
Mathematical Biosciences 289 (2017) 20–28 

Contents lists available at ScienceDirect 

Mathematical Biosciences 

journal homepage: www.elsevier.com/locate/mbs 

Which facilitates the evolution of cooperation more, retaliation or 

persistence? 

Shun Kurokawa 

a , b 

a Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan 
b Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, PR China 

a r t i c l e i n f o 

Article history: 

Received 7 August 2016 

Revised 14 February 2017 

Accepted 17 April 2017 

Available online 18 April 2017 

Keywords: 

Evolutionarily stable strategy 

Cooperation 

Iterated prisoner’s dilemma 

Retaliation 

Persistence 

Errors in perception 

a b s t r a c t 

The existence of cooperation in this world is a mysterious phenomenon. One of the mechanisms that 

explain the evolution of cooperation is repeated interaction. If interactions between the same individuals 

repeat and individuals cooperate conditionally, cooperation can evolve. A previous study pointed out that 

if individuals have persistence (i.e., imitate its “own” behavior in the last move), cooperation can evolve. 

However, retaliation and persistence are not mutually exclusive decisions, but rather a trade-off in the 

decision making process of individuals. Players can refer to the opponent’s behavior and if the actor and 

the opponent opted for the different alternative in the last move, conditional cooperators have to give up 

either retaliation or persistence. The previous study also investigated this, and has revealed that the indi- 

vidual should give more importance to retaliation than to persistence. However, this study has assumed 

that the errors in perception are absent. In this world, errors in perception are present, and trying to im- 

itate the opponent player can sometimes end in failure. And, it might be that imitating the focal player, 

which definitely ends in success, is more beneficial than trying to imitate the opponent player, which 

can end in failure especially when the error rate in recognition is large. Here, this paper uses evolution- 

arily stable strategy (ESS) analysis and analyzes the stability for reactive strategies against the invasion 

by unconditional defectors in the iterated prisoner’s dilemma game. And our analysis reveals that even if 

we take errors in perception into consideration, retaliation facilitates the evolution of cooperation more 

than persistence unexpectedly. In addition, we analyze the stability for reactive cooperators against the 

invasion by a strategy other than unconditional defectors. Moreover, we also analyze the deterministic 

model in which unconditional cooperators, unconditional defectors, and the reactive strategy at the same 

time. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

Cooperation is defined as the act which is costly to the actor

and beneficial to the recipient [38] . If we consider cooperation in

terms of natural selection, it is expected that cooperation will di-

minish as time goes by. However, cooperation is abundant in this

world. We can see that there is a contradiction and this mysteri-

ous phenomenon has been a major topic in evolutionary biology

[16,38,39,50] . 

Thus far, some mechanisms that explain the evolution of co-

operation have been proposed. One of the mechanisms is direct

reciprocity [1,50] . Trivers [50] mentioned that if interactions repeat

and individuals have retaliation (i.e., behave cooperatively with a

higher probability when the opponent cooperated in the last move

than in the case wherein the opponent defected in the last move),
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he evolution of cooperation is facilitated in the sense of evolution-

rily stability against the invasion by unconditional defectors. This

s because a reciprocator can elicit future cooperation from the op-

onent reciprocator, while a defector cannot elicit future coopera-

ion from the opponent reciprocator. Retaliation facilitates the evo-

ution of cooperation [50] (but see also [8,22] ). 

Cooperation in repeated interactions can be studied by using

he framework called the iterated prisoner’s dilemma game (IPD)

1] . Assume that individuals are paired at random. Individuals

hoose to either cooperate or defect in each round. An individ-

al who cooperates will give an opponent an amount b at a per-

onal cost of c , where b > c > 0, while an individual who defects

ill give nothing. The probability that the individuals interact more

han t times in a given pair is given as w 

t , where 0 < w < 1.

s w increases, so does the number of interactions per pair. It is

traightforward to obtain that the expected number of interactions

s 1 / ( 1 − w ) . 

http://dx.doi.org/10.1016/j.mbs.2017.04.002
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Relevant to direct reciprocity is imperfect information

4,19,20,22,23,25,28] . Information is sometimes absent in this

orld, and in such cases players cannot imitate the opponent’s

ehavior. How should players behave when information about the

pponent is unavailable? 

Kurokawa [25] , by using a mathematical model, examined the

ase wherein interactions repeat and information is sometimes ab-

ent. And Kurokawa [25] found that if individuals have persistence

i.e., behave cooperatively with a higher probability in the case

herein the actor cooperated in the last move than in the case

herein the actor defected in the last move) when information

bout the opponent is unavailable, the evolution of cooperation is

acilitated in the sense of evolutionarily stability against the inva-

ion by unconditional defectors. 

This result can be interpreted as follows. When the conditional

ooperator behaves retaliatory as well as with persistence, imitat-

ng the actor’s behavior finally can lead to imitating the oppo-

ent’s behavior; hence, a conditional cooperator with persistence

an elicit future cooperation from the opponent cooperator. Persis-

ence can be one type of retaliation and facilitates the evolution

f cooperation. And persistence has very recently been examined

heoretically and empirically [15,25] . 

Does having persistence when information about the opponent

s present facilitate the evolution of cooperation? It might be that

hey think that having persistence when information about the op-

onent is present facilitate the evolution of cooperation since that

ogic is applicable also for the case wherein information is avail-

ble. However, the situation wherein information about the oppo-

ent is present and the situation wherein information about the

pponent is absent are qualitatively different. Let us explain the

ifference in the following. 

If both the actor and the opponent cooperated in the last move,

onditional cooperators should cooperate in the following round. If

o, conditional cooperators can give importance to both retaliation

nd persistence. If both the actor and the opponent defected in

he last move, the individual should defect in the following round.

f so, conditional cooperators can give importance to both retalia-

ion and persistence. These two cases are easy for the individual to

hoose a behavior. 

Difficult are the following case. If the actor and the opponent

pted for the different alternative in the last move, what should

onditional cooperators do in the following round? If conditional

ooperators give importance to retaliation, conditional coopera-

ors have to give up persistence. Similarly, if conditional cooper-

tors give importance to persistence, conditional cooperators have

o give up retaliation. That is, retaliation and persistence are not

utually exclusive decisions, but rather a trade-off in the decision

aking process of individuals. Thus, what the individual should do

n the following round in the case wherein the actor and the op-

onent opted for the different alternative in the last move is not

asily determined. 

Kurokawa [25] also tackled on this topic, and found that under

ome condition (revisit this in more detail in Model section) if in-

ividuals put more importance on retaliation than on persistence,

he evolution of cooperation is facilitated. 

This result can be interpreted as follows. Imitating the actor’s

ehavior finally can lead to imitating the opponent’s behavior;

herefore, imitating the actor’s behavior is beneficial. This is the

echanism for which imitating the actor’s behavior is beneficial.

herefore, imitating the opponent’s behavior directly is more ben-

ficial than imitating the actor’s behavior if players can refer not

nly to the opponent’s behavior but also to the actor’s behavior

25] . 

However, this study contained the following assumption. Our

revious work assumed that the players always succeed in regard-

ng cooperation by the opponent as cooperation. However, in this
orld, it can be considered that there exist errors in perception

2,3,18,36,37,41] . Even when taking the existence of perception er-

ors into consideration, is referring to the opponent’s behavior still

ore beneficial than referring to the focal player’s behavior? When

rrors in recognition are present, since players sometimes recog-

ize the opponent player’s cooperation as defection, trying to imi-

ate the opponent’s player does not always result in succeeding in

mitating the opponent player. That is, in the presence of errors in

ecognition, the player can defect even when the opponent player

ooperated in the previous round because of errors in recognition.

hus, when errors in recognition are present, players cannot al-

ays succeed in imitating the opponent player. And it is not obvi-

us which is more beneficial, to try to imitate the opponent player,

hich can end in failure, or to imitate the focal player, which def-

nitely ends in success. Especially when the error rate in recogni-

ion is large, imitating the opponent player ends in failure with a

igh probability. Hence, we presume that in such a case imitating

he focal player, which definitely ends in success, is more benefi-

ial than trying to imitate the opponent player, which can end in

ailure with a high probability. 

In this paper, we tackle on the following question: Is the state-

ent in our previous paper “Retaliation facilitates the evolution of

ooperation more than persistence” still robust when we take er-

ors in perception into consideration? 

The rest of the paper is structured as follows. In Section 2 , we

escribe a model. In Section 3 , we introduce our previous work,

hich assumed that errors in perception are absent. In Section 4 ,

e consider the case where errors in perception can occur. Espe-

ially, in Section 4.1 , we consider the case where an ALLD mutant

nvades the population consisting of strategies with a variety of

ersistence (or retaliation), and use evolutionarily stable strategy

ESS) analysis. And we examine how perception errors affect the

volutionary outcome. Subsequently, in Section 4.2 , we consider

he case where a various mutant (not limited to ALLD mutant)

nvades the population and examine the stability by using evolu-

ionarily stable strategy (ESS) analysis. In Section 4.3 , we consider

he three strategies game, and observe dynamics. In Section 5 , we

ummarize the result obtained in this paper, and discuss why the

esults are obtained. 

. Model 

As seen in Introduction section, in the absence of information,

he decision making is easy since people cannot behave retaliatory.

n the other hand, in the presence of information, decision mak-

ng is difficult since people can behave retaliatory, and retaliation

nd persistence are not mutually exclusive decisions. Hence, this

aper focuses on the case where information about the opponent

s always present. 

It may be that the players do not always succeed in regarding

ooperation by the opponent as cooperation. Our previous work

 Section 3 ) considered the case where errors in perception never

ccur. In this paper ( Section 4 ), we introduce a type of mistake in

he iterated prisoner’s dilemma game: the error in perception [2] .

eactive cooperators mistakenly regard cooperation by the oppo-

ent as defection when errors in perception occur. We use e , where

 ≤ e < 1, to denote the probability that such an error occurs. We

an say that Section 3 considers the special case in which e = 0

olds true. On the other hand, regarding their “own” behaviors, we

ssume that reactive cooperators always succeed in perception for

heir “own” behaviors throughout this paper. 

We consider the following strategy. The space of strategies for

 game for the current case would be a vector of five probabilities:

, P CC , P CD , P DC , and P DD . f represents the probability of trying to

ooperate in the first round. P ij represents the probability of try-

ng to cooperate when the focal player did i and the focal player
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recognized that the opponent did j in the last move. P CC , P CD , P DC ,

and P DD are not less than 0 and not more than 1 since P CC , P CD ,

P DC , and P DD are probabilities. And let us assume that 0 < f < 1

holds true. 

Thus, we have used the terms “retaliation” and “persistence”

without strict definitions. Here, let us define the terms “retaliation”

and “persistence” in terms of the P i , j values formally. Our previous

work [25] stated that P iC − P iD can be regarded as retaliation when

the focal player did i in the last move (note that there are two

kinds of retaliation since there are two behaviors for i ), and that

P C j − P D j can be regarded as persistence when the opponent player

did j in the last move (note that there are two kinds of persistence

since there are two behaviors for j ). Let us use these definitions

following Kurokawa [25] . 

Now we have ( P CC − P CD ) + ( P CD − P DD ) = P CC − P DD ≤ 1 , which

indicates that retaliation in the case where the focal player cooper-

ated in the last move ( P CC − P CD ) and persistence in the case where

the opponent player defected in the last move ( P CD − P DD ) are not

mutually exclusive decisions, but rather a trade-off. Similarly, we

have ( P CC − P DC ) + ( P DC − P DD ) = P CC − P DD ≤ 1 , which indicates that

persistence in the case where the opponent player cooperated in

the last move ( P CC − P DC ) and retaliation in the case where the fo-

cal player defected in the last move ( P DC − P DD ) are not mutually

exclusive decisions, but rather a trade-off. 

Kurokawa [25] considered the case where errors in percep-

tion are absent, and showed that the strategy whose stability

condition against the invasion by unconditional defector (ALLD)

mutant is the loosest among the strategies which satisfy P CC +
P DD = P CD + P DC is the strategy with P CC = P DC = 1 and P CD = P DD = 0

(, which does not have persistence) while a strategy with persis-

tence can be the best among the strategies who do not have the

restriction P CC + P DD = P CD + P DC . Since the purpose of this paper

is to examine whether the result “retaliation facilitates the evolu-

tion of cooperation more than persistence” obtained in Kurokawa

[25] is swayed or not by the existence of errors in perception,

we only study the evolution of the strategies with the constraint

P CC + P DD = P CD + P DC throughout this paper (let us name the strate-

gies with this constraint R). Note that this assumption can be re-

expressed as P CC − P CD = P DC − P DD , which means that retaliation in

the case where the focal player cooperated in the last move is

equal to retaliation in the case where the focal player defected

in the last move, and note that this assumption can be also re-

expressed as P CC − P DC = P CD − P DD , which means that persistence

in the case where the opponent player cooperated in the last move

is equal to persistence in the case where the opponent player de-

fected in the last move. 

Under the constraint P CC − P CD = P DC − P DD , we have the fol-

lowing two relationships; one is ( P CC − P CD ) = ( P DC − P DD ) , and the

other is ( P CC − P DC ) = ( P CD − P DD ) . These equalities mean that the

degree of retaliation is independent of what the focal player did in

the last move, and that the degree of persistence is independent

of what the opponent player did in the last move. Thus, we can

place the two kinds of retaliation in the same class (similarly, we

can place the two kinds of persistence in the same class); there-

fore, in the following, we call just “retaliation” and “persistence”,

respectively. 

All animals are error-prone; hence, we consider errors in be-

havior [21,33,36,47] . We use μ, where 0 < μ < 1, to denote the

probability that mistakes in behavior occur, i.e., that an individual

who intends to cooperate fails to do so and finally defects. 

3. Previous studies [25] 

Our previous study considered the situation wherein one single

always defect (ALLD) invades a population consisting of strategy

R. Our previous study showed that the condition under which the
esident strategy is a strict ESS against an encroachment of ALLD

s given as 

c 

b 
< 

( 1 − μ) ( P DC − P DD ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 
(1)

On one hand, as P CC − P CD increases, the right-hand side of

1) increases. This indicates that retaliation facilitates the evolu-

ion of cooperation. On the other hand, as P CD − P DD increases, the

ight-hand side of (1) increases if P DC − P DD > 0 . This indicates that

ersistence facilitates the evolution of cooperation. However, the

ight-hand side of (1) is largest when P CC = P DC = 1 and P CD = P DD =
 hold true, and this strategy does not have persistence. Retaliation

nd persistence are not mutually exclusive decisions, but rather a

rade-off in the decision making process of individuals, and the in-

ividual should give more importance to retaliation than to persis-

ence, this result indicates. 

. Result 

.1. Result 1 

Our previous work ( Section 3 ) examined to what probability

onditional cooperators should be persistent, and revealed that the

ndividual should give more importance to retaliation than to per-

istence. However, this study was based on the assumption that

rrors in perception are absent. In this subsection, we relax this

ssumption and examine the robustness of this result. 

We consider the situation wherein one ALLD strategy mutant

nvades a population consisting of players adopting R. We define

 as the expected payoff to an individual playing R for a game in

 group of two Rs and define y as the expected payoff to an in-

ividual playing ALLD in a group consisting of one ALLD and one

. 

Here, we have (see Appendices A and B for detailed calculation,

espectively), 

 = 

( 1 − μ) ( f − f w + P DD w ) 

( 1 − w ) ( 1 − ( 1 − μ) ( ( P CC − P DD ) − e ( P DC − P DD ) ) w ) 
( b − c ) 

(2)

 = 

( 1 − μ) ( f − f w + P DD w ) 

( 1 − w ) ( 1 − ( 1 − μ) ( P CD − P DD ) w ) 
b (3)

We can then determine the condition under which R is a strict

SS against an encroachment of ALLD. The condition is that R’s

ayoff against itself is larger than the R’s payoff against ALLD mu-

ant, given as 

 > y. (4)

Using ( 2 ), ( 3 ), and ( 4 ), the condition under which R is a strict

SS against an encroachment of ALLD is given as 

c 

b 
< 

( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 
(5)

Substituting e = 0 into ( 5 ) reduces ( 5 ) to ( 1 ). Eq. (5) indicates

hat both persistence ( P CD − P DD ) and retaliation ( P DC − P DD ) facil-

tate the evolution of cooperation facilitates the evolution of co-

peration. However, the right-hand side of ( 5 ) is largest when

 CC = P DC = 1 and P CD = P DD = 0 hold true. The result that the in-

ividual should give more importance to retaliation than to persis-

ence still stands even if errors in perception occur and the error

ate in perception is high. 

It is apparent that the right-hand side of ( 5 ) decreases as e in-

reases, indicating that the condition under which reactive coop-

rators evolves becomes more stringent when more errors in per-

eption occur. And It is also apparent that the right-hand side of
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 5 ) decreases as μ increases. This indicates that errors in behavior

ill disturb the evolution of cooperation. 

Eq. (5) can be re-expressed as −c + b 
∑ ∞ 

t=1 f (t) w 

t > 0 , where

f (t) = ( 1 − e )( P DC − P DD )( 1 − μ) ( ( P CD − P DD )( 1 − μ) ) t−1 . Since f ( t )

s coefficient of w 

t , it is reasonable that we consider that coop-

ration elicits cooperation from the opponent player after t rounds

ith probability f ( t ). When P CD = P DD is met, f (t) = 0 holds true

or any t satisfying t > 1, while f (1) > 0 holds true. This indicates

hat when players do not have persistence, cooperation elicits only

ooperation from the opponent player in the next round, and but

oes not elicit cooperation from the opponent player after t ( t >

) round. And when 0 < P CD − P DD < 1 is met, f ( t ) > 0 holds true

or any t satisfying t ≥ 1. This indicates that when players have re-

aliation and do refer to its own previous move, cooperation can

licit not only cooperation from the opponent player in the next

ound but also cooperation from the opponent player after t ( t

 1) round. And when P CD = P DD = 1 and P CD = P DD = 0 are met,

f (t) = 0 holds true for any t satisfying t ≥ 1. This indicates that

hen players have only persistence and do not have retaliation at

ll, cooperation cannot elicit cooperation from the opponent player

n any round. 

.2. A stability condition R when a variety of strategies invade the 

opulation of Rs 

In the previous Section 4.1 , we only examined the case where

n invader is an unconditional defector (ALLD). In this subsection,

e examine the case where a variety of mutants invade the popu-

ation consisting of Rs and obtain the stability condition for R. We

onsider a strategy which chooses to cooperate or defect in each

ound as a mutant strategy in this subsection, and call the mu-

ant strategy s . And we denote a probability that s cooperates on

 th round in a game between s and R by p ( t ). Similarly, we denote

 probability that R cooperates on t th round in a game between

 and R by q ( t ). In this case, on one hand, the expected times

hat strategy s cooperates in a game between s and R is given as
 ∞ 

t=1 p(t) w 

t−1 . On the other hand, the expected times that R coop-

rates in a game between s and R is given as 
∑ ∞ 

t=1 q (t) w 

t−1 . Hence,

he accumulated payoff in a repeated prisoner’s dilemma game to

trategy s (let us define z as this) is given by 

 = −c 

∞ ∑ 

t=1 

p ( t ) w 

t−1 + b 

∞ ∑ 

t=1 

q ( t ) w 

t−1 . (6)

Here, we have 

 ( 1 ) = f ( 1 − μ) (7) 

For t > 1, by using the restriction of R (i.e., P CC + P DD = P CD +
 DC ) , we have 

 ( t ) = [ ( 1 − e ) ( P DC − P DD ) p ( t − 1 ) + ( P CD − P DD ) q ( t − 1 ) + P DD ] 

× ( 1 − μ) (8) 

Using ( 6 )–( 8 ), we have 

 = 

( 1 − μ) ( f − f w + P DD w ) 

( 1 − w ) ( 1 − ( 1 − μ) ( P CD − P DD ) w ) 
b 

+ 

∞ ∑ 

t=1 

p ( t ) w 

t−1 

(
−c + b 

( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 

)
(9) 

Substituting p(t) = 0 for any t into ( 9 ), ( 9 ) reduces to
( 1 −μ)( f − f w + P DD w ) 

( 1 −w )( 1 −( 1 −μ)( P CD −P DD ) w ) 
b, which is equivalent to y . 

On the other hand, the previous Section 4.1 showed that the

ccumulated payoff to a R in a game between two Rs is given by

 2 ). We can then determine the condition under which R is an ESS

gainst an encroachment of strategy s , and the condition is given

s 

 > z. (10) 
From ( 2 ), ( 9 ), and ( 10 ), it turns out that the stability condition

s given as 

c 

b 
− ( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 

)( ∞ ∑ 

t=1 

p ( t ) w 

t−1 

− ( 1 − μ) ( f − f w + P DD w ) 

( 1 − w ) ( 1 − ( 1 − μ) ( ( P CC − P DD ) − e ( P DC − P DD ) ) w ) 

)
> 0 

After algebraic calculations, this becomes 

c 

b 
− ( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 

)

×
( 

∞ ∑ 

t=1 

p ( t ) w 

t−1 −
∞ ∑ 

t=1 

q ( t ) w 

t−1 

) 

> 0 (11) 

When 

∑ ∞ 

t=1 p(t) w 

t−1 − ∑ ∞ 

t=1 q (t) w 

t−1 > 0 is met (i.e., roughly

peaking, an invader is more cooperative than the resident strat-

gy), ( 11 ) becomes 

c 

b 
> 

( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 
(12) 

Conversely, when 

∑ ∞ 

t=1 p(t) w 

t−1 − ∑ ∞ 

t=1 q (t) w 

t−1 < 0 is met

i.e., roughly speaking, an invader is more defective than the resi-

ent strategy), ( 11 ) becomes 

c 

b 
< 

( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 
(13) 

For example, when an invader is an ALLC (always cooperate)

utant, it can be shown that the stability condition is given as

 12 ). On the contrary, when an invader is an ALLD mutant, the

tability condition is given as ( 13 ) as shown in Section 4.1 . Thus,

e know that the resident strategy R is subject to an invasion by

omeone, irrespective of the cost-to-benefit ratio. 

In the next Section 4.3 , we consider the case where the three

trategies (i.e., ALLC, ALLD, and R) are present, and examine what

appens in the replicator dynamics. 

.3. The three strategies: ALLC (unconditional cooperation), ALLD 

unconditional defection), and the reactive strategy 

In the previous two Sections 4.1 and 4.2 , we considered the

ame in pairs. In this subsection, we consider the situation where

hree strategies (i.e., ALLC (unconditional cooperators), ALLD (un-

onditional defectors), and the reactive strategy) are present at the

ame time. 

We consider a model with ALLC, ALLD, and the reactive strategy

nd with payoff matrix 
 

a xx a xy a xz 

a yx a yy a yz 

a zx a zy a zz 

) 

(14) 

Let x, y, and z denote the frequency of ALLC, ALLD, and the re-

ctive strategy, respectively ( x + y + z = 1 ). And we denote F x , F y ,

nd F z the expected payoff of ALLC, ALLD, and the reactive strat-

gy, respectively. We have 

 J = x a Jx + y a Jy + z a Jz (15)

here J = x, y, z. And let us denote the average payoff in the popu-

ation by 

 ̄= x F x + y F y + z F z (16)

The change of the frequencies (i.e., evolution) of the strate-

ies in the population can be described by the following replicator

quation 

˙ 
 = x 

(
F x − F̄ 

)
(17) 
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˙ y = y 
(
F y − F̄ 

)
(18)

˙ z = z 
(
F z − F̄ 

)
(19)

Now after algebraic calculations, we obtain a payoff matrix M.
M can be described as 

M = 

( 

V ( −c + b ) V ( −c ) V ( −c ) + ( U ( 1 − θ ) + V θ ) b 
V b 0 U ( 1 − θ ) b 
−( U ( 1 − θ ) + V θ ) c + V b −U ( 1 − θ ) c U ( −c + b ) 

)

(20)

where 

 = 

( 1 − μ) ( f − f w + P DD w ) 

( 1 − w ) ( 1 − ( 1 − μ) ( ( P CC − P DD ) − e ( P DC − P DD ) ) w ) 
(21)

 = ( 1 − μ) / ( 1 − w ) (22)

θ = 

( 1 − μ) ( P DC − P DD ) ( 1 − e ) w 

1 − ( P CD − P DD ) w ( 1 − μ) 
(23)

here, using the fact that the replicator equation remains unchanged

(in the simplex S3) if we add constant to each column or we mul-

tiply each element by constant, M (which we still denote by M)

can be described as (see [5,25,47] for similar works) 

M = 

( 

0 −1 εσ
1 0 −ρσ
ε −ρ 0 

) 

(24)

where 

ε = ( V − U ) ( 1 − θ ) /V (25)

ρ = U ( 1 − θ ) /V (26)

σ = 

bθ − c 

c ( 1 − θ ) 
(27)

Now, by using the domain of f , we have 

ε > 0 (28)

ρ > 0 (29)

Firstly, let us consider the case where σ < 0. In this case, from

( 24 ), ( 28 ), and ( 29 ), it turns out that all orbits converge to y = 1 .

Unconditional defectors take over the population. 

Secondly, let us consider the case where σ > 0. Let us observe

the three edges (i.e., x = 0 , y = 0 , and z = 0 ). By using σ > 0, ( 24 ),

and ( 29 ), it turns out that on the edge x = 0 , there is a bistable

competition between unconditional defectors and conditional co-

operators. And there is a unstable internal equilibrium and their

basins of attraction are separated by T yz = ( 0 , 1 − ˆ z , ̂  z ) , where 

ˆ z = 

1 

1 + σ
. (30)

Combining ( 30 ) with ( 27 ), we also have 

ˆ z = 

c ( 1 − θ ) 

( b − c ) θ
. (31)

By using σ > 0, ( 24 ), and ( 28 ), it turns out that on the edge y =
0 there is a stable coexistence between the conditional cooperators

and the unconditional cooperators. And there is a stable internal

equilibrium at the point T xz = ( 1 − ˆ z , 0 , ̂  z ) . By using ( 24 ), it turns

out that on the edge z = 0 the unconditional defectors dominate

the unconditional cooperators (see Fig. 1 ). 
Next, let us examine the dynamics when 

 = ˆ z (32)

n this line, after algebraic calculations (see Appendix C for proof),

e obtain 

˙ 
 < ˙ z = 0 < 

˙ y (33)

s satisfied. Hence, as times goes by, the frequency of unconditional

ooperators decreases, and the frequency of unconditional defec-

ors increases, while the frequency of conditional cooperators is

ndependent of time (see Fig. 1 ). 

Eq. (31) means that as θ increases, ˆ z decreases. Now, from

 23 ), it turns out that as retaliation ( P DC − P DD ) increases, θ in-

reases, and as persistence ( P CD − P DD ) increases, θ increases. How-

ver, retaliation ( P DC − P DD ) and persistence ( P CD − P DD ) are not in-

ependent and θ maximizes when the reactive strategy satisfies

 CC = P DC = 1 and P CD = P DD = 0 (i.e., the reactive strategy is TFT),

nd in this case, players have only retaliation and do not have per-

istence. Combining these facts, we can say that ˆ z minimizes when

layers have retaliation but do not have persistence, which is not

ffected by the parameter ( e ). 

The interior fixed point is given by 

 = ( ρσ, εσ, 1 ) 
1 

1 + σ ( ρ + ε ) 
(34)

See also Brandt and Sigmund [5] , Sigmund [47] , and Kurokawa

25] . Here, by using ( 25 )–( 27 ), we can find that ( 34 ) can be re-

xpressed as 

 = ( ρσ, εσ, 1 ) 
c 

bθ
(35)

Here, we define W as 

 = x αy βz γ [ 1 − ( 1 + σ ) z ] . (36)

here 

= ρ/θ, (37)

= ε/θ, (38)

= −1 /θ . (39)

ere, after algebraic calculations (see Appendix D for proof), we

ave 

dW 

dt 
= 0 . (40)

rom ( 40 ), we can say that W is a constant of motion. By using this

act, it turns out that the interior fixed point T is Lyapunov stable,

ut not asymptotically stable. And it also turns out that periodic

rbits surround the unique fixed point T (see Fig. 1 ). 

This indicates that as θ increases, the frequency of the reac-

ive strategy of the interior fixed point decreases. The frequency

f the reactive strategy of the interior fixed point minimizes when

he reactive strategy satisfies P CC = P DC = 1 and P CD = P DD = 0 (i.e.,

he reactive strategy is TFT, and has only retaliation but not does

ot have persistence), which is not affected by the parameter ( e ).

nd from ( 23 ), we can see that as the parameter ( e ) decreases, the

arameter ( θ ) increases. With this fact, we can see that as the pa-

ameter ( e ) decreases, the frequency of the reactive strategy of the

nterior fixed point decreases. The frequency of the reactive strat-

gy of the interior fixed point minimizes when e = 0 (i.e., errors in

erception never occur). 
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Fig. 1. The dynamics in the three strategies game when σ > 0. Fig. 1 demonstrates the dynamics in the case where σ > 0. There is a horizontal orbit on the line with 

z = ̂  z , which connects the fixed points T xz and T yz . When z = ̂  z is met, ˙ x < 0 = ˙ z < ˙ y is satisfied. The part above the line is filled with periodic orbits which surround the 

unique fixed point T . Periodic orbits correspond to the constant level curves of a constant of the motion W which is given by ( 36 ). On the contrary, below this line, all orbits 

converge to y = 1 , and unconditional defectors spread over the population. See Brandt & Sigmund [5] and Sigmund [47] ; however, our analysis is more general. 
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. Discussion 

In this paper, we have examined the case wherein errors in

erception are present, and have investigated the accuracy of the

tatement in our previous paper: Retaliation facilitates the evo-

ution of cooperation more than persistence. In Section 4.1 , we

ave considered the situation where an ALLD mutant invades the

opulation. In Introduction section, we expected that it might be

hat the individual should give more importance to persistence

hich works well than to retaliation which does not work well

n the case wherein such errors in perception often occur. How-

ver, unexpectedly, we have revealed that even when taking the

erception errors into consideration, the statement by our previ-

us study is robust. The individual should give more importance

o retaliation than to persistence, even in the presence of errors in

erception. In Section 4.2 , we have examined the case where vari-

us mutants invade the population, and obtained the stability con-

ition. Roughly speaking, the stability condition indicates that the

trategies which are good at resisting the invasion by unconditional

efectors are poor at resisting the invasion by unconditional coop-

rators. In Section 4.3 , we have examined the case where uncon-

itional cooperators and unconditional defector and the reactive

trategy, and have examined the dynamics. 

Let us consider why the result that retaliation facilitates

he evolution of cooperation more than persistence in the case
herein errors in perception occur is obtained in Section 4.1 . In

eneral, it is required that the player cooperates for the coopera-

or and defects for the defector in order for cooperation to evolve.

ersistence enables the player to cooperate for the cooperator and

efect for the defector, since the act of the focal player reflects on

he act of the opponent player and referring the previous act of

he focal player (i.e., having persistence) leads to reflecting on the

ct of the opponent player some rounds ago. This process includes

he step that the player observes the opponent’s behavior, and in-

irectly persistence as well as retaliation is affected by errors in

erception. We speculate that therefore the result that retaliation

acilitates the evolution of cooperation more than persistence still

tands even if errors in perception occur. 

This study considers the case wherein a different player has

he same benefit and the same different cost. However, the case

herein a different player has a different benefit and a different

ost also seems interesting [24] . In such a case, how is the result

wayed? Further study on this issue is needed. 

In this paper, we assumed that the evolutionary dynamics is

eterministic (e.g. [17,34] ). However, examining how the stochas-

icity influences the evolutionary dynamics also seems fascinat-

ng [7,9,12,14,26,27,29,31,32,40,42,46,49,54,55,57,59] . Further study 

n this issue is required. 

This study is limited to the case where the number of the

layers is just two. What happens in the case where over two
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players interact at the same time? In order to know this, ex-

tending the two player game to n -player game is necessary

[6,9–11,13,26,27,29,30,35,43–45,48,51–53,56–58] . Further study on

this issue is needed. 

Persistence has very recently been examined theoretically and

empirically [15,25] , while retaliation has been examined theoreti-

cally and empirically [8,50] for decades. And retaliation and per-

sistence are not mutually exclusive decisions in some situation.

Which facilitates the evolution of cooperation more, retaliation or

persistence? Further study on this interesting topic is warranted. 
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Appendices 

Appendix A 

Proof. for ( 2 ) 

Here, let A denote the total expected payoff to a strategy R in a

given and subsequent rounds when both two Rs cooperate. Sim-

ilarly, let B denote the total expected payoff to a strategy R in

a given and subsequent rounds when the focal R cooperates and

the opponent R defects. And let C denote the total expected pay-

off to a strategy R in a given and subsequent rounds when the

focal R defects and the opponent R cooperates. And let D denote

the total expected payoff to a strategy R in a given and subsequent

rounds when both Rs defect. In this case, the following relation-

ships hold: 

x = [ f ( 1 − μ) ] 
2 
A + f ( 1 − μ) [ 1 − f ( 1 − μ) ] B 

+ [ 1 − f ( 1 − μ) ] f ( 1 − μ) C + [ 1 − f ( 1 − μ) ] 
2 
D (A.1)

A = ( b − c ) + w 

{
[ ( ( 1 − e ) P CC + e P CD )( 1 − μ) ] 

2 
A 

+[ ( ( 1 − e ) P CC + e P CD )( 1 − μ) ] {
1 − [ ( ( 1 − e ) P CC + e P CD )( 1 − μ) ] 

}
B 

+ 

{
1 − [ ( ( 1 − e ) P CC + e P CD )( 1 − μ) ] 

}
[ ( ( 1 − e ) P CC + e P CD ) ( 1 − μ) ] C 

+ { 1 − [ ( ( 1 − e ) P CC + e P CD ) ( 1 − μ) ] } 2 D 

}
(A.2)

B = ( −c ) + w 

{
P CD ( 1 − μ) [ ( 1 − e ) P DC + e P DD ] ( 1 − μ) A 

+ P CD ( 1 − μ) 

{
1 − [ ( 1 − e ) P DC + e P DD ] ( 1 − μ) 

}
B 

+ 

{
1 − P CD ( 1 − μ) 

}
[ ( 1 − e ) P DC + e P DD ] ( 1 − μ) C 
F

+ 

{
1 − P CD ( 1 − μ) 

}{
1 − [ ( 1 − e ) P DC + e P DD ] ( 1 − μ) D 

}}
(A.3)

 = b + w 

{
[ ( 1 − e ) P DC + e P DD ] ( 1 − μ) P CD ( 1 − μ) A 

+ [ ( 1 − e ) P DC + e P DD ] ( 1 − μ) 

{
1 − P CD ( 1 − μ) 

}
B 

+ 

{
1 − [ ( 1 − e ) P DC + e P DD ] ( 1 − μ) 

}
P CD ( 1 − μ) C 

+ 

{
1 − [ ( 1 − e ) P DC + e P DD ] ( 1 − μ) 

}{
1 − P CD ( 1 − μ) 

}
D 

}
(A.4)

 = 0 + 

{
[ P DD ( 1 − μ) ] 

2 A + P DD ( 1 − μ) [ 1 − P DD ( 1 − μ) ] B 

+ [ 1 − P DD ( 1 − μ) ] P DD ( 1 − μ) C + [ 1 − P DD ( 1 − μ) ] 
2 D 

}
(A.5)

Using (A .1)–(A .5) and P CC + P DD = P CD + P DC , we have ( 2 ). This is

he end of the proof. 

ppendix B 

roof. for ( 3 ) 

Here, let P denote the total expected payoff to an ALLD mutant

n a given and subsequent rounds when an ALLD mutant defects

nd the resident strategy cooperates. And let Q denote the total ex-

ected payoff to an ALLD mutant in a given and subsequent rounds

hen both an ALLD mutant and the resident strategy defect. In this

ase, the following three relationships hold: 

 = P f ( 1 − μ) + Q [ 1 − f ( 1 − μ) ] (B.1)

 = b + w { P CD ( 1 − μ) P + ( 1 − P CD ( 1 − μ) ) Q } (B.2)

 = 0 + w { P DD ( 1 − μ) P + ( 1 − P DD ( 1 − μ) ) Q } (B.3)

Using (B.1)–(B.3), we have ( 3 ). This is the end of the proof. 

ppendix C 

roof. for ( 33 ) 

On one hand, from ( 15 ), ( 16 ), and ( 24 ), we have 

 ̄= ( 1 + σ ) z F z (C.1)

This simply leads to 

 z − F̄ = F z [ 1 − ( 1 + σ ) z ] , (C.2)

We see that in the interior of S3, if ( 32 ) is met, then (C.2) leads

o 

 z = F̄ (C.3)

By using ( 19 ) and (C.3), we have 

˙  = 0 (C.4)

On the other hand, by using ( 15 ) and ( 25 )–(27), we have 

 x − F y = ( −1 ) ( x + y ) + ( εσ + ρσ ) z = ( −1 ) ( 1 − z ) 

http://dx.doi.org/10.13039/501100002367


S. Kurokawa / Mathematical Biosciences 289 (2017) 20–28 27 

z  

F

 

F

x

a

y

A

P

F

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

 

 

[  

[  

 

 

[  

[  

 

[  

 

 

 

[  

 

 

[  

 

 

[  

 

[  

[  

[  

 

 

[  

[  

[  

 

[  

 

+ ( εσ + ρσ ) z = z ( 1 + σ ( ρ + ε ) ) − 1 = z 
bθ

c 
− 1 (C.5) 

Here, by using ( 27 ), ( 31 ) and σ > 0, 

ˆ  
bθ

c 
− 1 = 

c ( 1 − θ ) 

( b − c ) θ

bθ

c 
− 1 = 

( 1 − θ ) (
1 − c 

b 

) − 1 < 0 (C.6)

By using (C.5) and (C.6), it turns out that when ( 32 ) is met, 

 x − F y < 0 (C.7) 

Here, using ( 16 ), (C.3), and (C.7), it turns out that F x < F z = F̄ <

 y . Here, by using ( 17 ) and ( 18 ), we know 

˙ 
 < 0 (C.8) 

nd 

˙ 
 > 0 . (C.9) 

From (C.4), (C.8), and (C.9), this is the end of the proof. 

ppendix D 

roof. for ( 40 ) 

From ( 15 ), ( 16 ), and ( 24 ), we have 

 ̄= ( 1 + σ ) z F z (D.1) 

Here, using ( 17 )–( 19 ), ( D.1 ), and ( 36 )–( 39 ), 

dW 

dt 
= 

(
˙ x 
α

x 
+ 

˙ y 
β

y 
+ 

˙ z 
γ

z 
+ 

˙ z 
−( 1 + σ ) 

[ 1 − ( 1 + σ ) z ] 

)
W 

= 

(
x 
(
F x − F̄ 

)α

x 
+ y 

(
F y − F̄ 

)β

y 
+ z 

(
F z − F̄ 

)γ

z 

+ F̄ ( 1 / ( 1 + σ ) − z ) 
−( 1 + σ ) 

[ 1 − ( 1 + σ ) z ] 

)
W 

= 

(
αF x + βF y + γ F z − F̄ ( α + β + γ ) + F̄ 

)
W 

= 

(
[ αF x + βF y + γ F z ] − F̄ [ ( α + β + γ ) − 1 ] 

)
W = 0 (D.2) 

Hence, 

dW 

dt 
= 0 

This is the end of the proof. 
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player games on small networks using territorial interactions, J. Math. Biol. 71
(6) (2015) 1551–1574, doi: 10.10 07/s0 0285- 015- 0868- 1 . 

[7] F.A.C.C. Chalub, M.O. Souza, Fixation in large populations: a continuous view
of a discrete problem, J. Math. Biol. 72 (1) (2016) 283–330, doi: 10.1007/

s00285- 015- 0889- 9 . 
[8] T. Clutton-Brock, Cooperation between non-kin in animal societies, Nature 462

(2009) 51–57, doi: 10.1038/nature08366 . 

[9] K. Deng, Z. Li, S. Kurokawa, T. Chu, Rare but severe concerted punishment
that favors cooperation, Theor. Popul. Biol. 81 (2012) 284–291, doi: 10.1016/j.

tpb.2012.02.005 . 
[10] Y. Dong, C. Li, Y. Tao, B. Zhang, Evolution of conformity in social dilemmas,

PLoS One 10 (9) (2015) e0137435, doi: 10.1371/journal.pone.0137435 . 
[11] J. Du, B. Wu, P.M. Altrock, L. Wang, Aspiration dynamics of multiplayer games
in finite populations, J. R. Soc. Interface 11 (94) (2014) 20140077, doi: 10.1098/

rsif.2014.0077 . 
[12] C.S. Gokhale, A. Traulsen, in: Evolutionary games in the multiverse, 107, 2010,

pp. 5500–5504, doi: 10.1073/pnas.0912214107 . 
[13] C.S. Gokhale, A. Traulsen, Mutualism and evolutionary multiplayer games: re-

visiting the Red King, Proc. R. Soc. B 279 (1747) (2012) 4611–4616, doi: 10.1098/
rspb.2012.1697 . 

[14] C.S. Gokhale, A. Traulsen, Evolutionary multiplayer games, Dyn. Games Appl.

(2014), doi: 10.1007/s13235- 014- 0106- 2 . 
[15] M. Gutiérrez-Roig, C. Gracia-Lázaro, J. Perelló, Y. Moreno, A. Sánchez, Transition

from reciprocal cooperation to persistent behaviour in social dilemmas at the
end of adolescence, Nat. Commun. 5 (2014) 4362, doi: 10.1038/ncomms5362 . 

[16] W.D. Hamilton, The genetical evolution of social behaviour I, II, J. Theor. Biol.
7 (1964) 1–52 doi: 10.1016/0 022-5193(64)90 039-6 , 10.1016/0022-5193(64)

90038-4 . 

[17] J. Hofbauer , K. Sigmund , Evolutionary Games and Population Dynamics, Cam-
bridge University Press, Cambridge, UK, 1998 . 

[18] P. Kollock, An eye for an eye leaves everyone blind: cooperation and account-
ing systems, Am. Sociol. Rev. 58 (1993) 768 −786, doi: 10.2307/2095950 . 

[19] S. Kurokawa, Does imperfect information always disturb the evolution of reci-
procity? Lett. Evol. Behav. Sci. 7 (2016a) 14–16, doi: 10.5178/lebs.2016.43 . 

20] S. Kurokawa, Imperfect information facilitates the evolution of reciprocity,

Math. Biosci. 276 (2016b) 114–120, doi: 10.1016/j.mbs.2016.03.011 . 
[21] S. Kurokawa, Payoff non-linearity sways the effect of mistakes on the evolution

of reciprocity, Math. Biosci. 279 (2016c) 63–70, doi: 10.1016/j.mbs.2016.07.004 . 
22] S. Kurokawa, Evolutionary stagnation of reciprocators, Anim. Behav. 122

(2016d) 217–225, doi: 10.1016/j.anbehav.2016.09.014 . 
23] S. Kurokawa, Unified and simple understanding for the evolution of conditional

cooperators, Math. Biosci. 282 (2016e) 16–20, doi: 10.1016/j.mbs.2016.09.012 . 

[24] S. Kurokawa, Evolution of cooperation: the analysis of the case wherein a dif-
ferent player has a different benefit and a different cost, Lett. Evol. Behav. Sci.

7 (2) (2016f) 5–8, doi: 10.5178/lebs.2016.51 . 
25] S. Kurokawa, Persistence extends reciprocity, Math. Biosci. 286 (2017) 94–103,

doi: 10.1016/j.mbs.2017.02.006 . 
26] S. Kurokawa, Y. Ihara, Emergence of cooperation in public goods games, Proc.

R. Soc. B 276 (2009) 1379–1384, doi: 10.1098/rspb.2008.1546 . 

[27] S. Kurokawa, Y. Ihara, Evolution of social behavior in finite populations: a pay-
off transformation in general n -player games and its implications, Theor. Popul.

Biol. 84 (2013) 1–8, doi: 10.1016/j.tpb.2012.11.004 . 
28] S. Kurokawa, Y. Ihara, Evolution of group-wise cooperation: is direct reciprocity

insufficient? J. Theor. Biol. 415 (2017) 20–31, doi: 10.1016/j.jtbi.2016.12.002 . 
29] S. Kurokawa, J.Y. Wakano, Y. Ihara, Generous cooperators can outperform non-

generous cooperators when replacing a population of defectors, Theor. Popul.

Biol. 77 (2010) 257–262, doi: 10.1016/j.tpb.2010.03.002 . 
30] A. Li, M. Broom, J. Du, L. Wang, Evolutionary dynamics of general group

interactions in structured populations, Phys. Rev. E 93 (2) (2016) 022407,
doi: 10.1103/PhysRevE.93.022407 . 

[31] X. Li, S. Kurokawa, S. Giaimo, A. Traulsen, How life history can sway the fix-
ation probability of mutants, Genetics 203 (3) (2016) 1297–1313, doi: 10.1534/

genetics.116.188409 . 
32] X. Liu, M. He, Y. Kang, Q. Pan, Aspiration promotes cooperation in the pris-

oner’s dilemma game with the imitation rule, Phys. Rev. E 94 (2016) 012124,

doi: 10.1103/PhysRevE.94.012124 . 
[33] R.M. May, More evolution of cooperation, Nature 327 (1987) 15–17, doi: 10.

1038/327015a0 . 
34] J. Maynard Smith , Evolution and the Theory of Games, Cambridge University

Press, Cambridge, UK, 1982 . 
[35] A. McAvoy, C. Hauert, Structure coefficients and strategy selection in

multiplayer games, J. Math. Biol. 72 (1) (2016) 203–238, doi: 10.1007/

s00285- 015- 0882- 3 . 
36] R. McElreath , R. Boyd , Mathematical Models of Social Evolution: a Guide for

the Perplexed, The University of Chicago Press, 2007 . 
[37] J.H. Miller, The coevolution of automata in the Repeated Prisoner’s Dilemma, J.

Econ. Behav. Organ. 29 (1996) 87 −103, doi: 10.1016/0167-2681(95)0 0 052-6 . 
38] M.A. Nowak, Five rules for the evolution of cooperation, Science 314 (2006)

1560–1563, doi: 10.1126/science.1133755 . 

39] M.A. Nowak, Evolving cooperation, J. Theor. Biol. 299 (2012) 1–8, doi: 10.1016/
j.jtbi.2012.01.014 . 

40] M.A . Nowak, A . Sasaki, C. Taylor, D. Fudenberg, Emergence of cooperation and
evolutionary stability in finite populations, Nature 428 (2004) 646–650, doi: 10.

1038/nature02414 . 
[41] M.A. Nowak, K. Sigmund, E. El-Sedy, Automata, repeated games and noise, J.

Math. Biol. 33 (1995) 703–722, doi: 10.10 07/BF0 0184645 . 

42] H. Ohtsuki , P. Bordalo , M.A. Nowak , The one-third law of evolutionary dynam-
ics, J. Theor. Biol. 249 (2007) 289–295 . 

43] L. Pan, D. Hao, Z. Rong, T. Zhou, Zero-determinant strategies in iterated public
goods game, Sci. Rep. 5 (2015) 13096, doi: 10.1038/srep13096 . 

44] Y. Pichugin, C.S. Gokhale, J. Garcia, A. Traulsen, Modes of migration and mul-
tilevel selection in evolutionary multiplayer games, J. Theor. Biol. 387 (2015)

144–153, doi: 10.1016/j.jtbi.2015.09.027 . 

45] F.L. Pinheiro, V.V. Vasconcelos, F.C. Santos, J.M. Pacheco, Evolution of All-or-
None strategies in repeated public goods dilemmas, PLoS Comput. Biol. 10 (11)

(2014) e1003945, doi: 10.1371/journal.pcbi.1003945 . 

http://dx.doi.org/10.1126/science.7466396
http://dx.doi.org/10.1126/science.242.4884.1385
http://dx.doi.org/10.1006/jtbi.1996.0326
http://dx.doi.org/10.1515/9781400838837
http://dx.doi.org/10.1016/j.jtbi.2005.08.045
http://dx.doi.org/10.1007/s00285-015-0868-1
http://dx.doi.org/10.1007/s00285-015-0889-9
http://dx.doi.org/10.1038/nature08366
http://dx.doi.org/10.1016/j.tpb.2012.02.005
http://dx.doi.org/10.1371/journal.pone.0137435
http://dx.doi.org/10.1098/rsif.2014.0077
http://dx.doi.org/10.1073/pnas.0912214107
http://dx.doi.org/10.1098/rspb.2012.1697
http://dx.doi.org/10.1007/s13235-014-0106-2
http://dx.doi.org/10.1038/ncomms5362
http://dx.doi.org/10.1016/0022-5193(64)90039-6
http://dx.doi.org/10.1016/0022-5193(64)90038-4
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0017
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0017
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0017
http://dx.doi.org/10.2307/2095950
http://dx.doi.org/10.5178/lebs.2016.43
http://dx.doi.org/10.1016/j.mbs.2016.03.011
http://dx.doi.org/10.1016/j.mbs.2016.07.004
http://dx.doi.org/10.1016/j.anbehav.2016.09.014
http://dx.doi.org/10.1016/j.mbs.2016.09.012
http://dx.doi.org/10.5178/lebs.2016.51
http://dx.doi.org/10.1016/j.mbs.2017.02.006
http://dx.doi.org/10.1098/rspb.2008.1546
http://dx.doi.org/10.1016/j.tpb.2012.11.004
http://dx.doi.org/10.1016/j.jtbi.2016.12.002
http://dx.doi.org/10.1016/j.tpb.2010.03.002
http://dx.doi.org/10.1103/PhysRevE.93.022407
http://dx.doi.org/10.1534/genetics.116.188409
http://dx.doi.org/10.1103/PhysRevE.94.012124
http://dx.doi.org/10.1038/327015a0
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0034
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0034
http://dx.doi.org/10.1007/s00285-015-0882-3
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0036
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0036
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0036
http://dx.doi.org/10.1016/0167-2681(95)00052-6
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1016/j.jtbi.2012.01.014
http://dx.doi.org/10.1038/nature02414
http://dx.doi.org/10.1007/BF00184645
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0042
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0042
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0042
http://refhub.elsevier.com/S0025-5564(17)30218-3/sbref0042
http://dx.doi.org/10.1038/srep13096
http://dx.doi.org/10.1016/j.jtbi.2015.09.027
http://dx.doi.org/10.1371/journal.pcbi.1003945


28 S. Kurokawa / Mathematical Biosciences 289 (2017) 20–28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[46] T. Sekiguchi, H. Ohtsuki, Fixation probabilities of strategies for bimatrix
games in finite populations, Dyn. Games Appl. (2015) 1–19, doi: 10.1007/

s13235- 015- 0170- 2 . 
[47] K. Sigmund, The Calculus of Selfishness, Princeton University Press, Princeton,

2010, doi: 10.1515/9781400832255 . 
[48] X. Sui, R. Cong, K. Li, L. Wang, Evolutionary dynamics of N-person snowdrift

game, Phys. Lett. A 379 (45–46) (2015) 2922–2934, doi: 10.1016/j.physleta.2015.
08.029 . 

[49] G. Szabó, G. Fath, Evolutionary games on graphs, Phys. Rep. 446 (2007) 97–216,

doi: 10.1016/j.physrep.20 07.04.0 04 . 
[50] R. Trivers, The evolution of reciprocal altruism, Q. Rev. Biol. 46 (1971) 35–57,

doi: 10.1086/406755 . 
[51] M. van Veelen, M.A. Nowak, Multi-player games on the cycle, J. Theor. Biol.

292 (2012) 116–128, doi: 10.1016/j.jtbi.2011.08.031 . 
[52] Y. Wang, T. Chen, Heuristics guide cooperative behaviors in public goods game,

Phys. A 439 (2015) 59–65, doi: 10.1016/j.physa.2015.07.031 . 

[53] Z. Wang, A. Szolnoki, M. Perc, Rewarding evolutionary fitness with links be-
tween populations promotes cooperation, J. Theor. Biol. 349 (2014) 50–56,

doi: 10.1016/j.jtbi.2014.01.037 . 
[54] B. Wu, B. Bauer, T. Galla, A. Traulsen, Fitness-based models and pairwise com-
parison models of evolutionary games are typically different—even in unstruc-

tured populations, New J. Phys. 17 (2015), doi: 10.1088/1367-2630/17/2/023043 .
[55] B. Wu, J. García, C. Hauert, A. Traulsen, Extrapolating weak selection in evolu-

tionary games, PLoS Comput. Biol. 9 (2013) e1003381, doi: 10.1371/journal.pcbi.
1003381 . 

[56] B. Wu, A. Traulsen, C.S. Gokhale, Dynamic properties of evolutionary multi-
player games in finite populations, Games 4 (2) (2013) 182–199, doi: 10.3390/

g4020182 . 

[57] C. Zhang, Z. Chen, The public goods game with a new form of shared reward,
J. Stat. Mech. (2016) 103201, doi: 10.1088/1742-5468/2016/10/103201 . 

[58] J. Zhang, C. Zhang, The evolution of altruism in spatial threshold public goods
games via an insurance mechanism, J. Stat. Mech. 2015 (5) (2015) P05001,

doi: 10.1088/1742-5468/2015/05/P05001 . 
[59] X-D. Zheng, R. Cressman, Y. Tao, The diffusion approximation of stochas-

tic evolutionary game dynamics: mean effective fixation time and the sig-

nificance of the one-third law, Dyn. Games Appl. 462 (2011), doi: 10.1007/
s13235- 011- 0025- 4 . 

http://dx.doi.org/10.1007/s13235-015-0170-2
http://dx.doi.org/10.1515/9781400832255
http://dx.doi.org/10.1016/j.physleta.2015.08.029
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1086/406755
http://dx.doi.org/10.1016/j.jtbi.2011.08.031
http://dx.doi.org/10.1016/j.physa.2015.07.031
http://dx.doi.org/10.1016/j.jtbi.2014.01.037
http://dx.doi.org/10.1088/1367-2630/17/2/023043
http://dx.doi.org/10.1371/journal.pcbi.1003381
http://dx.doi.org/10.3390/g4020182
http://dx.doi.org/10.1088/1742-5468/2016/10/103201
http://dx.doi.org/10.1088/1742-5468/2015/05/P05001
http://dx.doi.org/10.1007/s13235-011-0025-4

	Which facilitates the evolution of cooperation more, retaliation or persistence?
	1 Introduction
	2 Model
	3 Previous studies [25]
	4 Result
	4.1 Result 1
	4.2 A stability condition R when a variety of strategies invade the population of Rs
	4.3 The three strategies: ALLC (unconditional cooperation), ALLD (unconditional defection), and the reactive strategy

	5 Discussion
	 Acknowledgements
	 Appendices
	 Appendix A
	 Appendix B
	 Appendix C
	 Appendix D

	 References


