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The limiting similarity of competitive species and its relationship with the competitive exclusion principle is
still one of the most important concepts in ecology. In the 1970s, May [R. M. May, Stability and Complexity
in Model Ecosystems (Princeton University, Princeton, NJ, 1973)] developed a concise theoretical framework to
investigate the limiting similarity of competitive species. His theoretical results show that no limiting similarity
threshold of competitive species can be identified in the deterministic model system whereby species more similar
than this threshold never coexist. Theoretically, for competitive species coexisting in an unvarying environment,
deterministic interspecific interactions and demographic stochasticity can be considered two sides of a coin. To
investigate how the “tension” between these two forces affects the coexistence of competing species, a simple
two-species competitive system based only on May’s model system is transformed into an equivalent replicator
equation. The effect of demographic stochasticity on the system stability is measured by the expected drift of
the Lyapunov function. Our main results show that the limiting similarity of competitive species should not be
considered to be an absolute measure. Specifically, very similar competitive species should be able to coexist in an
environment with a high productivity level but big differences between competitive species should be necessary
in an ecosystem with a low productivity level.
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I. INTRODUCTION

The competitive exclusion principle, or the limiting sim-
ilarity of competitive species, is one of the basic concepts
in ecology, which states that species making their living
in identical ways cannot coexist [1–3]. This concept not
only relates the most fundamental mechanism of long-term
coexistence of competitive species (or biodiversity) in an
ecosystem but also provides a basic theoretical cornerstone
for understanding ecosystem stability and complexity [1–3].
Based on the concept of ecological niche [4], May measured
the similarity of competing species in terms of their niche
overlap in his model system [1]. His result shows clearly
that, when the environment is assumed to be unvarying (or
static), the limiting similarity of competing species cannot be
identified in his model system.

Specifically, in May’s model [1], bell-shaped Gaussian
curves are used to represent the utilization functions for each of
two competing species, aligned along some one-dimensional
resource axis. Each species has a preferred location on the
resource axis, a spread of characteristic width, ω, about this
optimal location, and the two species’ optima are separated
by a distance, d. The resource-utilization functions (Gaussian
curves) define the species’ niches and the niche overlap can
be measured by the ratio ω/d. Based on these assumptions
and definitions, MacArthur and May [5] asked what are
the limits to similarity by considering how small d can
be, in relation to ω, and yet have the two species persist
together. Further, for a set of n species uniformly spaced at
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intervals along the resource continuum and obeying the Lotka-
Volterra competition equations, the competition coefficients
are calculated from the overlap in the uniformly spaced niches:
the competition coefficient αij between species i and j , whose
mean utilizations are separated by |i − j |d, is α(i−j )2

, where
α = exp ( − d2/4ω2). May and MacArthur showed clearly that
this system is always stable, no matter how small d/ω, since the
eigenvalues of the linearized interaction matrix have negative
real parts. Moreover, they show that the dominant eigenvalue
has a real part which becomes increasingly negative as species
numbers, n, increase, whereas the other n − 1 eigenvalues
have negative real parts which creep close to zero [1,5,6].
Thus, as n increases, with consequent increase in niche overlap
and decrease in d/ω, individual populations are less stable.
However, as apparent from the related literature [7], none of
the theoretical results so far that are based only on May’s
basic model provide a clear answer to MacArthur and May’s
question [5] without introducing new assumptions to the model
or increasing its complexity. In this article, we argue the
answer for the basic model can be understood through the
relationship between deterministic interspecific interactions
and demographic stochasticity.

Theoretically, for the long-term coexistence of competitive
species in a static environment, the deterministic interspecific
interactions and demographic stochasticity should be consid-
ered two sides of a coin. In essence, the competitive exclusion
principle (or limiting similarity of competitive species) reflects
the balance between deterministic force and random force in
an interspecific competition system, i.e., the power contrast
between deterministic and random forces. Thus, the key
question is not only to show which one of these two sides is
more important in determining the coexistence of competitive
species but also to reveal how system stability is influenced by
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demographic stochasticity. As an extreme situation, instead of
looking for differences between species, Hubbell asked what
would be observed if species are exactly the same as one
another [6,8,9]. Although Hubell’s neutral community theory
is considered to be a modern descendent of the null-hypothesis
movement and the corresponding neutral model is highly
sensitive to the neutrality assumption [6], we are still interested
in why this extreme assumption may actually predict some of
the most conspicuous patterns in large-scale ecology [6,8,10].

As mentioned above, in this article, we take only May’s
basic model system as the foundation [1,2] to reveal how the
stability of a two-species competitive system is influenced
by demographic stochasticity. As we will see, our underlying
mathematical methods are similar to Claussen and Traulsen’s
study on the dynamic stability of the rock-paper-scissors
game [11].

II. MODEL AND ANALYSIS

A. Stochastic simulation of a two-species competitive system

Here we focus our attention on the simplest two-species
competitive system described by the classic Lotka-Volterra
equation:

dN1

dt
= N1r1

(
1 − N1 + α1N2

K1

)
,

dN2

dt
= N2r2

(
1 − α2N1 + N2

K2

)
, (1)

where Ni , ri , and Ki are the population size, intrinsic
growth rate, and environmental carrying capacity of species
i, respectively (i = 1 and 2), and α1 (α2) is the competition
coefficient of species 2 (species 1) [1,2]. This deterministic
system is one of the most important theoretical models
in ecology, which in the most general sense describes the
characteristics of interspecific competition. Following May’s
model [1,2], we also assume that r1 = r2 = r , K1 = K2 =
K , and α1 = α2 = α, where the competition coefficient α

is taken as α = exp ( − d2/4ω2), which lies in the interval
0 � α � 1 [1,2]. Clearly, the parameter α also measures the
similarity of species 1 and species 2; i.e., species 1 and
species 2 are independent of each other if α = 0, and they are
completely identical in ecology if α = 1. It is easy to see that
the equilibrium point (N∗

1 ,N∗
2 ) with N∗

1 = N∗
2 = K/(1 + α)

of this simple two-species competition system is globally
asymptotically stable for all possible α < 1. In particular, the
eigenvalues of the Jacobian matrix about (N∗

1 ,N∗
2 ) are λ1,2 =

r(−1 ± α)/(1 + α), which, as pointed out by May [1,2], are
both negative and satisfy lim

α→1
λ1 = 0 and lim

α→1
λ2 = −r .

When demographic stochasticity is added to this simple
two-species competitive system, the stochastic simulations
described below that are based on the one-step process
[12] and Moran’s process [13], respectively, reveal how the
long-term coexistence of competing species depends on the
species similarity and environmental carrying capacity. For
the one-step process, we assume that the total system size
is not fixed and that, at each time step, only one new
individual is produced, or one existing individual dies. This
implies that the stochastic fluctuations in N1 and N2 can be
characterized by a birth-and-death Markov process with the

following events:

N1
rN1−−→ N1 + 1,

N1
rN1(N1+αN2)/K−−−−−−−−−→ N1 − 1,

N2
rN2−−→ N2 + 1,

N2
rN2(αN1+N2)/K−−−−−−−−−→ N2 − 1,

where the birth rate, rN1, and the mortality rate, rN1(N1 +
αN2)/K , of species 1 represent the relative transition prob-
abilities of N1; and, similarly, the birth rate, rN2, and the
mortality rate, rN2(αN1 + N2)/K , of species 2 represent
the relative transition probabilities of N2 [12]. For con-
venience, let W1 = r(N1 + N2), W2 = rN1(N1 + αN2)/K +
rN2(αN1 + N2)/K , T +

1 = rN1/W1, T +
2 = rN2/W1, T −

1 =
rN1(N1 + αN2)/K/W2, and T −

2 = rN2(αN1 + N2)/K/W2.
Then, we can define that, at each time step, the probability
that a new individual of species 1 (or species 2) is produced is
W1T

+
1 /(W1 + W2) [or W1T

+
2 /(W1 + W2)], or the probability

that an existing individual of species 1 (or species 2) dies is
W2T

−
1 /(W1 + W2) [or W2T

−
2 /(W1 + W2)]. On the other hand,

for the Moran process, we assume that the total system size
is fixed, which is defined as N1 + N2 = 2K/(1 + α) at any
time t , and that, at each time step, one new individual is
produced and one existing individual dies, where we define
a new individual of species 1 (or species 2) is produced with
probability T +

1 (or T +
2 ) and an existing individual of species 1

(or species 2) dies with probability T −
1 (or T −

2 ). At the initial
time, we set both species 1 and species 2 to the same size
K/(1 + α). The coexistence probability of competing species
in the simulation is defined as the probability that neither
species is excluded within a given time interval, where the
observed time scale is taken as 105 (which is the total length
of time steps [14]).

For the one-step process, the simulation results show clearly
that the coexistence probability has a clear separating band on
the K–α plane [Fig. 1(a), where the initial state of the system
is taken as (N∗

1 ,N∗
2 )] and that the coexistence probability

is very low on the upper left of the separating band, and,
conversely, the coexistence probability is very high on the
lower right of the separating band. This implies that for both
species similarity and environmental carrying capacity, the
coexistence probability has obvious critical characteristics.
Specifically, for a given environmental carrying capacity (K),
the coexistence probability will decrease with an increase of
species similarity (α) [see Fig. 1(b)], and, for a given species
similarity (α), the coexistence probability will increase as the
environmental carrying capacity increases (K) [see Fig. 1(c)].
All of these simulation results strongly imply that, under May’s
theoretical framework [1,2], the coexistence of competing
species depends not only on species similarity but also on the
environmental carrying capacity. The simulations also provide
a theoretical intuition for understanding how demographic
stochasticity acts on the stability of a competitive system.

Moreover, we can also see that the simulation results of the
Moran process are exactly similar to the results of the one-step
process [see Figs. 1(d)–1(f)]. This implies that we can use
the Moran process with fixed population size to approximate
the one-step process although the latter is more close to the
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FIG. 1. Stochastic simulations for the effects of species similarity (α) and environmental carrying capacity (K) on the coexistence
probability. Panels (a), (b), and (c) show the simulation results of the one-step process, and panels (d), (e), and (f) show the simulation results
of the Moran process. Panels (a) and (d): The coexistence probability (indicated by the color corresponding to the vertical bar on the right) has
a rapid transition between 0 and 1 across a separating band in the K–α plane, where for each pair (K,α) the observed time scale is 105. Panels
(b) and (e): For a given K , the coexistence probability decreases with the increase of α. For example, when we take K = 50, K = 100, and
K = 150, respectively, panels (b) and (e) show how the coexistence probability drops rapidly from near 1 to near 0, in which the blue, green,
and red curves in panel (b) [or in panel (e)] correspond to the blue, green, and red vertical lines in panel (a) [or in panel (d)], respectively.
Panels (c) and (f): For given α, the coexistence probability increases with the increase of K . For example, when we take α = 0.5 and α = 0.7,
respectively, panels (c) and (f) show how the coexistence probability increases rapidly from near 0 to near 1, in which the red and green curves
in panel (c) [or in panel (f)] correspond to the red and green horizontal lines in panel (a) [or in panel (d)], respectively.

real system. On the other hand, we have to point out that
for our stochastic simulation results in Fig. 1, the thresholds
will change somewhat for longer or shorter time intervals. For
example, when we take 104 time steps (or 106 time steps),
the critical characteristics of coexistence probability on the
α–K plane will not change but the positions of the thresholds
will have a small parallel movement toward the left (or right).
Theoretically, for all possible K and α, if the time is infinite,
then the thresholds will disappear but coexistence will not be
possible because of random drift (where both the boundaries
N1 = 0 and N2 = 0 are absorbing states).

B. Effect of demographic stochasticity on coexistence stability

Previous studies [15,16] have shown that the Lotka-Volterra
equation can be equivalently expressed as a replicator equation
under the framework of evolutionary game dynamics. For our
simple two-species competitive system, let N3 be an instru-
mental variable with N3 ≡ 1. Then, the frequencies of species
1 and species 2 can be given by x1 = N1/(N1 + N2 + 1) and
x2 = N2/(N1 + N2 + 1), respectively, and the frequency of

the instrumental variable is x3 = 1/(N1 + N2 + 1). Based on
these definitions, we have that

dx1

dt
= d

dt

(
N1

N1 + N2 + 1

)

= x1
r

K
[(1 − x1)(K − N1 − αN2)

− x2(K − αN1 − N2)],

dx2

dt
= d

dt

(
N2

N1 + N2 + 1

)

= x2
r

K
[(1 − x2)(K − αN1 − N2)

− x1(K − N1 − αN2)],

dx3

dt
= d

dt

(
1

N1 + N2 + 1

)

= −x3
r

K
[x1(K − N1 − αN2) + x2(K − αN1 − N2)],
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FIG. 2. The effects of K and α on �H (x) . (a) For α = 0.5 and K = 50, 100, and 150, �H (x) is plotted as the function of x1. (b) For
K = 100 and α = 0.1, 0.5, and 0.9, �H (x) is plotted as the function of x1.

with N1 = x1/x3 and N2 = x2/x3. Thus, Eq. (1) becomes the
replicator equation

dxi

dt
= xi[(Ax)i − x · Ax] (2)

for i = 1, 2, and 3, where x = (x1,x2,x3) and

A =

⎛
⎜⎝

−r/K −rα/K r

−rα/K −r/K r

0 0 0

⎞
⎟⎠

is called the payoff matrix for the evolutionary game dy-
namics [15,16]. Under the evolutionary game dynamics,
the term (Ax)i = ∑3

j=1 xjaij in Eq. (2) can be also called
the expected payoff of species i for i = 1 and 2. It is
easy to see that the interior equilibrium of this replica-
tor equation, x∗ = (N∗

1 ,N∗
2 ,1)/(N∗

1 + N∗
2 + 1) = (K,K,1 +

α)/(2K + 1 + α), is globally asymptotically stable for all
possible 0 < α < 1. On the other hand, from the theory
of evolutionary game dynamics [15,17], the stable interior
equilibrium of Eq. (2), x∗, is an evolutionarily stable strategy
(ESS) for the payoff matrix A (the straightforward proof is
shown in the Appendix). Thus, the Lyapunov function of the
replicator equation, Eq. (2), can be given by

H (x) = −
3∏

i=1

x
x∗

i

i , (3)

since dH (x)/dt < 0 for all possible x but x �= x∗ [15]. H (x) −
H (x∗) is interpreted as a measure of how far the system is from
equilibrium.

To show the effect of demographic stochasticity on the
system stability, based on the Moran process, we assume that
the total system size is a fixed constant, which is taken to be the
equilibrium size N1 + N2 = 2K/(1 + α). According to this
assumption, the change of system state can be considered to
be a birth-and-death process. That is, the change from (N1,N2)
to (N1 ± 1,N2 ∓ 1) is equivalent to the change from (x1,x2,x3)
to (x1 ± x3,x2 ∓ x3,x3). Thus, the drift of H (x) at each time
step is

�H (x) = [H (x1 + x3,x2 − x3,x3) − H (x)]T +
1 T −

2

+ [H (x1 − x3,x2 + x3,x3) − H (x)]T −
1 T +

2 . (4)

[11]. Obviously, the strong deterministic interspecific inter-
action should tend to make �H (x) negative, and the strong
stochastic effect should tend to make �H (x) positive.

The numerical results of �H (x) [where �H (x) is taken
as the function of x1 since x2 = 1 − x1 − x3 with x3 ≡ (1 +
α)/(2K + 1 + α)] show clearly how �H (x) is influenced by
the parameters K and α [see Fig. 2(a), in which we take
α = 0.5 and K = 50, 100, and 150, and see Fig. 2(b), in
which we take K = 100 and α = 0.1, 0.5, and 0.9]. That
is, they show how demographic stochasticity acts on the
coexistence stability of competitive species under different
system states. More specifically, when the system state x is
at the equilibrium x∗ = (x∗

1 ,x∗
2 ,x∗

3 ), species 1 and species 2
must have the same expected payoff, i.e., (Ax∗)1 = (Ax∗)2; and
when x is near x∗, the absolute difference |(Ax)1 − (Ax)2| is
small. Thus, when x is at, or near, x∗, the effect of deterministic
interspecific interaction on the system dynamics should be
weaker than that of the demographic stochasticity. This is why
�H (x) > 0 if x is at, or near, x∗. On the other hand, when
the system state x is near the boundary x1 = 0, or x1 = 1,
although the absolute difference |(Ax)1 − (Ax)2| could be not
small, the deterministic interspecific interaction is unable to
make the rare species resist the disturbance of demographic
stochasticity. So, we have also �H (x) > 0 if the system state
is near the boundary x1 = 0 or x1 = 1.

Let φ(x1; t) denote the probability density distribution
that the system state is at (x1,x2,x3) at time t with x3 =
(1 + α)/(2K + 1 + α) and x2 = 1 − x1 − x3. Furthermore,
for convenience in the mathematical analysis, we also assume
that there is a very small mutation rate between species 1 and
species 2, denoted by μ (with μ → 0 but μ �= 0 at any time
t). Then, as shown in the Appendix, the stationary distribution
φ(x1) can be approximated as

φ(x1) = N e−U (x1), (5)

where the potential is given by

U (x1) = ln

[
x3

2
(T +

1 T −
2 + T −

1 T +
2 )

]

− 2

x3

∫ x1 T +
1 T −

2 − T −
1 T +

2

T +
1 T −

2 + T −
1 T +

2

ds, (6)
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FIG. 3. The limiting similarity of competing species based on the sign change of 〈�H (x)〉. (a) The threshold characteristics of 〈�H (x)〉
are shown in the K–α plane, where the color red (upper) denotes 〈�H (x)〉 > 0, and the color blue (lower) denotes 〈�H (x)〉 < 0. (b) For given
α, there is a threshold of K such that 〈�H (x)〉 = 0. This shows how system stability is influenced by the environmental carrying capacity.
(c) On the other hand, for a given K , there is also a threshold of α such that 〈�H (x)〉 = 0. This threshold can be considered to be the limiting
similarity of competitive species for a given environmental carrying capacity.

and the normalization constant N is given by N =
[
∫ 1−x3

0 e−U (x1)dx1]−1. Thus, for all possible x1, the expectation
of �H (x) with respect to the stationary distribution φ(x1),
denoted by 〈�H (x)〉, is given by

〈�H (x)〉 =
∫ 1−x3

0
�H (x)φ(x1)dx1. (7)

Here we can take 〈�H (x)〉 as a measure of system stability
under demographic stochasticity, reflecting how deterministic
interspecific interactions resist the effect of demographic
stochasticity on the coexistence of competitive species. This
means that the system can be considered to be stable (or
unstable) under the demographic stochasticity if 〈�H (x)〉 < 0
(or 〈�H (x)〉 > 0). That is, for a given environmental carrying
capacity K , 〈�H (x)〉 can be used to identify a measurable
limiting similarity of competitive species, denoted by α̃, such
that 〈�H (x)〉 = 0 when α exactly equals α̃, and 〈�H (x)〉 < 0
(or 〈�H (x)〉 > 0) if α is smaller (or larger) than α̃. On the
other hand, according to May’s definition [1,2], the limit of d

corresponding to α̃ can be expressed as d̃ = 2ω
√− ln α̃ since

α = exp ( − d2/4ω2). This also provides a very important
theoretical intuition for why the number of competitive species
that can coexist stably in a given environment must be limited.

It should also be noted that a previous study [11], which
investigated the stability of a rock-scissors-paper game dy-
namics in a finite population, uses the average of �H (x)
for all possible x to measure the influence of demographic
stochasticity on the system stability. However, for our model,
we can see that the stationary distribution φ(x1) depends on
the system state or on the deterministic interspecific interaction
[see Eqs. (5) and (6)]. Thus, the expectation 〈�H (x)〉 based on
the stationary distribution φ(x1) should be considered to be a
more reasonable measure for revealing how the demographic
stochasticity acts on the system stability.

The numerical results of Eq. (7) reveal the threshold
characteristics of 〈�H (x)〉 on the K–α plane [Fig. 3(a)].
Specifically, for any given K , there must exist a threshold
value of α, denoted by α̃, such that 〈�H (x)〉 > 0 (or < 0) if
α > α̃ (or α < α̃), and the threshold value α̃ increases with

the increase of K; and, similarly, for any given α, there also
must exist a threshold value of K , denoted by K̃ , such that
〈�H (x)〉 > 0 (or < 0) if K < K̃ (or K > K̃), and K̃ will
increase with the increase of α. For example, for a given α (or
K), 〈�H (x)〉 will decrease (or increase) with the increase of K

(or α) [Figs. 3(b) and 3(c)]. These results not only accord well
with the results of stochastic simulations [see Fig. 1(d)] but
also profoundly reveal why very similar competitive species
can coexist stably in an environment with large K and why
a big difference between competitive species is needed for
the long-term coexistence in an environment with a small
K . Thus, for long-term stable coexistence of competitive
species under May’s theoretical framework [2], the limiting
similarity of competitive species should strongly depend on
the environmental productivity levels.

III. DISCUSSION

In ecology, a fundamental question is what determines how
many species are to be found in a given place. For example,
May et al. [6] asked why we find roughly 700 species of
breeding birds in North America, rather than 7 or 70 000.
Similarly, MacArthur [18] asked why five species of warblers
coexist in trees in Vermont. Why not more or fewer similar
species? Our theoretical analysis implies that very similar
competing species are able to coexist for a long time in an
environment with a relatively high productivity level (e.g.,
limestone, grasslands, tropical forests, and coral reefs [19]) but
that big differences between competing species are necessary
in an ecosystem with a relatively low productivity level (e.g.,
boreal forests, bogs, and heathland [19]). Thus, the concept
of limiting the similarity of competing species based on the
sign change of 〈H (x)〉 may provide a fundamental insight to
understand in general why species abundance is proportional
to the productivity level of an ecosystem [20].

On the other hand, our results also mean that the char-
acteristic distribution of species abundance in an ecosystem
with large total system size could be approximated well by
Hubbell’s neutral theory [8,9,21]. Specifically, when many
species coexist in an ecosystem with a large total system size,
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demographic stochasticity has a much more significant effect
on the coexistence of competing species with high species
similarity. This may be why neutral theory can correctly
characterize the distribution of species abundance in tropical
rain forests [8,9,21].

Finally, we would like to say that although the concept
of the limiting similarity of competitive species has been
discussed by many authors since 1970s [7], our study based
only on May’s [1,2] simple model system mainly focuses
on how the coexistence stability of competitive species is
influenced by the demographic stochasticity. Our theoretical
results also strongly imply that the loss of coexistence stability
of a competitive system is largely due to the decline in
the environmental productivity level, or when the level of
environmental productivity drops to a certain degree, the
original coexistence relationship of competitive species will be
unable to resist the disturbance of demographic stochasticity.

Of course, the stability of a real competitive system will
be affected by many factors, but, in all of these effects,
the relationship between competitive species similarity and
demographic stochasticity should be the most fundamental.
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APPENDIX

1. The interior equilibrium of Eq. (2), x∗, is an ESS

For Eq. (2), x∗ corresponds to a minimum of

F (x1,x2) = x∗ · Ax − x · Ax = r

K
(x∗

1 − x1)(Kx3 − x1 − αx2) + r

K
(x∗

2 − x2)(Kx3 − αx1 − x2),

if α < 1 since

∂F (x1,x2)

∂x1

∣∣∣∣
(x∗

1 ,x∗
2 )

= ∂F (x1,x2)

∂x2

∣∣∣∣
(x∗

1 ,x∗
2 )

= 0,
∂2F (x1,x2)

∂x2
1

= ∂2F (x1,x2)

∂x2
2

= 2r

K
(K + 1),

∂2F (x1,x2)

∂x1∂x2
= 2r

K
(K + α),

and [
∂2F (x1,x2)

∂x1∂x2

]2

− ∂2F (x1,x2)

∂x2
1

∂2F (x1,x2)

∂x2
2

< 0.

Thus x · Ax∗ = x∗ · Ax∗ and x∗ · Ax > x · Ax for all possible
x with x �= x∗ [22]. Thus, x∗ is an ESS [17,22].

2. The derivation of Eq. (5)

Let π±(x1) denote the transition probabilities from x1 to
x1 ± x3. Since we assume that the mutation rate μ is small
enough, π±(x1) can be approximated as π±(x1) ≈ T ±

1 T ∓
2 .

When the time step is taken as x3, then

φ(x1; t + x3) − φ(x1; t)

= φ(x1 − x3; t)π+(x1 − x3) + φ(x1 + x3; t)π−(x1 + x3)

−φ(x1; t)π−(x1) − φ(x1; t)π+(x1).

[23]. From the Taylor expansions of φ(x1; t + x3), φ(x1 ±
x3; t), and π±(x1 ∓ x3) about t and x1, the Fokker-Planck

equation of φ(x1; t) is given by

∂φ(x1; t)

∂t
= − ∂

∂x1
D(1)(x1)φ(x1; t) + ∂2

∂x2
1

D(2)(x1)φ(x1; t),

where

D(1)(x1) = π+(x1) − π−(x1),

D(2)(x1) = x3

2
[π+(x1) + π−(x1)].

The stationary distribution is then

φ(x1) = N e−U (x1),
where

U (x1) = ln D(2)(x1) −
∫ x1 D(1)(s)

D(2)(s)
ds,

and the normalization constant N is given by N =
[
∫ 1−x3

0 e−U (x1)dx1]−1.
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