










component of D. brevicomis and D.  frontalis (Kinzer et al. 1969; 
Renwick and Vité 1969). In D. valens, frontalin functions primar-
ily as a sex pheromone, but is also attractive to females (Liu et al. 
2013). In our study, exo-brevicomin was released by both sexes of 
D. valens, and functioned as an antiaggregation pheromone, similar 
to this function in some other Dendroctonus species such as D. pon-
derosae (Rudinsky et al. 1974; Ryker and Rudinsky 1982). On the 
contrary, exo-brevicomin is an attractant in the closely related D. ter-
ebrans (Phillips et al. 1989, 1990). The use of exo-brevicomin as an 
antiattractant by D. valens may be important in maintaining species 
separation between D. valens and D. terebrans. Furthermore, beetles 
in masses were more likely to produce exo-brevicomin, indicating 
the production of this pheromone is density-dependent, and may be 
elicited by beetles’ sounds. Both D. valens females and males release 
the same type of agreement sounds, in addition to male aggressive 
sounds. Both kinds of sounds trigger the production of exo-brevi-
comin to avoid overcrowding. This study provides the first clear evi-
dence that sounds exert an important role in reducing attraction in 
D. valens. Further, this finding demonstrates an interaction between 
both auditory and olfactory stimuli (Rudinsky 1969; Rudinsky and 
Michael 1972; Anton et al. 2011).

Rudinsky (1969) proposed that stridulation and increased pro-
duction of the pheromone MCH terminated aggregation by D. pseu-
dotsugae (Rudinsky et al. 1976). In that system, the function of MCH 
varies with concentration, being attractive at low and repellant 
at high quantities (Rudinsky and Michael 1973). Moreover, both 
sexes of D. pseudotsugae produced MCH in response to sound, and 
considerably greater quantities were obtained from beetles exposed 
to sound (Rudinsky et al. 1976). In D. valens, exo-brevicomin was 
likewise released by both sexes, but in contrast to D. pseudotsugae 
(Rudinsky and Michael 1973), was repellent at all concentrations 
tested, down to the level of nanograms. In the field, exo-brevicomin 
decreased attraction to 3-carene by 50% (Figure 1). A second differ-
ence from D. pseudotsugae was that only the frequency of individu-
als that produced exo-brevicomin, increasing from 10% to 84%, 
but not the amount of exo-brevicomin produced, increased when the 
density of D. valens increased. However, D. pseudotsugae increased 
the amount of MCH when treated by sounds (Rudinsky et al. 1976). 
The high level of repellence elicited by nanogram quantities in 
D. valens indicated emission of effective antiaggregation signals as 
soon as individuals encountered each other. These differences may 
reflect different lifestyles between D. pseudotsugae and D. valens, in 

Figure 3. Acoustic signals recorded of female and male D. valens. (A) Female-produced agreement sounds, (B) male-produced agreement sounds, and (C) 
male-produced aggressive sounds. (a) a waveform of each type of sound recorded; (b) a waveform of a single chirp of each type of sound; (c) a spectrogram of 
each type of sound.

Figure 2. Exo-Brevicomin production of D. valens with varied beetle density. Chi-square test was conducted, and the percentage of individuals who produced 
exo-brevicomin is shown in (A). Same letters above bars in (B) indicate not significant differences at P ≤ 0.05 (1-way ANOVA).
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that the former engages in rapid mass attacks that kill trees, whereas 
the latter colonizes trees as solitary or just a few individuals and 
typically does not kill trees, in the native range where it evolved. 
However, the ability of D. valens to produce such diverse and multi-
functional pheromones as frontalin and exo-brevicomin may have 
served as a preadaptation for its role as a mass-attacking, tree-killing 
outbreak species under the different selection regime it encountered 
following its introduction into China.

The release of exo-brevicomin triggered by sound also provides a 
means by which males can avoid competition for females. D. valens 
is apparently monogamous and exhibits a high level of coopera-
tive biparental care (Wood 1982; Kirkendall 1983; Liu et al. 2006). 
If a male in a gallery with a female encounters another male, he 
might be disturbed by this rival, produce the territorial stridulation 
sounds and even engage in fighting (McGhehey 1968; Rudinsky 
and Michael 1974). Thus, male stridulation may not be enough to 
maintain monogamy. However, both sexes produce exo-brevicomin 
when pairs join and experience their counterpart sounds, conspecific 
male landing on the bark decreases. In general, the sounds produced 
in Scolytinae are short-range signals, whereas chemical signals can 
be more long-range. Thus, exo-brevicomin triggered by sounds may 
provide a complementary mechanism to maintain monogamy and 
avoid potential male competition.

Bark beetles show high plasticity in their colonization behaviors 
(Wallin and Raffa 2004), and such plasticity may be reflected in how 
integrated audio-chemo communication functions for D. valens in 
a new region. In its native range, D. valens can complete reproduc-
tion in trees that remain alive, by tolerating their resins (Aukema 
et al. 2010). However, in its invaded areas of China, aggregation of 
D. valens may help to overcome host resistance in a similar fashion to 
native North American outbreak species such as D. ponderosae (Liu 
et al. 2013; Qiu 2013; Xu et al. 2014). For example, in Wisconsin, 
57% of attacked P. resinosa had only 1 pair of D. valens, and these 
reproduced despite resin production (Aukema et al. 2010). However, 
in China, D. valens that enter standing P. tabuliformis trees in low 
numbers are often confined and killed within pitch tubes. Differences 
between North American Pinus and Chinese P. tabuliformis physiol-
ogy might contribute to these contrasting behaviors. For example, 
P. tabuliformis has very prominent resin flow and had been used for 
commercial resin collection. Facing a new host species in a new envi-
ronment may require D. valens to evolve new strategies to overcome 
tree defense, such as adapting mating pheromones to aggregate both 
sexes, and likewise avoiding over-crowding by using antiaggregant 
signals. Combined with drought in the north central China in late 

Figure 4. Phonotaxis of D. valens male and female beetles to sounds present 
and absent. Data were analyzed by paired t test, and the percentage was 
presented. Asterisks indicate significant difference at P ≤ 0.05.

Figure 5. Exo-brevicomin production of D. valens with sounds played back. Chi-square test was conducted, and the percentage of individuals who produced 
exo-brevicomin was shown in (A). Same letters above bars in (B) indicate not significant differences at P ≤ 0.05 (1-way ANOVA).
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20th century (Yan et al. 2005; Xu et al. 2006), this challenge may 
explain why D. valens resided in China for 20 years before undergo-
ing its first outbreak.

The interplay between sound and chemicals suggests some 
potential opportunities for management of invasive populations of 
D. valens. For example, acoustic devices can be used to detect pests 
in trees and wood materials (Mankin and Moore 2010). Further, 
sounds (or vibrations) may potentially be used to protect plants from 
insects (Polajnar and Čokl 2008; Eriksson et  al 2012; Aflitto and 
Hofstetter 2014; Hofstetter et al. 2014).

In conclusion, this study indicates that acoustic communication 
among D.  valens elicits production of an antiaggregation phero-
mone. This tends to distribute the available males evenly, prevent 
overcrowding, and contribute to the maintenance of monogamy, all 
of which favor establishment and reproduction, and associated tree 
mortality, following human transport of this insect. Studies compar-
ing and contrasting the interaction of acoustic and chemical signals 
in the introduced and native ranges of D. valens can facilitate our 
understanding of the invasion dynamics, postintroduction evolution-
ary adaptation, and management of D.  valens and other invasive 
bark beetles.
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