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A B S T R A C T

Based on the classic imitation dynamics (Hofbauer and Sigmund, 1998, Evolutionary Games and Population
Dynamics, Cambridge University Press), the imitation dynamics with time delay is investigated, where the
probability that an individual will imitate its opponent's own strategy is assumed to depend on the comparison
between the past expected payoff of this individual's own strategy and the past expected payoff of its opponent's
own strategy, i.e. there is a time delay effect. For the two-phenotype model, we show that if the system has an
interior equilibrium and this interior equilibrium is stable when there is no time delay, then there must be a
critical value of time delay such that the system tends to a stable periodic solution when the time delay is larger
than the critical value. On the other hand, for three-phenotype (rock-scissors-paper) model, the numerical
analysis shows that for the stable periodic solution induced by the time delay, the amplitude and the period will
increase with the increase of the time delay. These results should help to understand the evolution of behavior
based on the imitation dynamics with time delay.

1. Introduction

In the evolutionary game theory, the imitation dynamics provides a
fundamental theoretical framework to investigate how the spreading of
successful strategies is more likely to occur through imitation than
through inheritance (Hofbauer and Sigmund, 1998; Weibull, 1995;
Schlag, 1994, 1998; Vilone et al., 2012). Similar to the standard
evolutionary game dynamics, the classic imitation dynamics also
assume that the probability that an individual will imitate its oppo-
nent's own strategy depends instantaneously on the system state (i.e.
the frequencies of different phenotypes in the population), or an
individual's strategy not only depends on the current payoff of its
own strategy but also instantaneously on the current payoff of its
opponent's own strategy (Hofbauer and Sigmund, 1998). However, in
real system it should be very difficult to imitate the opponent's own
strategy in a moment according to the comparison between the current
payoff of an individual's own strategy and the current payoff of its
opponent's own strategy. So, a more reasonable assumption should be
that an individual is able to imitate its opponent's own strategy with a
certain probability according to the comparison between the past
payoff of its own strategy and the past payoff of its opponent's own
strategy. This assumption strongly implies that the effect of time delay
should be considered in the imitation dynamics.

In fact, the replicator dynamics with time delay has been considered
by some authors (Tao and Wang, 1997; Alboszta and Mie-kisz, 2004;

Wesson and Rand, 2016). Their results show clear that the time delay
will be able to change the dynamic properties of the evolutionary game,
or the effect of time delay may be also an important factor for us to
understand the evolution of behavior. In the previous studies, the key
assumption is that the fitness of an individual depends on its expected
payoff at a given past time. For the imitation dynamics with time delay,
we are more interested in how the probability that an individual will
imitate his opponent's strategy depends on the relative size of
difference between their expected payoffs at a given past time. In this
paper, the imitation dynamics with time delay is investigated. Our main
is to show what will happen in an imitation dynamics when the effect of
time delay is considered. The paper is organized as: the stability of a
two-phenotype imitation dynamics with time delay is first analytically
investigated in Subsection 2.1, where we define that the probability
that an individual will imitate its opponent's own strategy (or will not
change its own strategy) is proportional to the past payoff of its
opponent's own strategy (or its own strategy); in Subsection 2.2 a
three-phenotype imitation dynamics is considered, where, as an
example, only the rock-scissors-paper game is investigated using
numerical analysis; and in Section 3 we summarize our results and
compare with the related previous studies dealing with replicator
dynamics with time delay.
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2. Models and analysis

2.1. Two-phenotype imitation dynamics with time delay

We first consider a symmetric two-phenotype model with pure

strategies S1 and S2, and with payoff matrix
a a
a a

11 12
21 22

⎛
⎝⎜

⎞
⎠⎟, where aij is the

payoff of an individual using phenotype Si when it plays against an
individual using phenotype Sj for i j, = 1, 2. For convenience and
without loss of generality, we assume a ≥ 0ij for i j, = 1, 2. Let x denote
the frequency of phenotype S1. Then, the expected payoff of phenotype
Si, denoted by fi, can be given by f xa x a= + (1 − )i i i1 2 for i = 1, 2
(Maynard Smith, 1982; Hofbauer and Sigmund, 1998).

Basically, the classic imitation dynamics (Hofbauer and Sigmund,
1998) assumes that occasionally an individual is picked out of the
population and afforded the opportunity to change his strategy. He
samples another individual at random and adopts (or imitates) his
strategy with a certain probability. Specifically, when an individual
using phenotype Si plays against an individual using phenotype Sj, the
probability (or the imitation rate) that the Sj-strategist switches to Si is
denoted by Fij for i = 1, 2. Furthermore, it is assumed that the imitation
rate Fij depends on the current expected payoffs f x( )i and f x( )j :

F x F f x f x( ) = ( ( ), ( ))ij i j (1)

for i j, = 1, 2, where the function F u v( , ) defines the imitation rule (the
same for all individuals). Then, the time evolution of x can be easily
given by

x x F x F x
x x F f x f x F f x f x

= (1 − )( ( ) − ( ))
= (1 − )( ( ( ), ( )) − ( ( ), ( )))

dx
dt 12 21

1 2 2 1 (2)

(Hofbauer and Sigmund, 1998).
In this study, based on the rule “individual is more likely to imitate

the better”, we take F u v u u v( , ) = /( + ), i.e. we define F f f f= /( + )12 1 1 2
and F f f f= /( + )21 2 1 2 (i.e. F12 is proportional to f1 and F21 proportional to
f2). On the other hand, for our main goal, we also assume that the
imitation rate (F12, F21) at time t depends on the expected payoffs at
time t τ− (where τ denotes the time delay), i.e. we take

F x t τ

F x t τ

( ( − )) = ,

( ( − )) = .

f x t τ
f x t τ f x t τ

f x t τ
f x t τ f x t τ

12
( ( − ))

( ( − )) + ( ( − ))

21
( ( − ))

( ( − )) + ( ( − ))

1

1 2

2

1 2 (3)

Thus, Eq. (2) can be rewritten as a time-delay differential equation,
or an imitation dynamics with time-delay

x t x t F x t τ F x t τ

x t x t

= ( )(1 − ( ))( ( ( − )) − ( ( − )))

= ( )(1 − ( )) .

dx t
dt

f x t τ f x t τ
f x t τ f x t τ

( )
12 21

( ( − )) − ( ( − ))
( ( − )) + ( ( − ))

1 2

1 2 (4)

For Eq. (4), it is easy to see that an interior equilibrium exists if and
only if a a>11 21 and a a>22 12, or a a<11 21 and a a<22 12, which is given
by

x a a
a a a a

* = −
− + −

.12 22

12 22 21 11 (5)

Obviously, if a a a a a a( − )/( − + − ) ∉ (0, 1)12 22 12 22 21 11 (i.e. no inter-
ior equilibrium can exist), then the boundary x = 0 must be globally
asymptotically stable if a a<11 21 and a a<12 22, or the boundary x = 1 is
globally asymptotically if a a>11 21 and a a>12 22. For the situation with
x* ∈ (0, 1)(i.e., the interior equilibrium exists), Eq. (4) can be re-
expressed as

dx t
dt

A
A

x t τ x
x t τ A

x t x t( ) = ⋅ ( − ) − *
( − ) +

( )(1 − ( )),1

2 3 (6)

where A a a a a= − − +1 11 12 21 22, A a a a a= − + −2 11 12 21 22 and
A a a A= ( + )/3 12 22 2.

To show the stability of x*, let z x x= − * (i.e. z t x t x( ) = ( ) − * and

z t τ x t τ x( − ) = ( − ) − *). Then, we have that

dz t
dt

A
A

z t τ
z t τ x A

z t x z t x( ) = ⋅ ( − )
( − ) + * +

( ( ) + *)(1 − ( ) − *).1

2 3 (7)

Notice that the Taylor expansion of Eq. (7)around z = 0 can be
expressed as

dz t
dt

Bz t τ A
A

x
x A

z t z t τ A
A

x x
x A

z t τ

( ) = − ( − ) + 1 − 2 *
* +

( ) ( − ) −
*(1− *)

( * + )

( − ) +…,

1

2 3

1

2 3
2

2

where B A x x A x A= − *(1 − *)/( ( * + ))1 2 .
Thus, the linear approximation of Eq. (7) around z = 0 can be given

by

dz t
dt

Bz t τ( ) ≈ − ( − ).
(8)

For this simple time-delay differential equation, its characteristic
equation can be easily given by

λ Be+ = 0λτ− (9)

(Murray, 1989) and if all solutions of this equation have a negative
real part (i.e. λRe < 0j for all j = 1, 2, ...), then z = 0, corresponding to
the interior equilibrium x* of Eq. (6), is asymptotically stable.
Conversely, if there are any solutions of Eq. (9) with λRe > 0, then
z = 0 is unstable.

For the solutions of Eq. (9), it is easy to see that if B < 0, then for
any τ > 0 Eq. (9) must have a positive real solution. Thus, z = 0 must
be unstable if B < 0. On the other hand, for the situation with B > 0,
some previous studies (May, 1973; Murray, 1989; Gopalsamy, 1992;
etc.) have shown that all possible solutions of Eq. (9) have a negative
real part if and only if Bτ π< /2, and that the real parts of all solutions
of Eq. (9) equal exactly zero if Bτ π= /2. So, z = 0 is asymptotically
stable if B π τ0 < < /2 .

From the above analysis, we know that the interior equilibrium of
the time-delay imitation dynamics Eq. (6),x*, is asymptotically stable if
and only if

B

τ

= > 0,

< =

= .

x x a a a a
x a a a a a a
π
B

π x a a a a a a
x x a a a a

π a a a a
a a a a

*(1 − *)( − + − )
*( − + − ) + ( + )

2
[ *( − + − ) + ( + )]

2 *(1 − *)( − + − )
( − )

( − )( − )

12 22 21 11
11 12 21 22 12 22

11 12 21 22 12 22
12 22 21 11

12 21 11 22
12 22 21 11 (10)

Here, we can also see that if a a>12 22 and a a>21 11, then we must have
B > 0. Thus, the interior equilibrium x* is stable if not only the payoff
matrix satisfies a a>12 22 and a a>21 11 but also the time delay τ satisfies
τ π a a a a a a a a< ( − )/[( − )( − )]12 21 11 22 12 22 21 11 . This result is also exactly
similar to Tao and Wang's (1997) results about the stability of
evolutionary game dynamics with time delay. For an example with

payoff matrix 1 4
3 2

⎛
⎝⎜

⎞
⎠⎟, the interior equilibrium is x* = 1/2, and the

interior equilibrium is stable if τ π< 5 /2. However, if τ π> 5 /2, then the
dynamics Eq. (6) will display a periodic solution around the interior
equilibrium x* = 1/2, and the amplitude of the periodic solution will
increase with the increase of τ (see Fig. 1). This implies that the time
delay will have a profound impact on the dynamical properties of the
imitation system Eq. (6).

2.2. Three-phenotype imitation dynamics with time delay

We now consider a three-phenotype model with three phenotypes

denoted by Si for i = 1, 2, 3 and with payoff matrix
a a a
a a a
a a a

11 12 13
21 22 23
31 32 33

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ where

we still assume that aij is positive for all i j, = 1, 2, 3. Let xi denote the

frequency of Si and fi the expected payoff of Si with f x ax( ) = ∑i j j ij=1
3 for

i = 1, 2, 3, where x x xx = ( , , )1 2 3 with x∑ = 1i i=1
3 . Similar to the defini-

tion in the two-phenotype model, when an individual using phenotype
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Si plays against an individual using phenotype Sj at time t , the
probability (the imitation rate) that the Sj-strategist switches to Si is
defined as

F t τ
f t τ

f t τ f t τ
x

x
x x

( ( − )) =
( ( − ))

( ( − )) + ( ( − ))ij
i

i j (11)

for i j, = 1, 2, 3. Thus, the time-delay imitation dynamics with three
phenotypes can be given by

x t x t F t τ F t τ

x t x t

x= ( )∑ ( )( (x( − )) − ( ( − )))

= ( )∑ ( )

dx t
dt i j i j ij ji

i j i j
f t τ f t τ

f t τ f t τ

x x
x x

( )
≠

≠
( ( − )) − ( ( − ))

( ( − )) + ( ( − ))

i

i j

i j

⎡
⎣⎢

⎤
⎦⎥ (12)

for i = 1, 2, 3 (Hofbauer and Sigmund, 1998).
For the time-delay imitation dynamics (12), as an example,

only a rock-scissors-paper game with payoff matrix
c c c s

c s c c
c c s c

− 1 +
+ − 1
− 1 +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟(where s > − 1 and c > 1) is investigated using

numerical analysis, where S1, S2 and S3 represent the strategies rock,
scissors and paper, respectively (Wesson and Rand, 2016). For this
system, it is easy to see that the interior equilibrium is
x* = (1/3, 1/3, 1/3). We here take s = 5 and c = 2. The numerical
analysis shows that the interior equilibrium x* is asymptotically stable
when τ = 0 and τ = 0.5 (see Fig. 2). However, when
τ = 1.5,τ = 2,τ = 2.5,τ = 3, τ = 3.5 and τ = 4, the system state tends to
a stable periodic solution (see Fig. 2). This result strongly implies that

Fig. 1. Effect of time delay on the two-phenotype imitation dynamics. In this example,

the payoff matrix is taken as 1 4
3 2

⎛
⎝⎜

⎞
⎠⎟ and the interior equilibrium is x* = 1/2. The

numerical analysis of Eq. (6) (with initial x = 0.4) also shows clearly that when τ π< 5 /2,
the system state will converge to the equilibrium point x* = 1/2 with damped oscillation
(red curve with τ = 0, blue curve with τ = 7); and when τ π> 5 /2, the system state will
converge to a stable periodic solution (green curve with τ = 10). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Effect of time delay on a three-phenotype imitation dynamics based on the rock- scissors-paper game. For the payoffmatrix
c c c s

c s c c
c c c

− 1 +
+ − 1
− 1 + 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ with s = 5 and c = 2, and with

initial x = 0.11 and x = 0.62 , the interior equilibrium x* = (1/3, 1/3, 1/3) is asymptotically stable when τ = 0, or τ = 0.5, and the system state tends a stable periodic solution when

τ = 1.5,τ = 2,τ = 2.5,τ = 3, τ = 3.5 and τ = 4.
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there should be a critical value of τ , denoted by τ∼, such that the interior
equilibrium x* is stable if τ τ< ∼. We also see that the system will have a
stable periodic solution if τ τ> ∼, and the amplitude and the period of
this stable periodic solution will increase with the increase of τ (Fig. 3).

3. Conclusion

In this study, the imitation dynamics with time delay is investigated,
where the probability that an individual with its own strategy i will imitate
its opponent's own strategy j is defined as f t τ f t τ f t τ( − )/[ ( − ) + ( − )]j i j ,
where f t τ( − )k denotes the expected payoff of an individual using strategy
k at time t τ− ; and, similarly, the probability that an individual with its
own strategy i will not imitate its opponent's own strategy j is defined as
f t τ f t τ f t τ( − )/[ ( − ) + ( − )]i i j . For the two-phenotype model, our results
show clearly that if the payoff matrix satisfies a a>12 22 and a a>21 11,
then the interior equilibrium x a a a a a a* = ( − )/( − + − )12 22 12 22 21 11 must
be asymptotically stable if the time delay τ satisfies the inequality
τ π a a a a a a a a< ( − )/(( − )( − ))12 21 11 22 12 22 21 11 , where the term
π a a a a a a a a( − )/(( − )( − ))12 21 11 22 12 22 21 11 is a critical value of τ . When
the time delay is larger than this critical value, the system sate will display
a stable periodic solution. This result is exactly similar to a previous study
(Tao and Wang, 1997) on the two-phenotype replicator dynamics with
time delay. Furthermore, as an example, we investigated a three-pheno-
type (rock-scissors-paper) imitation dynamics with time delay using
numerical analysis, and we found that for the stable periodic solution
induced by the time delay and the amplitude will increase with the increase
of the time delay. All of our results in this study only provide a small
window for revealing the effect of time delay on the imitation dynamics.
Our model should be also extended to the stochastic imitation dynamics
with time delay in a finite population (Blume, 1993; Szabó and T̋ oke,
1998; Wu et al., 2015).
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