the temperatures in data sets that correspond to

the curves’ inflection point (usually referred to as the “optimum”

temperature), are usually different across the three measures (Huey

and Berrigan 2001). The “optimum” temperature for the net repro-

ductive rate is usually lower than that for the species’ intrinsic rate of

increase. Evidence demonstrates the effects of temperature on the in-

trinsic rate of increase and the net reproductive rate of insects can be

expressed by the same mathematical equation as that describing the

temperature-dependent developmental rate of insects (Martin and

Huey 2008, Shi et al. 2012). Thus, conclusions from model compari-

son for the thermal developmental rate of insects will also apply to

the intrinsic rate of increase and the net reproductive rate of insects.

In this study we did not investigate models for either the intrinsic rate

of increase or the net reproductive rate, instead we focused only on

the developmental rate. It is an extension of our previous study in Shi

et al. (2016) when our interest was to compare different developmen-

tal rate models.
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There are many mathematical models that have been used to de-

scribe the temperature-dependent developmental rates of bacteria and

ectotherms (Logan et al. 1976, Sharpe and DeMichele 1977,

Schoolfield et al. 1981, Taylor 1981, Wang et al. 1982, Ratkowsky

et al. 1983, Rosso et al. 1993, Lactin et al. 1995, Yin et al. 1995, Brière

et al. 1999, Ratkowsky et al. 2005, Ikemoto 2008, Shi et al. 2011,

Corkrey et al. 2012, Régnière et al. 2012, Ikemoto et al. 2013, also see

Wagner et al. 1984 and references therein). These models can be di-

vided into two categories: 1) purely descriptive statistical models and

2) theoretical thermodynamic models. Our recent study (see Shi et al.

2016) compared some descriptive models and found the model pro-

posed by Ratkowsky et al. (1983) to be better than the others while us-

ing 10 data sets describing the temperature-dependent developmental

rates of insects. However, Ratkowsky demonstrated that the model

proposed by Rosso et al. (1993), which was overlooked by Shi et al.

(2016), could be even better than the Ratkowsky model (personal com-

munication with Prof. David A. Ratkowsky). Although the descriptive

model has high flexibility for fitting observations, it lacks thermody-

namic information among model parameters. That is, any purely de-

scriptive statistical model lacks the basis of bio-physics, which is only

used to simulate the curve tendency at different temperatures without

knowing the inner mechanisms. In contrast to descriptive statistical

models, two thermodynamics-based mathematical models have clear

bio-physical meanings identified during the equation-derivation pro-

cesses: 1) the SSI model proposed by Sharpe and DeMichele (1977)

and modified by Schoolfield et al. (1981) and Ikemoto (2008), and 2)

the second, or ROR model, proposed by Ratkowsky et al. (2005) and

Corkrey et al. (2012). These two thermodynamic models both predict

a similar probability curve of a developmental rate-controlling enzyme

being in its native state, where there is an “optimum” temperature cor-

responding to the maximum probability of the enzyme being in its na-

tive state. There is a difference in the predicted curve probability

between these two models. The SSI model usually provides an asym-

metrical but approximately bell-shaped probability curve, while the

ROR model predicts a perfectly symmetrical probability curve.

Although these two models can both fit the developmental rate of in-

sects well, few entomologists have paid attention to these two models,

probably because each has many parameters and complicated struc-

tures. For example, two models proposed by Brière et al. (1999) are fre-

quently used by entomologists because they are simple, having just

three and four parameters, respectively. Meanwhile, the SSI model has

six parameters and the ROR model has eight. Too many parameters

make data fitting unstable and slow to converge, which is another rea-

son why the SSI and ROR models have been largely neglected in ento-

mological research. In addition, there are no relevant studies

systematically comparing these two thermodynamic models. In the

present study, we attempted to provide new methods for fitting the SSI

and ROR models, and to compare them using 10 data sets of

temperature-dependent developmental rates of insects collected in Shi

et al. (2016).

Materials and Methods

Data
We used 10 data sets of the temperature-dependent developmental

rates of insects and mites (see Table 1 for detail). The data sets are

the same as those in Shi et al. (2016).

Models
Arrhenius (1889) put forward an empirical equation to describe the

effect of temperature on the rate constant of a chemical reaction:

r Tð Þ ¼ A � exp � Ea

RT

� �
(1)

where r(T) is the rate constant of a chemical reaction (time unit� 1) at

absolute temperature T, A is a pre-exponential factor (time unit� 1),

Ea is the activation free energy (cal�mol� 1), and R is the universal gas

constant (1.987 cal�mol� 1�deg� 1). The rate constant of the chemical

reaction is usually directly used as the developmental rate of plants

and poikilotherms (e.g., Aono and Kazui 2008). Erying (1935) built a

similar exponential equation based on the absolute chemical reaction-

rate theory:

r Tð Þ ¼ jKT

h
� exp

DS‡ � DH‡=T

R

� �
¼ B � T � exp �DH‡

A

RT

 !
(2)

where a) j is a transmission coefficient (without units), b) K is

Boltzman’s constant (cal�molecule� 1�deg� 1), c) h is Planck’s constant

(cal�s), a physical constant that is the quantum of action, central in

quantum mechanics, d) DS‡ is the entropy of activation

(cal�mol� 1�deg� 1), e) B is a pre-exponential factor, and f) DH‡
A is the

enthalpy of activation of the reaction that is catalyzed by the enzyme

(cal�mol� 1).

Table 1. Ten data sets of temperature-dependent developmental rates of insects and mites

Data set Species Order: Family Stage Thermal

range (�C)

Sample size Source

1 Helicoverpa armigera

Hübner

Lepidoptera: Noctuidae Pupa 15.0�37.0 23 Wu et al. (2009)

2 Kampimodromus aberrans

Oudemans

Acari: Phytoseiidae Eggþlarvaþ1st–2nd nymph 15.0�35.0 9 Broufas et al. (2007)

3 Toxorhynchites brevipalpis

Theobald

Diptera: Culicidae Egg 14.0�32.0 19 Trpis (1972)

4 Bactrocera dorsalis Hendel Diptera: Tephritidae Egg 12.5�36.5 19 Messenger and Flitters (1958)

5 Aedes aegypti L. Diptera: Culicidae Larva 15.5�35.0 15 Gilpin and McClelland

(1979)

6 Bemisia tabaci (B-biotype)

Gennadius

Hemiptera: Aleyrodidae From egg to adult 18.0�36.0 7 Xiang et al. (2007)

7 Lipaphis erysimi Kaltenbach Hemiptera: Aphididae From egg to adult 8.3�35.1 12 Liu and Meng (2000)

8 Myzus persicae Sulzer Hemiptera: Aphididae From egg to adult 6.2�30.0 11 Liu and Meng (1999)

9 Epilachna varivestis Mulsant Coleoptera: Coccinellidae Larva 12.5�32.5 8 Shirai and Yara (2001)

10 Drosophila buzzatii

Patterson & Wheeler

Diptera: Drosophilidae From egg to adult 15.1�31.8 9 de Jong (2010)
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The Eyring equation actually assumes no control enzyme inacti-

vation. Sharpe and DeMichele (1977) assumed that the control en-

zyme can exist in two temperature-dependent inactivation states as

well as an active state, and based on the reaction kinetics of develop-

ment the authors of these papers proposed a new nonlinear develop-

mental rate model under nonlimiting substrate conditions:

r Tð Þ ¼ T � exp
u� DH‡

A=T

R

 !
� P2 Tð Þ (3)

where u is a conversion factor with no thermodynamics meaning

(�K� 1�s� 1), and P2(T) is the probability of rate-controlling enzyme

being its native state:

P2 Tð Þ ¼ 1

1þ exp DSL�DHL=T
R

� �
þ exp DSH�DHH=T

R

� � (4)

in which DSL is the change in entropy associated with low tempera-

ture inactivation of the enzyme (cal�deg� 1�mol� 1), DHL is the

change in enthalpy associated with low temperature inactivation of

the enzyme (cal�mol� 1), DSH is the change in entropy associated

with high temperature inactivation of the enzyme

(cal�deg� 1�mol� 1), and DHH is the change in enthalpy associated

with high temperature inactivation of the enzyme (cal�mol� 1).

Schoolfield et al. (1981) improved the model proposed by Sharpe

and DeMichele (1977) by introducing the parameter of q 25�Cð Þ,

which was defined as follows:

q 25�Cð Þ ¼ 298:15 � exp
u� DH‡

A=298:15

R

 !
(5)

If we let T1/2L denote the temperature (�K) at which the enzyme

is 1/2 active and 1/2 low temperature inactive, and let T1/2H denote

the temperature (�K) at which the enzyme is 1/2 active and 1/2 high

temperature inactive and these are expressed as:

T1=2L ¼
DHL

DSL

T1=2H ¼
DHH

DSH

8>><>>: (6)

Then Schoolfield et al. (1981) developed the following mathe-

matical expression:

r Tð Þ ¼ P2 Tð Þ � q 25�Cð Þ �
T

298:15
� exp

DH‡
A

R
� 1

298:15
� 1

T

� �" #

¼
q 25�Cð Þ � T

298:15 � exp
DH‡

A

R � 1
298:15� 1

T

� �h i
1þ exp DHL

R � 1
T1=2L
� 1

T

� �h i
þ exp DHH

R � 1
T1=2H
� 1

T

� �h i (7)

This revised version has an important assumption that at 25 �C

the rate-controlling enzyme is in its native state (namely P2) and

reaches its maximum, which is defined as the most suitable tempera-

ture for ectothermal survival. However, 25 �C, as an ideal tempera-

ture, does not apply to all ectotherms as the point where P2(T) is

maximized (Ikemoto 2005, 2008, de Jong 2010, Shi et al. 2013).

Ikemoto (2005) proposed relaxing the limit of 25 �C to a variable

(TU) that could be different for different species:

r Tð Þ ¼ P2 Tð Þ � qU �
T

TU
� exp

DH‡
A

R
� 1

TU
� 1

T

� �" #
(8)

qU represents the developmental rate at TU without considering

the inactivation of the theoretical rate-controlling enzyme, i.e., P2 is

hypothesized to be �1. The other parameters are the same as those

in the model proposed by Schoolfield et al. (1981). By using the con-

dition dP2=dT ¼ 0, Ikemoto (2005) derived equation (9) as:

TU ¼
DHL � DHH

R � ln � DHL

DHH

� �
þ DHL

T1=2L
� DHH

T1=2H

(9)

We refer to equation (8) as the SSI model. To reduce the number

of model parameters, for easy data fitting, Ikemoto (2008) recom-

mended that T1/2L and DH‡
A be pre-determined via linear fitting, and

at the same time to limit the parameter of qU on the straight line in

the mid-temperature range. T1/2L (transferred to �C) equals the

lower developmental threshold, expressed in absolute temperature;

DH‡
A equals –R�b where b is the slope of straight line in the mid-

temperature range on the Arrhenius’ plot (ln[r] versus the reciprocal

of absolute temperature). In this case, the predicted maximum value

for P2 will not deviate much from 1 because qU is limited on the

straight line on the plot of r versus temperature that can approxi-

mate the SSI model curve in the mid-temperature range. Ikemoto

et al. (2013) provided an option that T1/2L can be recalculated by

optimization methods, such as the Nelder–Mead algorithm (Nelder

and Mead 1965), to enhance the goodness of fit.

Interestingly, Johnson and Lewin (1946) proposed a new ther-

modynamic model also based on the Eyring equation but with dif-

ferent model hypotheses:

r Tð Þ ¼
c � T � exp �DH‡

A=RT
� �

1þ exp DS�DH=T
R

� � (10)

Here, c is a pre-exponential factor, DH is the difference in en-

thalpy between the catalytically active and inactive states of the en-

zyme system, and DS is the difference in entropy between these two

states. Ratkowsky et al. (2005) introduced the Gibbs free energy

change (DG), which equals:

DG ¼ DH � T � DS (11)

Then the Johnson–Lewin equation can be re-written as:

r Tð Þ ¼
c � T � exp �DH‡

A=RT
� �

1þ exp �DG=RTð Þ (12)

and DG can be reformulated as follows (Ratkowsky et al. 2005):

DG ¼ DH� � T � DS� þ DCp � T � T�H
� �

� T � ln T=T�S
� �� 	

(13)

where a) DH* is the enthalpy change at TH, the convergence tem-

perature for enthalpy, b) DS* is the entropy change at T�S , the con-

vergence temperature for entropy, and c) DCp is the heat capacity

change between the native and denatured stated of the key enzyme

systems. Let n be the number of amino acid residues in the protein.

Substituting equation (13) for DG in equation (12), Ratkowsky

et al. (2005) obtained the new thermodynamics equation:

r Tð Þ ¼
c � T � exp �DH‡

A=RT
� �

1þ expð�nfDH� � T � DS� þ DCp � T � T�H
� �

� T � ln T=T�S
� �� 	

g=RTÞ
(14)

Let c¼ exp(b), then we can get:

r Tð Þ ¼
T � exp b� DH‡

A=RT
� �

1þ expð�nfDH� � T � DS� þ DCp � T � T�H
� �

� T � ln T=T�S
� �� 	

g=RTÞ
(15)

We refer to equation (15) as the ROR model. The reciprocal of the

denominator also represents the probability of rate-controlling
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enzyme being in its native state, which has the same meaning with

P2 in the SSI model. In the SSI model, TU represents the temperature

that maximizes the value of P2. In the ROR model, there is an equiv-

alent temperature (Tmes) that maximizes P2, which can be further

expressed as:

Tmes ¼ T�H � DH�=DCp (16)

There are eight parameters in the ROR model. Ratkowsky et al.

(2005) proposed to fix three parameters as constants: T�H¼373.6 K,

T�S¼385.2 K, and DS*¼18.1 J�K� 1 (mol amino acid residue).

Values given in joules by the model can be transferred to calories in

the ROR model system. We fused joules in the ROR model for easy

comparison with the former parameters in Ratkowsky et al. (2005)

and Corkrey et al. (2012). In addition, R in the ROR model is ex-

pressed as 8.314 J�K� 1�mol� 1.

The previous method of fitting the SSI model requires users to pro-

vide the data range for performing the linear fitting, which is used to

calculate the lower developmental threshold (i.e., T1/2L whose unit is

transferred to �C) and the enthalpy of activation of the reaction that

is catalyzed by the enzyme (i.e., DH‡
A). However, we feel that it is sub-

jective to use the investigators’ experience to predetermine the linear

range. In addition, the previous fitting method cannot obtain the

global optimization solution because the results from using the

“optim” function (see Ikemoto et al. 2013 in detail) is only a local op-

timization solution, which relies on the chosen initial values of param-

eters. The previous fitting method of the ROR model sometimes

predicts the unreasonable probabilities of rate-controlling enzyme be-

ing in its native state because the maximum probability is probably

very much less than 1 (see Fig. 1 published in Ratkowsky et al. 2005).

New Fitting Methods for Two Thermodynamics Models
For the SSI model, we used another expression of equation (9) as

follows:

T1=2H ¼
DHH

R � ln � DHL

DHH

� �
þ DHL

T1=2L
þ DHH�DHL

TU

(17)

Then we substituted equation (17) into equation (8) and built a

nonlinear relationship between qU and TU. In the previous fitting

method, there is a straight linear relationship between them.

However, the linear range of data must be predetermined by users.

To reduce the subjectivity of choosing the linear range, we used the

quartic polynomial to fit the temperature-dependent developmental

rates related to the SSI model:

r TUð Þ ¼ qU

¼ a0 þ a1 TU � 273:15ð Þ þ a2 TU � 273:15ð Þ2

þ a3 TU � 273:15ð Þ3 þ a4 TU � 273:15ð Þ4 (18)

aj (j ranges 0 to 4) are regression coefficients. In this case, the SSI

model has now only five parameters. The differential evolution

(Price et al. 2005, Storn and Price 1997) was used to estimate the pa-

rameters of the SSI model. We also used the quartic polynomial to

fit the temperature-dependent developmental rates related to the

ROR model:

r Tmesð Þ ¼ Tmes � exp b� DH‡
A=RTmes

� �
¼ a0 þ a1 Tmes � 273:15ð Þ þ a2 Tmes � 273:15ð Þ2

þ a3 Tmes � 273:15ð Þ3 þ a4 Tmes � 273:15ð Þ4 (19)

Then we have:

b ¼ ln
r Tmesð Þ

Tmes

� �
þ DH‡

A

R � Tmes
(20)

We next relax T�H to be an unknown parameter to enhance the

model fitting flexibility. We also tried relaxing T�S and DS* to be un-

known model parameters, but changing these two parameters did

not improve the goodness of fit larger than only changing T�H. Thus,

we still keep T�S¼385.2 K and DS*¼18.1 J�K� 1 following

Ratkowsky et al. (2005). Therefore, the revised ROR model still had

five parameters. We also used the differential evolution method

(Price et al. 2005) to fit the ROR model. A transformation is re-

quired when the variance is not homogeneous. In general, directly

fitting the developmental rates as the response variable will lead to

the heterogeneity of variance (personal communication with Prof.

David A. Ratkowsky). Thus, it is better to use the square root trans-

formation for the temperature-dependent developmental rate data

(Ratkowsky 1990).

Because the SSI and ROR models both have five parameters, it is

unnecessary to use more complex indicators such as the Akaike in-

formation criterion (AIC) and adjusted coefficient of determination

to compare them. In the present study, we used the residual sum of

Fig. 1. Fitted the square roots of developmental rates and the predicted prob-

ability of rate-controlling enzyme being in its native state using the SSI

model. (A, B) Helicoverpa armigera; (C, D) Kampimodromus aberrans; (E, F)

Toxorhynchites brevipalpis. The small open circles represent the square roots

of observed developmental rates; three small open squares represent the de-

velopment rates at T1/2L, TU, and T1/2H; and the gray curve represents the pre-

dicted square roots of developmental rates.
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squared (RSS) and coefficient of determination (R2). We also pro-

vided the root mean squared errors (RMSE) and chi square (v2).

RSS¼
Xq

i¼1

ffiffiffiffi
ri
p �dffiffiffiffiri

p� �2
(21)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1

ffiffiffiffi
ri
p �dffiffiffiffiri

p� �2

q

vuut
(22)

v2¼
Xq

i¼1

ffiffiffiffi
ri
p �dffiffiffiffiri

p� �2

dffiffiffiffiri
p (23)

Here, q represents the sample size, and the hat symbol over a pa-

rameter, represents the predicted value.

The statistical software R (version 3.2.2; R Core Team 2015)

was used to fit the data and draw the figures. The special R package

of “DEoptim” was used to carry out the optimization. Three R func-

tions were developed based on the “DEoptim” function and the

“optim” function to fit the SSI, early five-parameter ROR, and the

revised five-parameter ROR models (see Supp. Material 1 [online

only] in detail).

Results

The fitted results using the SSI model are listed in Table 2. Fig. 1 shows

the comparison between the observed and predicted square roots of

temperature-dependent developmental rates and the predicted proba-

bility of rate-controlling enzyme being in its native state from data set 1

to data set 3. We did not show the other data sets again, and the fitted

parameters and the goodness of fit of the remaining data sets can be

found in Table 2. The observations are well reflected by the SSI model.

The predicted probability curve of rate-controlling enzyme being in its

native state is approximately bell-shaped around TU. However, the left

and right portions are not perfectly symmetrical.

Table 3 shows the fitted results using the early five-parameter

ROR model (Ratkowsky et al. 2005). Meanwhile, Fig. 2 shows the

comparison between the observed and predicted square roots of

temperature-dependent developmental rates and the predicted prob-

ability of rate-controlling enzyme being in its native state from data

set 1 to data set 3. We found that the predicted maximum probabil-

ity of rate-controlling enzyme being in its native state to be too small

for data set 3 in that it was even less than 0.1. This contradicts the

definition of the probability. The data were probably overfitted, re-

sulting in the incorrect estimates of the parameters by the ROR

model. Use of the revised five-parameter ROR model improved the

predicted probability of the rate-controlling enzyme being in its na-

tive state and make the maximum probability at Tmes approximate

to 1 (see Fig. 3; also exhibiting the comparison between the observed

and predicted square roots of developmental rates). In addition, the

predicted probability curve of the ROR model was perfectly sym-

metrical around Tmes. However, the revised five-parameter ROR

model had lower goodness of fit than the SSI model (Tables 2 and 4).

Except from data sets 2 and 7, the coefficients of determination for

the majority of data sets using the revised ROR model were still more

than 0.99, demonstrating that the revised five-parameter ROR

model can still reflect the effect of temperature on the developmen-

tal rates well.

Discussion

Although the SSI and ROR models are both based on the thermody-

namic theory, and both date back to the Eyring equation (Eyring

1935), the estimates of thermodynamic parameters in these two

models are too sensitive to the fitting methods. A small change in

one parameter can result in large changes to other parameter esti-

mates, making it problematic to provide a reliable estimate of a ther-

modynamic parameter. There is an important parameter, TU, in the

SSI model and one, Tmes, in the ROR model, both of which are the

temperature with the greatest probability of the enzyme being in its

native state (referred to as the intrinsic optimum temperature).

However, the early five-parameter ROR model, the revised five-

parameter ROR model, and the SSI model did not make the same

estimate for this temperature. Even the two ROR models made esti-

mates differing by more than 2 �C for Tmes across several data sets

used in the present study. There was an 8.7 �C difference in the in-

trinsic optimum temperature between the revised ROR model and

the SSI model for data set 3, and a difference of 7.3 �C for data set 6.

Ratkowsky et al. (2005) proposed to fix three thermodynamic con-

stants: T�H¼373.6, T�S¼385.2, and DS*¼18.1 during fitting of the

model. This early version of the ROR model can fit the data of the

temperature-dependent growth rates of bacteria, the temperature-

dependent developmental rates, and their square roots very well. If

we change the values for the above three constants, it will affect the

final estimates of other parameters. In this case, the estimated ther-

modynamic parameters actually cannot accurately reflect the actual

values that can measured in the bio-physical experiments. These re-

sults are only theoretical values related to a particular model system

(including the same parameters and predetermined fitting method).

Thus, it is necessary to follow a fixed model system for comparing

Table 2. Parameter estimate and goodness of fit using the SSI model

Parameter Data

set 1

Data

set 2

Data

set 3

Data

set 4

Data

set 5

Data

set 6

Data

set 7

Data

set 8

Data

set 9

Data

set 10

TU 300.7 297.3 287.2 304.5 293.3 301.6 295.3 291.8 289.7 292.4

DHL �52609.9 �65211.2 �90382.6 �46558.0 �123232.3 �43960.5 �50849.4 �54549.1 �183777.0 �90015.4

DHH 91272.9 71773.9 45917.1 177015.8 62803.1 129406.0 59704.4 70169.1 60186.6 63657.5

T1/2L 287.6 287.2 280.8 290.4 286.2 285.6 283.0 279.1 284.3 284.3

DH‡
A 12917.7 13339.6 34709.9 7090.8 22048.3 8756.2 11012.7 13657.6 17160.7 22336.8

qU 0.108 0.135 0.117 1.000 0.102 0.063 0.156 0.125 0.022 0.050

T1/2H 309.9 307.3 298.0 309.9 306.2 309.0 307.2 303.3 304.0 303.8

RSS 0.000413 0.000401 0.001325 0.002000 0.000409 0.000027 0.000477 0.000203 0.000010 0.000148

RMSE 0.004238 0.006679 0.008352 0.010261 0.005222 0.001962 0.006302 0.004294 0.001099 0.004049

v2 0.001559 0.001421 0.002709 0.003768 0.001170 0.000132 0.001458 0.000613 0.000050 0.000625

R2 0.9964 0.9919 0.9973 0.9983 0.9972 0.9961 0.9956 0.9981 0.9992 0.9965

RSS represents the residual sum of squared; RMSE represents the root mean squared error; v2 represents the chi-square; and R2 represents the coefficient of

determination.
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different thermal performance of poikilotherms. Apparently, it is

unsatisfactory to compare the model parameters obtained from us-

ing two different fitting methods for the same model. The fitting

method of the revised ROR models used by the present study might

over-fit the data because the square root curves (Fig. 3C and E) have

an obvious protruding part that cannot be readily explained by ther-

modynamic theory. In the early ROR model (Ratkowsky et al.

2005), the curve will have little opportunity for making an unex-

plainable protruding part. For the early SSI model (Ikemoto 2008;

Ikemoto et al. 2013), the fitted curves also have little opportunity

Table 3. Parameter estimate and goodness of fit using the early five-parameter ROR model

Parameter Data

set 1

Data

set 2

Data

set 3

Data

set 4

Data

set 5

Data

set 6

Data

set 7

Data

set 8

Data

set 9

Data

set 10

Tmes 297.4 295.9 297.9 297.5 295.8 297.2 293.8 290.2 294.0 293.2

DH* 5344.8 5336.3 5089.8 5345.2 5342.6 5345.9 5337.3 5344.1 5344.3 5337.7

n 330.4 252.5 158.0 422.1 306.5 591.3 179.5 281.2 464.5 267.0

DH‡
A 68290.7 67161.9 49449.6 62696.2 83284.9 47260.4 54221.4 63261.3 59553.3 92636.6

b 19.57 19.99 29.23 19.27 26.47 10.42 15.08 18.51 15.37 29.87

DCp 70.10 68.71 67.26 70.27 68.71 70.01 66.86 64.10 67.11 66.40

RSS 0.000370 0.000284 0.001604 0.004173 0.000365 0.000028 0.000270 0.000170 0.000011 0.000108

RMSE 0.004013 0.005615 0.009188 0.014819 0.004930 0.001999 0.004743 0.003926 0.001193 0.003463

v2 0.001412 0.000994 0.003627 0.005545 0.001001 0.000131 0.000799 0.000519 0.000057 0.000480

R2 0.9968 0.9943 0.9967 0.9965 0.9975 0.9959 0.9975 0.9984 0.9991 0.9974

T�H¼ 373.6 K, T�S¼ 385.2 K, and DS*¼ 18.1 J�K� 1. DCp is calculated by equation (16).

Fig. 2. Fitted square roots of developmental rates and the predicted probabil-

ity of rate-controlling enzyme being in its native state using the early ROR

model (Ratkowsky et al. 2005). The species names in six panels are the same

as those in Fig. 1. The small open circles represent the square roots of ob-

served developmental rates; and the gray curve represents the predicted

square roots of developmental rates.

Fig. 3. Fitted square roots of developmental rates and the predicted probabil-

ity of rate-controlling enzyme being in its native state using the revised ROR

model (proposed by the present study). The species names in six panels are

the same as those in Fig. 1. The small open circles represent the square roots

of observed developmental rates; and the gray curve represents the predicted

square roots of developmental rates.
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for producing a protruding part. Thus, we suggest using a fixed

model system for multispecies comparisons of thermal performance.

Meanwhile, the present study does not attempt to provide a better

fitting method for the SSI model or the ROR model. It is possible to

compare thermodynamic parameters among different data sets of

temperature-dependent developmental rates of insects if the same

model and fitting method are consistently applied to these data sets.

For these two models that have different theoretical assumptions, it

is somewhat unbelievable to compare the overlapped model parame-

ters between them. The crucial step in our suggested fitting method

is to build the parameter relationship between the numerator and

the intrinsic optimum temperature using the quartic polynomial. In

equation (8), when T¼TU, the numerator approximately equals qU.

This parameter, qU, is actually only affected by the quartic polyno-

mial of TU. Thus, the parameter of DH‡
A has no relationship with qU

and TU. In equation (15), when T¼Tmes, the numerator equals the

quartic polynomial of Tmes, whereas Tmes has a relationship with

DCp according to equation (16). Meanwhile the parameters of b and

DH‡
A will have a relationship with Tmes and DCp. As a result, the re-

lationships among these parameters reduce the fitting flexibility of

the ROR model. The early fitting method proposed by Ratkowsky

et al. (2005) can avoid such an issue, but the numerator of the ROR

model can largely deviate from the observations around Tmes due to

the large deviation of the denominator’s reciprocal to 1 (e.g., Fig.

2F). Thus, the early version and the revised version both have advan-

tages and disadvantages.

Either the SSI model or the ROR model has an intrinsic optimum

temperature (namely, TU and Tmes) that maximizes the probability

of the enzyme being in its native state, but this temperature is lower

than the temperature associated with the highest developmental

rate. This phenomenon follows Jensen’s inequality, and shows that

the “suboptimal” value is actually optimal (Martin and Huey 2008).

The temperature with the maximum developmental rate is not the

intrinsic optimum temperature, which is in fact lower. The early ver-

sion of the SSI model (Ikemoto et al. 2013) predicted a more than

6 �C difference between the intrinsic optimum temperature and the

temperature of the highest developmental rate. The predicted differ-

ences between the intrinsic optimum temperatures and the tempera-

tures of the highest developmental rate in the present study are also

large. The early SSI fitting method suggests the tangent of the SSI

model curve at the intrinsic optimum temperature is approximate to

the straight line in the mid-temperature range (Ikemoto and Takai

2000). This exhibits a link of the thermodynamic curve to the

straight line based on the law of effective heat accumulation. (TU,

qU) can be regarded as a point in the SSI model curve, also

approximately on a straight line at mid-temperature. For this rea-

son, Ikemoto (2005, 2008) suggested using the linear equation to

eliminate the parameter of qU. In the present study, we use the quar-

tic polynomial to replace the linear equation that can make qU be

closer approximate to the developmental rate at TU. In addition, it

can result in smaller RSS and achieve the global optimization to

search the objective values of model parameters. In the present

study, the SSI and ROR model both use the quartic polynomial

and have the same model parameters, which can be used to com-

pare the differences in the goodness of fit for different data sets.

The SSI model appears to show its better goodness of fit and fitting

flexibility on the condition that P2(TU)�1. However, the ROR

model exhibits a better symmetry of the probability of the enzyme

being in its native state at the expense of the goodness of fit. It

seems that the symmetry only meets the psychological demands

for aesthetics for geometry, but lacks the evidence that the symme-

try represents the science. Thus, whether the probability of rate-

controlling enzyme being in its native state is symmetrical requires

further study.
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