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Evolutionary stability concepts in a stochastic environment

Xiu-Deng Zheng,1 Cong Li,2 Sabin Lessard,2,* and Yi Tao1,3,†
1Key Laboratory of Animal Ecology and Conservation Biology, Centre for Computational and Evolutionary Biology,

Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2Department of Mathematics and Statistics, University of Montreal, Montreal QC H3C 3J7, Canada

3University of Chinese Academy of Sciences, Beijing 100101, China
(Received 7 June 2017; published 25 September 2017)

Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been
not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also
widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary
games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic
local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs
following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability
(SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and
SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES
is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.
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I. INTRODUCTION

It is clear that a range of problems in evolution theory
can most appropriately be tackled by extending the theory of
games which is a branch of mathematics. The problems are
diverse and include not only the behavior of animals in contest
situations but also some problems in the evolution of genetic
mechanisms and in the evolution of ecosystems. Thirty-four
years ago, Maynard Smith [1] monograph Evolution and
the Theory of Games was published. A new fundamental
theoretical framework to understand the evolution of animal
behavior had reached maturity and was finally made available
to a large readership. Since then evolutionary game theory has
been very popular not only in biology but also in economics
and social sciences.

Evolutionary game theory started with the concept of
evolutionarily stable strategy (ESS) introduced by Maynard
Smith and Price [2], which has become one of the principal
tools for analyzing the dynamics of natural selection. Let us
recall that an ESS is a strategy understood as a behaviorial
phenotype such that, if all the members of a population
adopt it, then no mutant strategy could invade the population
under the effect of natural selection [1,3]. In the context of
symmetric pairwise interactions occurring at random in an
infinite population, a strategy x is an ESS if (1) the payoff
to x against itself is larger or equal to the payoff to any other
strategy y against x, and (2) the payoff to x against y exceeds the
payoff to y against itself in the case of an equality in (1). With
E(x,y) representing the payoff received by an individual using
strategy x against an individual using strategy y, this means that
(1) E(x,x) � E(y,x) for any strategy y �= x, and (2) E(x,y) >

E(y,y) in the case of an equality in (1). These conditions are
necessary and sufficient for the expected payoff to x to exceed
the expected payoff to y in an infinite population of individuals
using either x or y if the frequency of y is small enough.
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If the relative growth rate of a strategy is given by its
expected payoff, which defines its fitness, then the dynamics of
the strategy frequencies is described by the replicator equation
[4,5]. For n pure strategies, we have ẋi = xi((Ax)i − xAx),
where x = (x1, . . . ,xn) is the strategy frequency vector, with
xi being the frequency of strategy i for i = 1, . . . ,n, and A =
(aij ) is the payoff matrix, with aij being the payoff to strategy i

against strategy j for i,j = 1, . . . ,n. Here it is understood that
xAx = ∑n

i=1 xi(Ax)i = ∑n
i=1

∑n
j=1 xixjaij with (Ax)i being

the expected payoff to strategy i for i = 1, . . . ,n. Moreover, if
x is an ESS with respect to the mixed strategies of the n pure
strategies with the bilinear payoff function E(x,y) = xAy, then
it is an asymptotically stable rest point of the above replicator
dynamics [5]. In the special case n = 2, the payoff matrix
takes the form A = (a11 a12

a21 a22
), and the replicator dynamics for

the frequency of strategy 1, represented by x, reduces to ẋ =
x(1 − x)[(a11 − a12 − a21 + a22)x − (a22 − a21)]. Moreover,
strategy 1 is an ESS if a11 > a21, or a11 = a21 and a12 >

a22. These conditions are necessary and sufficient for the
expected payoff to strategy 1 to exceed the expected payoff
to strategy 2 in an infinite population when strategy 2 is
rare enough. On the other hand, we have to point out that
for the connection between evolutionary game dynamics and
population dynamics in ecology, Hofbauer and Sigmund [5]
show also that the classic Lotka-Volterra equation can be
easily transformed into a replicator equation by introducing
an auxiliary variable.

In a population of fixed finite size N , any fixation state
can be reached from any initial state by random drift. In this
framework, Nowak et al. [6] proposed to call strategy 1 an
ESSN if two conditions hold when the initial frequency of
strategy 2 is N−1: (1) strategy 2 has a lower expected payoff
than strategy 1 as in Schaffer [7], in which case selection is said
to oppose strategy 2 invading strategy 1; and (2) the probability
of ultimate fixation of strategy 2 is less than N−1, in which
case selection is said to oppose strategy 2 replacing strategy
1. In general, these conditions depend on the population size
N and the reproduction scheme [8]. Note that condition (2) is
neither sufficient nor necessary for the probability of ultimate
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fixation of a single strategy 1 to exceed the probability of
ultimate fixation of a single strategy 2. This condition ensures,
however, that strategy 1 is more abundant on average than
strategy 2 in the presence of recurrent mutation occurring at
weak enough rate [9].

One key assumption in classical evolutionary game theory
is that the payoff matrix is constant, and this supposes that the
environmental conditions do not change over time. However,
this assumption cannot be thought to be always true since
environmental conditions in the real world are changing and
uncertain. For the population dynamics in ecology, May [10]
pointed out that since real environments are uncertain and
stochastic, the birth rates, carrying capacities, competition
coefficients, and other parameters which characterize natural
biological systems all, to a greater or lesser degree, exhibit
random fluctuations. One of May’s studies reveals profoundly
how the stochastic fluctuation of carrying capacity (i.e.,
environmental stochasticity) influences the dynamics of a
single-species population. In fact, effects of environmental
stochasticity on population and community ecology have been
investigated by many authors [11–14]. Spagnolo et al. [13],
for instance, investigated some phenomena in Lotka-Volterra
systems induced by environmental noise, for examples,
quasideterministic oscillations, stochastic resonance, noise-
delayed extinction, and spatial patterns. All of these studies
in ecology strongly imply that the effects of environmental
stochasticity on evolutionary dynamics should be considered.

We here also have to point out that the previous work on
stochastic evolutionary game theory in an infinite and classical
population includes Foster and Young [15], who considered
small perturbations of the deterministic replicator dynamics
that arise through mutations as well as ordinary chance events
that affect the reproductive success of strategies. Then the
strategy frequencies obey the stochastic differential equation
ẋi = xi[(Ax)i − xAx] + σ [�(x)Ẇ]i . Here Ẇ is a formal time
derivative of a standard n-dimensional Brownian motion W,
called a white noise, �(x) is a variance-covariance matrix
with all bounded entries and ones on the main diagonal such
that x�(x) = 0, while σ > 0 is a parameter that represents
the strength of the perturbation. In this stochastic dynamical
system, a set of states S is called a stochastically stable set
(SSS) if, in the long run, it is nearly certain that the system
lies within every open set containing S as σ tends to zero. The
stochastically stable set is always nonempty and minimizes
a suitably defined potential function. However, it is by no
means equivalent to the set of evolutionary stable strategies
even when the latter exist. It contains often only a subset
of the evolutionarily stable strategies, and sometimes even
none. So a natural and challenging question is what happens
to evolutionary game concepts and dynamics under the effects
of a stochastically varying environment.

Since environmental conditions in the real world are
changing and uncertain, stochastic fluctuations in the sur-
rounding environment of a population may cause changes in
the occurrence of interactions between individuals and, more
importantly, changes in the payoffs received by the interacting
individuals. Therefore, unless stochastic fluctuations are so
small that their effects can be neglected, there is no a priori
reason to assume that the payoff matrix of an evolutionary
game is constant if the environment is actually stochastic.

Now assuming that the payoff matrix is random, two
questions arise: First, how should we define the concept of
stochastic evolutionary stability (SES) so that it would be a
natural extension of the evolutionary stability concept in a
stochastic environment in the sense that, once fixed, it would
still be probabilistically favored by selection? Second, what
would be the exact evolutionary properties associated with a
strategy that is SES? In particular, are there extra conditions
that would make it stochastically convergence stable (SCS)
in such a way that evolution toward it from other fixation
states would be probabilistically favored by selection under
random perturbations in an analogous way as a convergence
stable strategy is favored in a deterministic environment
[16–19]. Answers to these questions are important in order
to understand and predict the evolution of animal behaviors in
a randomly fluctuating environment.

In this study, we focus attention on the effect of a stochastic
environment on a 2 × 2 matrix game in an infinite population.
Generations are discrete, nonoverlapping, and the payoff ma-
trices over successive generations are independent identically
distributed random matrices. The main mathematical tool in
this study is the concept of stochastic local stability, which
was developed in population genetics by Karlin and Liberman
[20,21] (see also Ref. [22]).

II. A TWO-PHENOTYPE MODEL

We consider an evolutionary game in an infinite population
with discrete, nonoverlapping, generations. There are two
phenotypes or pure strategies, 1 and 2, and the payoffs in
pairwise interactions at time step t � 0 are given by the game
matrix

A(t) =
(

a11(t) a12(t)
a21(t) a22(t)

)
=

(
at bt

ct dt

)
, (1)

where aij (t) is the payoff to strategy i against strategy j for
i,j = 1,2. These payoffs are assumed to be positive random
variables that are uniformly bounded below and above by
some positive constants. Therefore, there exist real numbers
A,B > 0 such that A � aij (t) � B for i,j = 1,2 and all t � 0.
Moreover, the probability distributions of aij (t) for i,j = 1,2
do not depend on t � 0. They have means, variances, and
covariances given by

E[aij (t)] = āij ,

E[{aij (t) − āij }2] = σ 2
ij , (2)

E[{aij (t) − āij }{akl(t) − ākl}] = σij,kl,

respectively, for i,j,k,l = 1,2 with (i,j ) �= (k,l), where E
denotes mathematical expectation. As for s �= t , the payoffs
aij (s) and akl(t) are assumed to be independent so that
E[{aij (s) − āij }{akl(t) − ākl}] = 0 for i,j,k,l = 1,2.

Let xt be the frequency of strategy 1 at time step t � 0 and,
similarly, 1 − xt the frequency of strategy 2. Then the mean
payoffs to strategies 1 and 2 are given by

π1,t = xtat + (1 − xt )bt ,
(3)

π2,t = xtct + (1 − xt )dt ,
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respectively, and the mean payoff in the whole population by

π̄t = xtπ1,t + (1 − xt )π2,t . (4)

Assuming that payoff translates into reproductive success,
referred to as fitness, so that the number of replicas of a strategy
from one step to the next is proportional to its mean payoff,
the frequency of strategy 1 at time step t + 1 is given by the
recurrence equation

xt+1 = xtπ1,t

π̄t

= x2
t at + xt (1 − xt )bt

x2
t at + xt (1 − xt )(bt + ct ) + (1 − xt )2dt

(5)

for t � 0. Defining

ut = xt

1 − xt

, (6)

the recurrence equation takes the simple form

ut+1 = ut

[
utat + bt

utct + dt

]
(7)

for t � 0.

III. STOCHASTIC LOCAL STABILITY

We are interested in the asymptotic (or long-run) behavior
of the process {xt } for t � 0. Let x̂ represent a constant (non-
random) equilibrium of this process, that is, an equilibrium of
Eq. (5) that does not depend on the randomness of the payoff
matrix. This is clearly the case for both x̂ = 0 and x̂ = 1,
called the fixation states or the boundary equilibria. This may
also be the case for a constant equilibrium x̂ with 0 < x̂ < 1,
called a constant interior equilibrium.

Following Karlin and Liberman [20–22], a constant equi-
librium x̂ is said to be stochastically locally stable (SLS) if for
any ε > 0 there exists δ0 > 0 such that

P(xt → x̂) � 1 − ε as soon as |x0 − x̂| < δ0. (8)

This means that xt tends to x̂ as t → ∞ with probability
arbitrarily close to 1 (but different from 1) if the initial state x0

is sufficiently near x̂. Notice, however, no matter how close x0

is to x̂ (but different from x̂), it is not ascertained that xt will
converge to x̂. Statistical fluctuations could cause xt to depart
sharply from x̂, but this will occur with small probability if x0

is close to x̂ and x̂ is stochastically locally stable.
On the other hand, a constant equilibrium x̂ can be said to

be stochastically locally unstable (SLU) if

P(xt → x̂) = 0 as soon as |x0 − x̂| > 0. (9)

If this is the case, then x̂ cannot be reached with probability 1
from any initial state different from x̂.

A. Stochastic local stability of fixation states

Consider first the fixation state x̂ = 0 in Eq. (5), which
corresponds to the equilibrium û = x̂/(1 − x̂) = 0 in Eq. (7).
It can be shown that x̂ = 0 is SLS if

E

[
log

(
dt

bt

)]
= E(log dt ) − E(log bt ) > 0, (10)

and SLU if the inequality is reversed (Result 1, proved in
Appendix A 1).

Therefore, under generic conditions, the inequality Eq. (10)
is necessary and sufficient for stochastic local stability of
the fixation state x̂ = 0. This result in a population genetics
framework, which corresponds to a symmetric game matrix
[a12(t) = a21(t), which can be assumed equal to one without
loss of generality] was stated in Karlin and Liberman [20].
A proof in this framework which only slightly differs from
the present more general game-theoretic framework is given
in Karlin and Liberman [21]. It is based on the strong law of
large numbers and Egorov’s theorem.

Suppose random payoffs close enough to their means so
that

E(log bt ) = log b̄ − σ 2
b

2b̄2
+ o(σ 2),

(11)

E(log dt ) = log d̄ − σ 2
d

2d̄2
+ o(σ 2),

where b̄ and d̄ are the means, and σ 2
b and σ 2

d the variances,
of the random variables bt and dt , respectively. Here σ 2 =
max{σ 2

a ,σ 2
b ,σ 2

c ,σ 2
d }. Thus, if σ 2 is small enough, the condition

in Eq. (10) for x̂ = 0 to be SLS reduces to

log

(
d̄

b̄

)
>

1

2

(
σ 2

d

d̄2
− σ 2

b

b̄2

)
. (12)

If the inequality is reversed, then x̂ = 0 is SLU. Therefore, the
condition for x̂ = 0 to be SLS becomes less stringent as σ 2

b

increases and more stringent as σ 2
d decreases. In the case where

σ 2
b = σ 2

d = σ 2, the fixation state x̂ = 0 is SLS if d̄ > b̄ and
SLU if d̄ < b̄. These are the conditions for x̂ = 0 to be locally
stable and locally unstable, respectively, with a constant payoff
matrix which corresponds to the case σ 2 = 0.

By symmetry, Result 1 implies that the fixation state x̂ = 1
in the recurrence equation [Eq. (5)] is stochastically locally
stable if

E

[
log

(
at

ct

)]
> 0, (13)

and stochastically locally unstable if the inequality is reversed.
The above condition reduces to

log

(
ā

c̄

)
>

1

2

(
σ 2

a

ā2
− σ 2

c

c̄2

)
(14)

if at and ct have means ā and c̄, and variances σ 2
a and σ 2

c of
order σ 2 small enough.

As an example, consider successive rounds of the Prisoner’s
Dilemma, known as the iterated Prisoner’s Dilemma (IPD),
with two possible strategies in use, TFT for tit-for-tat starting
with cooperation in the first round and the previous strategy
of the opponent in the next rounds and AllD for always-defect
with defection in all rounds as strategies 1 and 2, respectively
[23,24]. The payoff matrix at time step t � 0 is given by(

at bt

ct dt

)
=

(
mtR S + (mt − 1)P

T + (mt − 1)P mtP

)
,

where T > R > P > S are the payoffs in one round of the
game with cooperation and defection as strategies, and mt

represents the number of rounds at time step t � 0. This
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FIG. 1. Stochastic local stability of TFT fixation against AllD

with the random payoff matrix ( 3mt 2mt − 1
2(mt + 1) 2mt

), where T =
4, R = 3, P = 2, and S = 1, while mt is a random variable with mean
m̄ and variance σ 2

m at every time step t � 0. The curve separates the
regions for stochastic local stability and stochastic local instability:
TFT fixation is SLS (or SLU) if the point (σ 2

m,m̄) is above (or below)
the curve.

number is assumed to be a random variable of mean m̄ and
small variance σ 2

m that is independent of ms for all s �= t . We
are in the above context with

ā = m̄R, b̄ = S + (m̄ − 1)P,

c̄ = T + (m̄ − 1)P, d̄ = m̄P,

while

σ 2
a = R2σ 2

m, σ 2
b = σ 2

c = σ 2
d = P 2σ 2

m.

Since σ 2
b = σ 2

d and d̄ > b̄, AllD fixation is SLS. On the other
hand, TFT fixation is SLS if

log

(
ā

c̄

)
>

σ 2
m

2c̄2ā2
(c̄2R2 − ā2P 2)

with

−c̄2R2 − ā2P 2 = [m̄RP + (T − R)R]2 − (m̄RP )2 > 0.

This means a more stringent condition as σ 2
m increases com-

pared to the condition ā > c̄ when σ 2
m = 0, which is equivalent

to m̄ > (T − P )/(R − P ). In a stochastic environment, the
mean number of rounds must exceed a higher threshold value
for TFT fixation to be SLS. For instance, let T = 4, R = 3,
P = 2, and S = 1. Then, for the stochastic local stability of
TFT fixation, the curve plotted on the (σ 2

m,m̄) plane (see Fig. 1)
distinguishes the regions of SLS and SLU: TFT fixation is SLS
(or SLU) if the point (σ 2

m,m̄) is above (or below) the curve.
When σ 2

m = 0, TFT fixation is SLS if m̄ > 2. When σ 2
m > 0,

however, this occurs if

log

[
3m̄

2(m̄ + 1)

]
>

σ 2
m

2m̄2(m̄ + 1)2
(2m̄ + 1).

This inequality is satisfied if and only if m̄ > m(σ 2
m), where

the threshold value m(σ 2
m) is an increasing function of σ 2

m. This

clearly illustrates the fact that stochastic local stability of TFT
fixation depends not only on the mean of the number of rounds
m̄ but also on its variance σ 2

m, and that higher is the variance,
higher must be the mean for TFT fixation to be SLS.

In the degenerate case where bt = dt for all t � 0, the
stochastic local stability or instability of the fixation state
x̂ = 0 requires further analysis, and it can be shown that it is
SLS if

E

(
ct

dt

− at

dt

)
= E

(
ct

dt

)
− E

(
at

dt

)
> 0, (15)

and SLU if the inequality is reversed (Result 2, proved in
Appendix A 2).

Developing the random variables around their means and
using the approximations

E

(
at

dt

)
= ā

d̄
+ āσ 2

d

d̄3
− σa,d

d̄2
+ o(σ 2),

(16)

E

(
ct

dt

)
= c̄

d̄
+ c̄σ 2

d

d̄3
− σc,d

d̄2
+ o(σ 2),

the condition in Result 2 for x̂ = 0 to be SLS reduces to

c̄ − ā

d̄
>

σc,d − σa,d

d̄2 + σ 2
d

(17)

if σ 2 is small enough. If the inequality is reversed, then
x̂ = 0 is SLU. Therefore, the condition for x̂ = 0 to be SLS
becomes less stringent as σa,d increases and more stringent
as σc,d decreases. In the case where σa,d = σc,d , the fixation
state x̂ = 0 is SLS if c̄ > ā and SLU if c̄ < ā. These are the
conditions for x̂ = 0 to be locally stable and locally unstable,
respectively, with a constant payoff matrix.

B. Stochastic local stability of a constant interior equilibrium

Now consider a constant equilibrium x̂ of Eq. (5) with
0 < x̂ < 1. This corresponds to a constant equilibrium û =
x̂/(1 − x̂) > 0 in Eq. (7). This is possible only if

û(at − ct ) = dt − bt , (18)

which implies a payoff matrix in the form(
at bt

ct dt

)
=

(
ct + zt bt

ct bt + ûzt

)
=

(
at dt − ûzt

at − zt dt

)
,

(19)

where zt = at − ct . Moreover, taking expectation on both
sides of Eq. (18) yields û = (d̄ − b̄)/(ā − c̄) from which
x̂ = (d̄ − b̄)/(ā − b̄ − c̄ + d̄), where ā, b̄, c̄, and d̄ denote the
expected values of at , bt , ct , and dt , respectively.

It can be shown that the constant equilibrium x̂ with û =
x̂/(1 − x̂) > 0 is SLS is

E

[
log

(
ûct + dt

ûat + dt

)]
= E

{
log

[
1 − x̂zt

x̂at + (1 − x̂)dt

]}
> 0,

(20)

and SLU if the inequality is reversed (Result 3, proved in
Appendix A 3).
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Assuming the approximation

E[log(ûat + dt )] = log(ûā + d̄) − û2σ 2
a + σ 2

d + 2ûσa,d

2(ûā + d̄)2

+ o(σ 2) (21)

and the corresponding approximation for E[log (ûct + dt )]
lead to the condition

log

(
ûc̄ + d̄

ûā + d̄

)

>
1

2

[
û2σ 2

c + 2ûσc,d + σ 2
d

(ûc̄ + d̄)2
− û2σ 2

a + 2ûσa,d + σ 2
d

(ûā + d̄)2

]
(22)

for the equilibrium x̂ = û/(1 + û) to be SLS if σ 2 is small
enough. The reversed inequality guarantees that x̂ is SLU. If
at ,dt , and zt are independent random variables, then the above
condition takes the form

log

[
1 − x̂z̄

x̂ā + (1 − x̂)d̄

]

>
1

2

[
û2σ 2

a + û2σ 2
z + σ 2

d

(ûā − ûz̄ + d̄)2
− û2σ 2

a + σ 2
d

(ûā + d̄)2

]
, (23)

where z̄ and σ 2
z designate the mean and variance of zt ,

respectively. When all variances vanish, the condition reduces
to z̄ < 0, which means that ā < c̄ and d̄ < b̄. Notice that this
condition becomes more stringent as σ 2

z increases.
It is worth emphasizing that it is possible for a constant in-

terior equilibrium and both fixation states to be simultaneously
SLS. For instance, consider a payoff matrix in the form(

at bt

ct dt

)
=

(
1 1 + ûηt

1 + ηt 1

)
,

where û > 0 and ηt = −zt is a random variable with mean
η̄ = −z̄ > 0 and variance σ 2

η = σ 2
z . Then, it is easy to check

that (1) the fixation state x̂ = 0 is SLS if

σ 2
η > 2

(
1 + ûη̄

û

)2

log(1 + ûη̄);

(2) the fixation state x̂ = 1 is SLS if

σ 2
η > 2(1 + η̄)2 log(1 + η̄);

and (3) the constant interior equilibrium x̂ = û/(1 + û) is
SLS if

σ 2
η < 2

(
1 + x̂η̄

x̂

)2

log (1 + x̂η̄).

On the other hand, the three equilibria are SLU if all the
inequalities are reversed. In the special case where û = 1 (i.e.,
x̂ = 1/2), for instance, it can be shown that there exists a
threshold value η0 > 0 such that (1 + η̄)2 log(1 + η̄) < (2 +
η̄)2 log (1 + η̄/2) if and only if η̄ < η0. Therefore, the constant
interior equilibrium x̂ = 1/2 and both fixation states, x̂ = 0
and x̂ = 1, are simultaneously SLS when 0 < η̄ < η0 and

2(1 + η̄)2 log(1 + η̄) < σ 2
η < 2(2 + η̄)2 log(1 + η̄/2).

On the other hand, the three equilibria are simultaneously
SLU when all the inequalities are reversed. To show this,
the functions σ 2

η = 2(1 + η̄)2 log(1 + η̄) (black curve) and

FIG. 2. Stochastic local stability or instability of a constant
interior equilibrium and of both fixation states with the random

payoff matrix ( 1 1 + ηt

1 + ηt 1 ). (a) The black curve represents the

function σ 2
η = 2(1 + η̄)2 log(1 + η̄) and the red curve the function

σ 2
η = 2(2 + η̄)2 log(1 + η̄/2). There is a critical value of η̄, denoted

by η0, that corresponds to the intersection of the black and red curves.
For η̄ < η0, all of x̂ = 0, x̂ = 1, and x̂ = 1/2 are SLS if the the
point (η̄,σ 2

η ) is in the range between the black and red curves; and,
conversely, for η̄ > η0, all of x̂ = 0, x̂ = 1 and x̂ = 1/2 are SLU if
the point (η̄,σ 2

η ) is in the range between the black and red curves.
(b) The simulation results, where û = 1 and ηt = −0.16 and 0.2
with same probability 0.5 so that η̄ = 0.02 and σ 2

η = 0.0324. Four
trajectories of xt , the frequency of strategy 1, are illustrated starting
with x0 = 0.2,0.3,0.7,0.8: two converge to x̂ = 1/2, one to x̂ = 0,
and one to x̂ = 1. Here three equilibrium states x̂ = 0, x̂ = 1, and
x̂ = 1/2 are SLS.

σ 2
η = 2(2 + η̄)2 log(1 + η̄/2) (red curve) are plotted on the

(η̄,σ 2
η ) plane [Fig. 2(a)]. Let η0 denote the intersection of the

two curves. Then, for η̄ < η0 (or η̄ > η0), all of x̂ = 0, x̂ = 1,
and x̂ = 1/2 are SLS (or SLU) if the the point (η̄,σ 2

η ) is in
the range between the black and red curves. Furthermore,
the simulation results are shown in Fig. 2(b), where we take
û = 1, and ηt = −0.16 and 0.2 with same probability 0.5 such
that η̄ = 0.02 and σ 2

η = 0.0324. It is easy to see that for four
trajectories of xt , the frequency of strategy 1, with initial states
x0 = 0.2,0.3,0.7,0.8, two converge to x̂ = 1/2, one to x̂ = 0,
and one to x̂ = 1. Obviously, the simulation results strongly
support the theoretical predictions.

IV. STOCHASTIC EVOLUTIONARY STABILITY
AND STOCHASTIC CONVERGENCE STABILITY

Extending the standard definition of an evolutionarily
stable strategy (ESS) in a constant environment [2] to a
variable environment, a stochastically evolutionarily stable
(SES) strategy can be defined as a strategy such that, if all the
members of the population adopt it, then the probability for at
least any slightly perturbed strategy to invade the population
under the influence of natural selection is arbitrarily low. More
specifically, a strategy represented by a frequency vector x̂ is
SES if x̂ fixation is SLS against any other strategy x �= x̂ at
least nearby enough.

Similarly, the notion of a continuous stable strategy (CSS)
introduced in Eshel and Motro [16] (see also Ref. [17]) and
renamed later on convergence stable strategy [18,19] can
be extended to a context of a variable environment. So a
strategy represented by a two-dimensional frequency vector
x̂ = (x̂,1 − x̂) can be said to be stochastically convergence
stable (SCS) if the fixation state of any nearby strategy
x̃ = (x̃,1 − x̃) is SLU against a strategy x = (x,1 − x) if and
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only if x is in the direction of x̂ with respect to x̃. This means
that sgn(x − x̃) = sgn(x̂ − x̃).

In this section, assume a positive stochastic game matrix at
each time step t � 0 in the form

A(t) =
(

a11(t) a12(t)
a21(t) a22(t)

)

=
(

ā11 ā12

ā21 ā22

)
+

(
b11(t) b12(t)
b21(t) b22(t)

)

= Ā + B(t). (24)

Here Ā is a constant matrix with all positive entries, while
the entries of B(t) are stochastic with mean equal to 0. The
payoff matrix at time step t � 0 for two mixed strategies,
x = (x,1 − x) and x̂ = (x̂,1 − x̂) in this order, is then given
by (

at bt

ct dt

)
=

(
xA(t)x xA(t)x̂
x̂A(t)x x̂A(t)x̂

)
. (25)

We are now ready to state our next two results.
Consider the positive stochastic game matrix Eq. (24)

where bij (t) for i,j = 1,2 are independent random variables of
variances σ 2

ij for i,j = 1,2, respectively, while all higher-order
centered moments are functions o(σ 2) where σ 2 = max{σ 2

ij :
i,j = 1,2}. With the assumption that σ 2 is small enough
and under generic conditions, the pure strategy x̂ = (0,1) is
stochastically evolutionarily stable against any nearby mixed
strategy x = (x,1 − x) if and only if

σ 2
22 <

(
ā22

ā12
− 1

)
ā2

22. (26)

This is also the necessary and sufficient condition for x̂ =
(0,1) to be stochastically convergence stable. By symmetry,
the pure strategy x̂ = (1,0) is stochastically evolutionarily
stable against any nearby mixed strategy x = (x,1 − x) and
stochastically convergence stable in generic cases under the
condition that σ 2 is small enough if and only if

σ 2
11 <

(
ā11

ā21
− 1

)
ā2

11 (27)

(Result 4, proved in Appendix A 4).
Consider the positive stochastic game matrix Eq. (24)

where a11(t) = a21(t) + z(t) and a22(t) = a12(t) + ûz(t) for
some constant û = x̂/(1 − x̂) > 0, with a21(t), a12(t), and z(t)
being independent random variables of means and variances
given by ā21, ā12, z̄ and σ 2

21, σ
2
12, σ

2
z , respectively, while all

higher-order centered moments are functions o(σ 2), where
σ 2 = max{σ 2

21,σ
2
12,σ

2
z }. With the assumption that σ 2 is small

enough and under generic conditions, the constant mixed
strategy x̂ = (x̂,1 − x̂) is stochastically evolutionarily stable
against any mixed strategy x = (x,1 − x) if and only if

z̄d̄2 + z̄σ 2
21x̂

2 + z̄σ 2
12(1 − x̂)2 − d̄σ 2

z x̂ < 0, (28)

where

d̄ = z̄x̂ + ā21x̂ + ā12(1 − x̂) > 0. (29)

FIG. 3. Stochastic evolutionary stability and stochastic con-
vergence stability. For the positive stochastic payoff matrix

(1 + z(t) 1
1 1 + z(t)) with a constant interior equilibrium x̂ = 1/2, if

σ 2
z is small, then both pure strategies (0,1) and (1,0) are SES and

SCS when z̄ > z1, and the constant mixed strategy (1/2,1/2) is SES
when z̄ < z2 and SCS when z̄ < z3.

On the other hand, it is stochastically convergence stable under
the same assumption and conditions if and only if

z̄d̄2 + z̄σ 2
21x̂

2 + z̄σ 2
12(1 − x̂)2 + z̄x̂2σ 2

z − d̄σ 2
z x̂ < 0 (30)

(Result 5, proved in Appendix A 5.)
Consider, for instance, a positive stochastic game matrix

A(t) =
(

1 + z(t) 1
1 1 + ûz(t)

)
,

where û = x̂/(1 − x̂) > 0 and z(t) is a random variable of
mean z̄ and variance σ 2

z such that d̄ = z̄x̂ + 1 > 0 and σ 2
z is

small enough. Owing to Result 4, conditions Eqs. (26)–(27)
for the pure strategies (0,1) and (1,0) to be SES and SCS are

ûσ 2
z < z̄(1 + ûz̄)2

and

σ 2
z < z̄(1 + z̄)2,

respectively. On the other hand, conditions Eqs. (28) and
(30) for the constant mixed strategy x̂ = (x̂,1 − x̂) where
x̂ = û/(1 + û) to be SES and SCS reduce to

x̂σ 2
z > z̄(1 + x̂z̄)

and

x̂σ 2
z > z̄(1 + x̂z̄)2,

respectively. Figure 3 illustrates the corresponding regions in
the case û = 1 which corresponds to x̂ = 1/2. In the limit of a
deterministic game matrix, that is, σ 2

z = 0, both pure strategies
are SES and SCS when z̄ > 0, while the mixed strategy is
SES and SCS when z̄ < 0. In the presence of stochastic
perturbations on the game matrix, that is, σ 2

z = σ 2 > 0 (where
σ 2 is small), there exist three threshold values z1 > z2 > z3 > 0
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such that both pure strategies are SES and SCS when z̄ > z1

[where z1 is a positive solution of σ 2
z = z̄(1 + z̄)2], while the

mixed strategy is SES when z̄ < z2 (where z2 is a positive
solution of σ 2

z = 2z̄[1 + z̄/2)] and SCS when z̄ < z3 [where
z3 is a positive solution of σ 2

z = 2z̄(1 + z̄/2)2].

V. DISCUSSION

Evolutionary concepts such as that of an evolutionarily
stable strategy (ESS) [2] and that of a convergence stable
strategy (CSS) [16,19] were originally introduced for infinite
populations in a deterministic environment. Therefore, they
were initially stated in terms of conditions that ensure local
(actually, asymptotic) stability of a resident strategy against
any mutant strategy, or local instability (actually, initial
invasion) of any resident strategy close enough to a given
population strategy following the introduction of any mutant
that brings the population strategy even closer.

In a stochastic environment, convergence to a constant
equilibrium from any given initial state occurs with some
probability. When this probability tends to 1 as the initial state
tends to the equilibrium, then the equilibrium is said to be
stochastically locally stable (SLS). On the other hand, when
this probability is always 0 for any initial state different from
the equilibrium, then the equilibrium is said to be stochastically
locally unstable (SLU). These conditions were studied by
Karlin and Liberman [20,21] in the framework of a one-
locus two-allele viability model for a random mating diploid
population undergoing discrete, nonoverlapping generations.
This framework corresponds to a linear game model in discrete
time with a symmetric payoff matrix for two pure strategies
used in random pairwise interactions. We have extended the
analysis to a general payoff matrix.

In the absence of stochastic perturbations on the payoffs,
it is well known that a fixed resident strategy is locally stable
against a mutant strategy introduced in small frequency if
the payoff of the resident strategy against itself exceeds the
payoff of the mutant strategy against the resident strategy, or
in case of equality, if the payoff of the resident strategy against
the mutant strategy exceeds the payoff of the mutant strategy
against itself. In the presence of stochastic perturbations, it is
expected values of functions of the payoffs that have to be
compared for the resident strategy to be SLS, either the ex-
pected values of the logarithm of the payoffs against the
resident strategy or, in case of equality of these payoffs, the
expected values of the ratio of the payoffs against the mutant
strategy over the common payoff against the resident strategy.
Assuming small enough perturbations, these conditions can be
expressed in terms of means, variances, and covariances of the
payoffs.

Under conditions on the random payoffs for a constant
interior equilibrium to exist, we have found a condition for this
equilibrium to be SLS. We have shown that this equilibrium
and both fixation states can be simultaneously SLS. This situ-
ation distinguishes game dynamics in a randomly fluctuating
environment from game dynamics in a constant environment
since, with constant payoffs, an interior equilibrium can
be locally stable only if both fixation states are locally
unstable [25].

In a constant environment, an evolutionarily stable strategy
(ESS) and a convergence stable strategy (CSS) with respect to
mixed strategies on two pure strategies correspond to a locally
stable equilibrium with respect to the dynamics involving the
two pure strategies. Both evolutionary concepts have been
extended to take into account random perturbations on payoffs
by using SLS and SLU conditions. We have shown that the
condition for a pure strategy to be stochastically evolutionarily
stable (SES) and stochastically convergence stable (SCS) is
more stringent than in a constant environment, while the
condition for a constant mixed strategy to be SES is less
stringent than the condition to be SCS which is less stringent
than the condition in a constant environment.

New phenomenons arise in game dynamics in a stochastic
environment, and these make it not only more complex but
also more interesting.
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APPENDIX

1. Proof of Result 1

We follow Karlin and Liberman [21] but with nonsymmet-
ric fitness parameters given by the entries of the payoff matrix
[Eq. (1)]. It is easy to check that Eq. (7) can be written in the
form

ut+1

ut

= bt

dt

[
1 + ut (atdt − btct )

utbtct + btdt

]
, (A1)

from which

1

n
(log un − log u0) = 1

n

n−1∑
t=0

log

(
bt

dt

)

+ 1

n

n−1∑
t=0

log

[
1 + ut (atdt − btct )

utbtct + btdt

]
,

(A2)

for n � 1. Let

μ = E

[
log

(
bt

dt

)]
= E(log bt ) − E(log dt ), (A3)

and define

E =
{

1

n

n−1∑
t=0

log

(
bt

dt

)
→ μ

}
. (A4)

The strong law of large numbers garantees that P(E) = 1. If
ut → 0, then

log

[
1 + ut (atdt − btct )

utbtct + btdt

]
→ 0, (A5)
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since at ,bt ,ct ,dt are assumed to be uniformly bounded below
and above by positive constants. Under these conditions,
Eq. (A2) implies that

lim
n→∞

1

n

n−1∑
t=0

log

(
bt

dt

)
� 0 (A6)

if this limit exists. This is not possible in the set E if μ > 0.
In this case, we conclude that

P(ut → 0) � P(EC) = 0. (A7)

This means that û = 0 is stochastically locally unstable if
μ > 0.

Now consider the case where μ < 0. By the strong law
of large numbers and Egorov’s theorem, for any ε > 0, there
exists an integer N � 1 such that the probability of the event

F =
{

1

n

n−1∑
t=0

log

(
bt

dt

)
<

μ

2
, ∀ n � N

}
(A8)

satisfies

P(F ) � 1 − ε. (A9)

On the other hand, using the assumption that A �
at ,bt ,ct ,dt � B for some constants A,B > 0, there exists
δ > 0 such that

log

[
1 + ut (atdt − btct )

utbtct + btdt

]
< −μ

4
(A10)

as soon as ut < δ. Moreover, Eq. (7) leads to

ut+1 � ut

(
utB + B

utA + A

)
= ut

(
B

A

)
� u0

(
B

A

)t+1

, (A11)

for t � 0. Therefore, there exists 0 < δ0 < δ such that ut < δ

for t = 0,1, . . . ,N − 1 as soon as u0 < δ0. As a consequence,
Eq. (A2) for n = N and Eq. (A10) yield

1

N
(log uN − log u0) <

μ

2
− μ

4
= μ

4
< 0 (A12)

in the set F as soon as u0 < δ0, which implies that

uN < u0 < δ, (A13)

and by recurrence that un < δ for all n � N .
It remains to show that un → 0 in F if u0 < δ0 as claimed

in Karlin and Liberman [21], since then

P (un → 0) � P (F ) � 1 − ε. (A14)

It suffices to notice that Eq. (A2) for all n � N under the above
conditions gives

1

n
(log un − log u0) <

μ

4
< 0, (A15)

from which

log un < log u0 + nμ

4
→ −∞. (A16)

This means that un → 0, which completes the proof.

2. Proof of Result 2

Assuming bt = dt , the recurrence equation Eq. (7) with the
change of variables vt = 1/ut becomes

vt+1 = vt

(
ct + dtvt

at + dtvt

)
, (A17)

from which

vt+1 − vt =
(

ct

dt

− at

dt

)
−

at

dt

(
1 − at

ct

)
at

ct
+ dt

ct
vt

(A18)

for t � 0, and therefore

1

n
(vn − v0) = 1

n

n−1∑
t=0

(
ct

dt

− at

dt

)
− 1

n

n−1∑
t=0

at

dt

(
1 − at

ct

)
at

ct
+ dt

ct
vt

(A19)

for n � 1. Defining

E =
{

1

n

n−1∑
t=0

(
ct

dt

− at

dt

)
→ μ

}
, (A20)

where

μ = E

(
ct

dt

− at

dt

)
= E

(
ct

dt

)
− E

(
at

dt

)
, (A21)

we conclude as in the proof of Result 1 that

P(vt → +∞) � P(EC) = 0 (A22)

if μ < 0. On the other hand, if μ > 0, then there exist an
integer N � 1 and a real number � > 0 such that

F =
{

1

n

n−1∑
t=0

(
ct

dt

− at

dt

)
>

μ

2
, ∀ n � N

}
(A23)

satisfies P(F ) � 1 − ε for any given ε > 0, and

−
at

dt

(
1 − at

ct

)
at

ct
+ dt

ct
vt

> −μ

4
(A24)

as soon as vt > �, which is the case for t = 0,1, . . . ,N − 1
as soon as v0 > �0 for some �0 > � since

vt+1 � vt

(
A+ Avt

B + Bvt

)
= vt

(
A

B

)
> v0

(
A

B

)t+1

> v0

(
A

B

)N

.

(A25)

Then, as in the proof of Result 1, it can be shown that we have
vn > � for all n � N and vn → +∞ in F as soon as v0 > �0,
from which

P (vn → +∞) � P (F ) � 1 − ε (A26)

as soon as v0 > �0.

3. Proof of Result 3

With the payoffs given by the entries of the game matrix
[Eq. (19)], the recurrence equation [Eq. (5)] can be written in
the form

ut+1 = ut

(
utct + utzt + bt

utct + ûzt + bt

)
, (A27)
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from which it is easy to get

ut+1 − û = (ut − û)

(
utct + utzt + ûzt + bt

utct + ûzt + bt

)

= (ut − û)

(
utat + dt

utct + dt

)
. (A28)

In particular, this ensures that ut+1 − û > 0 if ut − û > 0,
and ut+1 − û < 0 if ut − û < 0. Moreover, some algebraic
manipulations lead to

utat + dt

utct + dt

=
(

ûat + dt

ûct + dt

)

×
[

1 − dtzt (ut − û)

(ûat + dt )(ûct + dt + (ut − û)ct )

]
.

(A29)

In order to conclude, it suffices to proceed as in the proof of
Result 1 and to note that

log

(
ûat + dt

ûct + dt

)
= − log

(
ûct + dt

ûat + dt

)

= − log

[
1 − x̂zt

x̂at + (1 − x̂)dt

]
. (A30)

4. Proof of Result 4

For x̂ = (0,1), x = (x,1 − x) and A(t) = Ā + B(t) as in
Eq. (24), we find

d̄ = E[x̂A(t)x̂] = ā22,

b̄ = E[xA(t)x̂] = ā22 + x(ā12 − ā22),
(A31)

σ 2
d = E[(x̂B(t)x̂)2] = σ 2

22,

σ 2
b = E[(xB(t)x̂)2] = (1 − x)2σ 2

22 + x2σ 2
12.

Condition Eq. (12) for x̂ fixation to be SLS against x if the
variances are small enough becomes

log

[
1 + x

(
a12 − a22

a22

)]

<
1

2

{
(1 − x)2σ 2

22 + x2σ 2
12

[a22 + x(a12 − a22)]2 − σ 2
22

a2
22

}
. (A32)

This condition reduces to

x

(
a12 − a22

a22

)
< −x

(
a12σ

2
22

a3
22

)
(A33)

for x > 0 small enough. This condition is equivalent to

a2
22(a12 − a22) > a12σ

2
22, (A34)

which is the same as condition Eq. (26). The reversed
inequality ensures that x̂ fixation is SLU.

Next, we study stochastic convergence stability. Consider
a strategy x̃ = (x̃,1 − x̃) with x̃ > 0 near the pure strategy
x̂ = (x̂,1 − x̂) = (0,1). Given another strategy x = (x,1 − x),
the payoff matrix for x and x̃ in this order is given by(

at bt

ct dt

)
=

(
xA(t)x xA(t)x̃
x̃A(t)x x̃A(t)x̃

)
, (A35)

where A(t) = Ā + B(t) as in Eq. (24). We find

d̄ = E[x̃A(t)x̃] = x̃2ā11 + x̃(1 − x̃)(ā12 + ā21) + (1 − x̃)2ā22,

b̄ = E[xA(t)x̃] = xx̃ā11 + x(1 − x̃)ā12 + (1 − x)x̃ā21

+ (1 − x)(1 − x̃)ā22, (A36)

and

σ 2
d = E[{x̃B(t)x̃}2]

= x̃4σ 2
11 + x̃2(1 − x̃)2

(
σ 2

12 + σ 2
21

) + (1 − x̃)4σ 2
22,

σ 2
b = E[{xB(t)x̃}2]

= x2x̃2σ 2
11 + x2(1 − x̃)2σ 2

12 + (1 − x)2x̃2σ 2
21

+ (1 − x)2(1 − x̃)2σ 2
22. (A37)

Defining �x = x − x̃, the above expressions lead to

b̄ − d̄ = −g1(x̃)�x,
(A38)

σ 2
b − σ 2

d = −2h1(x̃)�x + o(�x),

where

g1(x̃) = (ā22 − ā12) + (ā21 − ā11 + ā12 − ā22)x̃, (A39)

h1(x̃) = −x̃3σ 2
11 − x̃(1 − x̃)σ 2

12 + x̃2(1 − x̃)σ 2
21

+ (1 − x̃)3σ 2
22. (A40)

With small enough variances, strategy x̃ is SLU against
strategy x if

log

(
b̄

d̄

)
>

1

2

(
σ 2

b

b̄2
− σ 2

d

d̄2

)
, (A41)

where

log

(
b̄

d̄

)
= log

(
1 + b̄ − d̄

d̄

)
= log

[
1 − g1(x̃)

d̄
�x

]

= −g1(x̃)

d̄
�x + o(�x),

(A42)

while

1

2

(
σ 2

b

b̄2
− σ 2

d

d̄2

)
= σ 2

b

2d̄2

[
1

1 + (b̄ − d̄)/d̄

]2

− σ 2
d

2d̄2

= σ 2
b

2d̄2

[
1 + g1(x̃)

d̄
�x

]2

− σ 2
d

2d̄2
+ o(�x)

= σ 2
b − σ 2

d

2d̄2
+ σ 2

b g1(x̃)

d̄3
�x + o(�x)

= −h1(x̃)

d̄2
�x + σ 2

d g1(x̃)

d̄3
�x + o(�x).

(A43)

If �x < 0 and |�x| small enough, then condition Eq. (A41)
is equivalent to (

d̄2 + σ 2
d

)
g1(x̃) > d̄h1(x̃). (A44)

For x̃ close enough to x̂, this condition reduces to(
ā2

22 + σ 2
22

)
(ā22 − ā12) > σ 2

22ā22, (A45)
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which is equivalent to Eq. (26). On the contrary, if �x > 0,
then strategy x̃ is SLS against strategy x.

5. Proof of Result 5

Dropping the mention of the time step to simplify the
notation, let A = (aij ) be a stochastic game matrix with
a11 = a21 + z and a22 = a12 + ûz where û = x̂/(1 − x̂) > 0.
The payoff of the mixed strategy x = (x,1 − x) against x̂ =
(x̂,1 − x̂) is then given by

b = xAx̂ = a21x̂ + zx̂ + a12(1 − x̂), (A46)

which does not depend on x. Therefore, it is the same as the
payoff of x̂ against itself, that is

d = x̂Ax̂ = b. (A47)

On the other hand, the payoff of x̂ = (x̂,1 − x̂) against x =
(x,1 − x) is

c = x̂Ax = x̂A(x − x̂) + x̂Ax̂ = x̂Aδ + d, (A48)

where δ = (δ, − δ) = (x − x̂,x̂ − x) = x − x̂, while the pay-
off of x = (x,1 − x) against itself is

a = xAx = (x − x̂)A(x − x̂) + x̂A(x − x̂) + xAx̂

= δAδ + x̂Aδ + d = δAδ + c. (A49)

Note that

δAδ = δ2(a11 − a12 − a21 + a22) = δ2(1 + û)z. (A50)

Therefore,

E
(a

d
− c

d

)
= E

(
δAδ

d

)
= δ2(1 + û)E

( z

d

)
. (A51)

According to Result 2, x̂ fixation is SLS if

E
( z

d

)
< 0, (A52)

and SLU if this inequality is reversed.
Let us write

a12 = ā12 + η12, a21 = ā21 + η21, z = z̄ + ζ, (A53)

where η21, η12, and ζ are independent random variables of
mean 0 and variances σ 2

21, σ 2
12, and σ 2

z , respectively, while
all higher-order centered moments are o(σ 2) where σ 2 =
max{σ 2

21,σ
2
12,σ

2
z }. Then we find

E
( z

d

)
= 1

d̄

[
z̄d̄2 + z̄σ 2

21x̂
2 + z̄σ 2

12(1 − x̂)2 − d̄σ 2
z x̂

]
+ o(σ 2), (A54)

where

d̄ = z̄x̂ + ā21x̂ + ā12(1 − x̂). (A55)

In the case where σ 2 is small enough, we conclude that x̂
fixation is SLS if

z̄d̄2 + z̄σ 2
21x̂

2 + z̄σ 2
12(1 − x̂)2 − d̄σ 2

z x̂ < 0, (A56)

and SLU if this inequality is reversed. This gives the condition
for x̂ to be a stochastically evolutionarily stable strategy
(SESS).

For stochastic convergence stability (SCS) of x̂, we consider
a strategy x̃ = (x̃,1 − x̃) near x̂ = (x̂,1 − x̂). Given another
strategy x = (x,1 − x), the payoff matrix for x and x̃ in this
order is, again, given by Eq. (A35). Therefore, the means of
the variables b and d, b̄ and d̄, have the same expressions
as in Eq. (A36), but with ā11 = ā21 + z̄ and ā22 = ā12 + ûz̄.
Defining �x = x − x̃ and �x̂ = x̂ − x̃, the difference of the
means is found to be

b̄ − d̄ = −g2(x̃)�x, (A57)

where

g2(x̃) = z̄[û − (1 + û)x̃] = (1 + û)�x̂. (A58)

On the other hand, since

d = x̃2(a21 + z) + x̃(1 − x̃)(a12 + a21) + (1 − x̃)2(a12 + ûz)

= (1 − x̃)a12 + x̃a21 + [x̃2 + û(1 − x̃)2]z,

b = xx̃(a21 + z) + x(1 − x̃)a12 + x̃(1 − x)a21

+ (1 − x)(1 − x̃)(a12 + ûz)

= (1 − x̃)a12 + x̃a21 + [xx̃ + û(1 − x)(1 − x̃)]z, (A59)

where a12,a21, and z are independent random variables, the
variances of b and d are given by

σ 2
d = (1 − x̃)2σ 2

12 + x̃2σ 2
21 + [x̃2 + û(1 − x̃)2]2σ 2

z ,

σ 2
b = (1 − x̃)2σ 2

12 + x̃2σ 2
21 + [xx̃ + û(1 − x)(1 − x̃)]2σ 2

z .

(A60)

Writing x = x̃ + �x and x̃ = x̂ − �x̂, the difference of the
variances is found to be

σ 2
b − σ 2

d = −2h2(x̃)�x + o(�x), (A61)

where

h2(x̃) = σ 2
z [x̃2 + û(1 − x̃)2][û(1 − x̃) − x̃]

= σ 2
z [x̂2 + û(1 − x̂)2]�x̂ + o(�x̂)

= σ 2
z (1 + û)x̂�x̂ + o(�x̂). (A62)

Analogously to the conclusion drawn in the proof of Result 4,
if �x in absolute value and the variances are small enough,
then strategy x̃ is SLU against strategy x if(

d̄2 + σ 2
d

)
g2(x̃)�x < d̄h2(x̃)�x, (A63)

where

σ 2
d = (1 − x̂)2σ 2

12 + x̂2σ 2
21 + x̂2σ 2

z + O(�x̂). (A64)

If �x̂ is small enough and such that (�x)(�x̂) > 0, which
means that sgn(x − x̃) = sgn(x̂ − x̃), then Eq. (A63) reduces
to

z̄d̄2 + z̄σ 2
21x̂

2 + z̄σ 2
12(1 − x̂)2 + z̄x̂2σ 2

z − d̄σ 2
z x̂ < 0. (A65)

If either �x̂ or �x changes sign, then the reverse inequality
is obtained, which means that strategy x̃ is SLS against
strategy x.
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