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Hypothesis

Introduction

Polycomb group (PcG) proteins are key epigenetic sup-
pressors of gene expression, which maintain or change 
chromatin structures and modulate gene expression 
through histone modifications (Hirabayashi and others 
2009). These proteins are highly conserved regulatory 
factors that are originally found as suppressors of homeo-
box (HOX) family genes during embryonic development 
in Drosophila (Margueron and Reinberg 2011). The poly-
comb repressive complex 1 (PRC1) and 2 (PRC2) are two 
distinct PcG proteins that have been identified, and the 
composition of these complexes is variable and context-
dependent (e.g., differentiation status) (Sauvageau and 
Sauvageau 2010). Mounting evidence has shown that 
PcG proteins are broadly involved in multiple biological 
processes that maintain the identity of stem/progenitor 
cells and differentiated cells, and regulate the growth, 
development, and tissue homeostasis (e.g., Piunti and 
Shilatifard 2016; Sauvageau and Sauvageau 2010).

PRC2 plays pivotal roles in modulating chromatin 
modifications by catalyzing di- and trimethylation of his-
tone H3 at lysine 27 (H3K27me2/3) within the PcG protein 
complex (Ciferri and others 2012; Margueron and Reinberg 
2011). In mammals, the PRC2 complex is composed of 
four core proteins, including embryonic ectoderm develop-
ment (EED), either one of enhancer of zeste homolog1 

(EZH1) or EZH2, suppressor of zeste 12 (SUZ12), and 
retinoblastoma (Rb)-associated protein 46/48 (RbAp46/48) 
(Margueron and Reinberg 2011). EZH2 and EZH1 are 
methyltransferases that can catalyze mono-, di-, and tri-
methylation of H3K27 (Di Croce and Helin 2013). 
Members of the PRC2 complexes have been implicated in 
the regulation of cell fate decisions and maintenance of 
cellular identity (Conway and others 2015). As early as 
2006, a number of embryonic stem (ES) cells studies have 
demonstrated that many genes involved in neurogenesis 
are targets for PRC2-mediated deposition of H3K27me3 in 
neural differentiation (e.g., Boyer and others 2006; Lee 
and others 2006). Then growing evidence has shown that 
PRC2 has numerous functions in mammalian central ner-
vous system (CNS) (e.g., Aldiri and others 2013; Pereira 
and others 2010; Vizan and others 2015).
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In this review, we will discuss the studies from the 
protein composition of PRC2 complex, its newly dis-
covered recruitment factors, and their distinct func-
tions in CNS, especially in neurogenesis, gliogenesis, 
neuronal migration, and maturation, as well as the 
underlying regulatory mechanisms. We will also sum-
marize recent findings on the pathological roles of 
PRC2 and H3K27 methylation in neurological 
diseases.

Protein Composition of the PRC2 
Complex

There are four core subunits in the PRC2 complex that 
have been identified in CNS, namely EZH1/2, EED, 
SUZ12 and RbAP46/48 (Fig. 1) (Kuzmichev and others 
2005). EZH1 and EZH2 have the catalytic SET domain 
and exhibit methyltransferase activity by controlling 
H3K27 methylation, a modification that can be recog-
nized by one of the PRC1 components, the CBX family 
proteins (Margueron and Reinberg 2011). EZH1 and 
EZH2 are well-characterized transcription repressors 
that can silence many developmental regulators (Akizu 
and others 2016). EZH1 is predominantly expressed in 
differentiated tissues, while EZH2 is highly expressed in 

proliferating cells, such as embryonic and adult neural 
stem/progenitor cells (NSPCs) (Muller and others 2002; 
Su and others 2005). Although EZH1 can mediate meth-
ylation of H3K27 (Shen and others 2008), PRC2 com-
plexes containing EZH1 have lower enzymatic activity 
than those containing EZH2 (Margueron and others 
2008). SUZ12, another component of PRC2, is essential 
for the stability and catalytic activity of EZH2 in vivo 
(Pasini and others 2007). EED, a WD-40 repeat protein 
that directly interacts with EZH2, plays a key role in the 
maintenance and propagation of EZH2-mediated 
H3K27me3 during cell division through binding to 
H3K27me3 via its C-terminal domain (Kuzmichev and 
others 2005; Margueron and Reinberg 2011). EZH1/2, 
EED, and SUZ12 are believed to form the minimal PRC2 
complex that are necessary for the catalytic activity of 
PRC2 and subsequent repression of transcriptional initi-
ation (Ketel and others 2005). The fourth core subunit of 
PRC2 complex, histone chaperone RbAP46/48 proteins, 
contain conserved WD-40 repeat and have important 
roles in chromatin-metabolizing processes (Kuzmichev 
and others 2005). Although p46/p48 proteins are not 
required for histone methyltransferase activity of EZH2, 
they are required for association of PRC2 with the his-
tone tails (Kuzmichev and others 2005).

Figure 1. An illustration of the protein composition of polycomb repressive complex 2 (PRC2) complex. PRC2 includes 
four core components (green ovals): EZH1/2, SUZ12, EED, and RbAp46/48. EZH1 and EZH2 have the catalytic SET domain 
and exhibit methyltransferase activity by adding H3K27me3 modification to target genes. SUZ12 is essential for the stability 
and catalytic activity of EZH2-meidated H3K27. EED plays a key role in the maintenance and propagation of EZH2-mediated 
H3K27me3 during cell division through binding H3K27me3 with its C-terminal domain. EZH1/2, EED, and SUZ12 form the 
minimal PRC2 components that are necessary for methylation catalytic activity and subsequent repression of gene transcription 
initiation. RbAP46/48 have important roles in chromatin-metabolizing processes. Yellow ovals show PRC2 recruitment factors 
Jarid2, PLC1/2/3, AEBP2, and C17ORF96. PRC2 recruitment to gene promoters leads to deposition of H3K27me3 (red dots) and 
gene repression.
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Besides above-mentioned four core subunits, the 
PRC2 complex also recruits additional factors (Fig. 1), 
such as zinc finger protein AEBP2 (AE binding protein 
2), PCLs (polycomb-likes), JARID2 (Jumonji and AT-rich 
interaction domain containing 2) and C17orf96 (chromo-
some 17 open reading frame 96), to regulate gene expres-
sion in mammalian CNS (Corley and Kroll 2015). 
Presence of AEBP2 in the EED-EZH2 complex signifi-
cantly stimulates the histone methyltransferase activity of 
PRC2 (Cao and Zhang 2004). PCLs, first identified in 
Drosophila, are involved in recruiting the PcG homo-
logue of EZH2 (Savla and others 2008). There are three 
orthologous of PCL in mammal CNS, namely PHD 
Finger Protein 19 (PHF19)/PCL3, PHF1/PCL1, and 
metal response element binding transcription factor 2 
(MTF2)/PCL2. These proteins are required for the de 
novo recruitment of PRC2 to chromatin and the subse-
quent maintenance of PRC2 on chromatin (Brien and oth-
ers 2012; Nekrasov and others 2007). Notably, the activity 
and specificity of PCL-containing complexes for H3K27 
methylation is very different from that of the complexes 
without PCL proteins (Savla and others 2008). 
Mammalian PRC2-binding sites are enriched in CG con-
tent that displays a low level of DNA methylation, and 
recent structural and biochemical analyses of both the 
PHF1 and the MTF2 N-terminal cassettes establish the 
PCL EHWH motifs as a new family of unmethylated 
CpG-containing DNA binding motifs (Li and others 
2017). As PCLs also have a complete Tudor domain, 
future studies are needed to examine whether they inter-
act with trimethylated lysines and help to recruit PRC2 
complex to regulate gene expression (Vizan and others 
2015).

JARID2 is a founder member of the Jumonji family 
group of proteins known to have indispensable function 
by catalyzing demethylation of histone proteins during 
development, especially in liver and cardiovascular sys-
tem (Mysliwiec and others 2010; Takeuchi and others 
1995). As early as 2009, JARID2 was identified as a 
PRC2 component that enhances the activity of the PRC2 
and stimulates the mono- and dimethylation of H3K27 in 
vitro (Peng and others 2009). The interactions between 
JARID2 and PRC2 were then validated by several bio-
chemical and genome-wide studies (e.g., Landeira and 
others 2010; Li and others 2010; Pasini and others 2010; 
Peng and others 2009; Shen and others 2009). Inactivation 
of JARID2 results in impairment of PRC2 recruitment, 
but H3K27me3 levels are only modestly affected 
(Landeira and others 2010; Shen and others 2009). In 
addition to H3K27 methylation, JARID2 is also involved 
in the fine-tuning of gene expression that is critical for ES 
differentiation by coordinating gene silencing through 
H3K9 and H3K27 methylation (Montgomery and others 
2005) JARID2 directly recognizes and binds to 

mono-ubiquitinated histone H2A at lysine 119, a key 
mechanism that links PRC1 and PRC2 in the establish-
ment of polycomb domains through development and 
cellular differentiation (Cooper and others 2016). JARID2 
also supports co-recruitment of PRC1 and Ser 5-phos-
phorylated RNA polymerase II (RNAP) to target genes, 
which are necessary for embryonic development (Akizu 
and others 2016; Landeira and others 2010). Taken 
together, these findings support that JARID2 is an impor-
tant component of PRC2 complex by coordinately regu-
lating targets with PRC1 complex.

Three Forms of H3K27 Methylation 
Exist in Mammalian CNS

Histone H3K27 exists in three methylation states, mono-
methylated (H3K27me1), dimethylated (H3K27me2), 
and trimethylated (H3K27me3) (Fig. 2). H3K27me2 is 
the most abundant form, while H3K27me3 has been the 
well-characterized form (Papp and Muller 2006; Steiner 
and others 2011). In ES cells, more than 70% of histone 
H3 is methylated on H3K27me2, together with 7% to 
10% of H3K27me3, and 4% to 10% of H3K27me1 (Di 
Croce and Helin 2013). PRC2 contributes to all the meth-
ylation states of H3K27 (Ferrari and others 2014; Shen 
and others 2008), supporting previous findings about the 
distribution of H3K27me1/2 (Sneeringer and others 
2010). H3K27me1 accumulates within transcribed genes 
and promotes transcription because H3K27me1 deposi-
tion takes place in the absence of a stable association of 
PRC2 with these genomic regions. However, H3K27me2 
has a broad distribution and is distributed in large chro-
matin domains (Ferrari and others 2014). Recent evi-
dence shows that PRC2 localizes with H3K27me3; 
however, the conversion from H3K27me2 to H3K27me3 
by the PRC2 complex is much slower than that for 
H3K27me1 to H3K27me2 (Di Croce and Helin 2013; 
Sneeringer and others 2010).

Despite being deposited by the same enzyme, the roles 
of H3K27me3, H3K27me2, and H3K27me1 remain 
somewhat elusive (Jacob and Michaels 2009). Although 
H3K27me1 accumulates within transcribed genes and 
promotes transcription (Ferrari and others 2014), variable 
associations of gene expression and patterns of gene 
enrichment for H3K27me1 have been noticed (Jacob and 
Michaels 2009). H3K27me1 is primarily located in the 
areas of pericentric heterochromatin, supporting the idea 
that H3K27me1 might be a gene repression marker 
(Baker and others 2015; Ferrari and others 2014). 
However, a controversial finding reports that H3K27me1 
is selectively depleted near transcription start sites (Vakoc 
and others 2006). Moreover, H3K27me1 signals are 
higher at active promoters than at silent promoters, sug-
gesting that increased enrichment for H3K27me1 at 
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promoter regions can increase mRNA expression levels 
(Barski and others 2007). Furthermore, the locations of 
H3K27me1 enrichment vary in different cell types (Cui 
and others 2009), and its biological functions in cellular 
processes and mechanisms that modulate H3K27me1 are 
largely unknown. Jacob’s group found that arabidopsis 
trithorax–related proteins ATXR5 and ATXR6 are H3K27 
methyltransferases (Jacob and others 2009). Specifically, 
ATXR5 and ATXR6 catalyze H3K27 from H3K27me0 to 
H3K27me1, but not H3K27me2 or H3K27me3 (Jacob 
and others 2009). However, homologs of ATXR5 or 
ATXR6 have not been identified in animals yet. In addi-
tion to EZH1/2, EED has also been demonstrated to be 
related with H3K27me1 (Montgomery and others 2005). 
Taken together, PRC2 complex is an important player for 
modulating H3K27me1 in mammals. Although PRC2 has 
been implicated in all three methylation states of H3K27, 
it remains to be determined how PRC2 establishes indi-
vidual methylation state. Thus, identification of novel 
enzymes contributing to H3K27 modifications in animals 
would uncover potential mechanisms underlying the bio-
logical roles of PRC2 and H3K27 modifications.

Recent studies in Drosophila (Lee and others 2015) 
and in PRC2 (EED−/−) knockout ESCs attribute a role of 
H3K27me2 in preventing inappropriate enhancer activa-
tion (Lee and others 2015). Through manipulating the 
H3K27me2/H3K27me3 ratio in mouse ESCs, H3K27me2 
and H3K27me3 are found mainly distributed at regula-
tory regions, and modifying the ratio of H3K27me2/
H3K27me3 is sufficient for the acquisition and repres-
sion transcriptional programs and phenotypes of defined 

cell lineage, as well as for induction of the ESC ground 
state (Juan and others 2016). This notion is supported by 
a follow-up study demonstrating that genome-wide dis-
tribution of H3K27me3 and H3K27me2 differs in plu-
ripotent and differentiating ESCs, with the two degrees of 
H3K27 methylation being enriched at functionally dis-
tinct genomic regulatory regions of different classes of 
genes (Juan and others 2017). Specifically, H3K27me2 is 
preferentially enriched at metabolic genes in pluripotent 
ESCs and replaced by acetylation in differentiating ESCs, 
indicating that H3K27me2 may play different roles com-
pared to H3K27me3 modification (Juan and others 2017).

Reduction of H3K27me3 can be accomplished by 
active H3K27me3 demethylation mediated by 
H3K27me2/3 demethylases in mammals. These enzymes 
include UTX (ubiquitously transcribed tetratricopeptide 
repeat, X chromosome)/KMD6A (lysine demethylase 
6A) and JMJD3/KDM6B, both of which contain a JmjC 
(Jumonji) catalytic domain for de-methylation of 
H3K27me3 (Fig. 2). Although H3K27me3 enriched at 
promoter regions is associated with gene repression, the 
activation-associated H3K4me3 mark is also found at the 
promoters of “bivalent genes” that have larger regions of 
H3K27 and smaller regions of H3K4. These bivalent 
genes, characteristic of embryonic stem cells (ESCs) 
(Bernstein and others 2006), are poised for either activa-
tion or repression. Once differentiation, either H3K27me3 
or H3K4me3 is lost, leading to gene activation or repres-
sion, respectively. Accordingly, EZH2 and the PRC2 
complex are shown to be essential for normal differentia-
tion of ESCs (Pasini and others 2007).

Figure 2. Roles of polycomb repressive complex 2 (PRC2) complex in mediating different H3K27 methylations. PRC2 binds to 
chromatin and catalyzes methylation of histone H3 at Lys27 (H3K27me2/3) (represented by red dots). UTX and JMJD3 are the 
only two histone demethylases that activate gene expression via demethylating H3K27me3 to H3K27me2 or H3K27me1.
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PRC2 Modulates Neuronal Identity, 
Proliferation, and Differentiation of 
NSPCs

Neurogenesis begins with segregation of the neural plate 
from the ectoderm of the trilaminar embryo and contin-
ues into and throughout adult life. Neural stem cells in 
CNS undergo repeated asymmetric cell divisions in a 
defined order, first producing neurons then glia (Sparmann 
and others 2013; Temple 2001; Miller and Gauthier 
2007). PRC2 components are highly expressed in embry-
onic and adult NSPCs (Akizu and others 2016; 
Hirabayashi and others 2009; O’Carroll and others 2001; 
Piper and others 2014; Shen and others 2008; Zhang and 
others 2014a). Thus, it is not surprising that PRC2 has 
multiple functions during neurogenesis at distinct levels, 
such as self-renewal of neural stem cells, neuronal-glial 
fate specification and maturation (Guillemot 2007). 
Several studies demonstrate that PRC2 has an essential 
role in maintaining neural progenitor cell identity. In 
early stage of neural development, EZH2 contributes to 
the structure integrity and morphology of neuroepithe-
lium to maintain survival of neural progenitor cells by 
directly repressing the cell cycle regulator p21WAF1/CIP 
in the chicken spinal cord (Akizu and others 2016; Akizu 
and Martinez-Balbas 2016). Moreover, conditional dele-
tion of EZH2 in the developing midbrain not only affected 
proliferation and precocious cell cycle exit of neural pro-
genitors but also promoted ectopic expression of a fore-
brain transcriptional program and reduced expression of 
midbrain markers that led to reestablishment of forebrain 
identity (Zemke and others 2015).

We recently found that EZH2 is an important modulator 
for proliferation of NSPCs. Specifically, conditional knock-
out of EZH2 results in decreased proliferation ability of 

both embryonic and adult NSPCs (Liu and others 2017). 
We further showed that miR-203, a negative regulator of 
proliferation of NSPCs, is repressed by EZH2 in both 
embryonic and adult NSPCs. Importantly, one of PRC1 
components, Bmi1, is a downstream target of miR-203 in 
NSPCs. Therefore, our study provides evidence for coor-
dinated function of the EZH2-miR-203-BMI1 axis in 
regulating proliferation of NSPCs (Fig. 3).

PRC2 and PRC2-mediated H3K27me3 modifications 
are lost or acquired at many genes in both progenitor and 
terminal states (Mohn and others 2008). In NSPCs, neu-
ron-specific genes that become activated on terminal dif-
ferentiation are polycomb targets, while promoters 
marked by H3K27me3 frequently become DNA methyl-
ated during differentiation, suggesting context-dependent 
crosstalk between polycomb and DNA methylation 
(Mohn and others 2008). Activation of neuron-specific 
genes are dynamically modulated by H3K27 methylation 
and demethylation for proper neural fate acquisition 
(Burgold and others 2012; Mikkelsen and others 2007). 
Loss of PRC2 function in the developing cortex removes 
the repressive mark of H3K27me3 in cortical progenitor 
cells and shifts the balance between self-renewal and dif-
ferentiation toward differentiation (Pereira and others 
2010). In line with this finding, PRC2 functions to repress 
the activity of a large number of neuronal genes that are 
involved in neuronal development (Dietrich and others 
2012). Additionally, through working cooperatively with 
mediator CDK (cyclin dependent kinase) subunits, such 
as CDK8 and CDK19, PRC2 regulates the expression of 
retinoic acid-responsive genes in response to neural dif-
ferentiation signal (Fukasawa and others 2015). PRC2 is 
also responsible for epigenetically inhibiting Ngn1 (neu-
rogenin 1) and the transition of neural progenitor cell fate 
from neurogenic to astrogenic during late stages of 

Figure 3. Coordinated function of PRC2-miR-203-PRC1 regulatory axis in regulating proliferation and differentiation of NSPCs. 
EZH2, a key component of PRC2, directly regulates the expression of miR-203 in both embryonic and adult NPSCs, and high 
levels of miR-203 negatively regulates self-renewal and proliferation of NSPCs, but promotes neuronal differentiation capacity. 
One of PRC1 components, Bmi1, is a direct downstream target of miR-203 in NSPCs. Hence, miR-203 interplays with polycomb 
repressive complexes to form a regulatory axis in proliferation and differentiation of NSPCs. PRC, polycomb repressive complex; 
NSPC, neural stem/progenitor cells
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neocortical development (Guillemot 2007; Hirabayashi 
and others 2009). Deletion or downregulation of EZH2 in 
cortical progenitor cells results in more rapidly cycling of 
neural precursors and an early increase in neurons and 
astrocytes in the cerebral cortex (Hirabayashi and others 
2009; Pereira and others 2010; Sher and others 2008). 
However, the shifts from neurogenesis to astrogenesis are 
closed when EZH2 deletion happens at a later time point 
in neural precursors (Hirabayashi and others 2009). In 
postnatal neurogenesis, EZH2 directly targeted and 
repressed bHLH transcription factor Olig2 during neuro-
nal lineage specification in the adult mouse subventricu-
lar zone (SVZ) (Hwang and others 2014) (Fig. 4). EZH2 
also modulates progenitor cell proliferation by inhibiting 
PTEN (phosphatase and tensin homolog) expression and 
promoting the activation of a serine/threonine kinase Akt-
mTOR (mammalian target of rapamycin) in adult hippo-
campus (Zhang and others 2014a). Besides forebrain 
neural stem cells, EZH2 also controls Purkinje cell for-
mation and differentiation and affects cerebellar neuro-
genesis (Feng and others 2016).

Deficiency of PRC2 component EED in mice results 
in gastrulation defects and lack of a node and of neural 
tissue in the early development (Satijn and others 2001; 
Schumacher and others 1996). In the rat spina bifida, the 
expression levels of EED and SUZ12 are altered (Wang 
and others 2010), suggesting that the polycomb proteins 

are essential for spinal cord development (Qi and others 
2013). Furthermore, studies in the Xenopus model 
showed that PRC2 proteins are located primarily in the 
neural crest cells and modulate neural crest specification 
and migration (Tien and others 2015). In contrast to the 
observations in CNS, conditional inactivation of EZH2 in 
the neural crest has no effect on stem cell proliferation, 
neurogenesis and gliogenesis in the peripheral nervous 
system (Schwarz and others 2014), indicating that PRC2 
may play different roles in central and peripheral nervous 
systems. Collectively, PRC2 functions presumably by 
repression of distinct sets of target genes in a cell type- 
and time-dependent manner during neural development.

PRC2 Modulates Neuronal Migration 
and Maturation

PRC2 also plays important roles in neuronal migration, 
differentiation, and maturation (Dietrich and others 2012; 
Gehani and others 2010). In the late stage of neurogenesis, 
PRC2 mediates appropriate gene expression patterns that 
are responsible for the temporal onset of neuronal migra-
tion essential for the establishment of specific neural cir-
cuits (Zhao and others 2015a). For example, Ezh2 
epigenetically regulates Reelin expression pattern to fulfill 
proper orientation for migrating neurons (Zhao and others 
2015a). In EZH2 mutants, derepression of NETRIN1 

Figure 4. Regulation of neurogenesis and gliogenesis by polycomb repressive complex 2 (PRC2). EZH2 plays vital roles in 
modulating neuronal differentiation, migration, and maturation through targeting different downstream genes (top of the 
figure). PRC2/CUL4B complex represses generation of astrocytes (middle of the figure), while SUZ12/LnRNA is required for 
OPC maturation. EZH2 enhances the levels of H3K27me3 in nucleosomes by promoting chromatin compaction, conferring a 
repressive epigenetic signature at Olig1&2 sites and thereby affecting oligodendrocyte development and myelination (bottom of 
the figure).



Liu et al 7

results in abnormal neuronal migration and connectivity in 
the cortico-ponto-cerebellar pathway (Di Meglio and oth-
ers 2013). Subunits of PRC2 bind to the regulatory regions 
of rostral HOXA genes and control the differentiation-
associated activation (Fukasawa and others 2015; Stein 
and others 2016). In mature hippocampal neurons, neuro-
nal activity controls BDNF (brain-derived neurotrophic 
factor) expression via PRC2 that is essential for neuronal 
differentiation and survival (Palomer and others 2016).

It has been demonstrated that EZH2 inhibits the tran-
scription of BDNF and restricts dendrite arborization in 
mammalian neurons (Qi and others 2014) (Fig. 4). 
Similarly, EZH1 also contributes to the maturation of 
post mitotic mammalian neurons through regulating the 
transcription of PSD-95 (Henriquez and others 2013), 
suggesting that neuronal development and maturation are 
closely related with a switch from predominantly EZH2-
containing to EZH1-containing PRC2 complexes 
(Henriquez and others 2013) (Fig. 4). The age-dependent 
increase in H3K27me3 in neurons indicates the potential 
relevance of high levels of H3K27me3 in the mainte-
nance of adult neuronal function (von Schimmelmann 
and others 2016). In our recently published paper, we 
found that high H3K27me3 level mediated by deletion of 
histone H3K27 demethylase UTX leads to deficiency of 
synaptic plasticity and cognitive behaviors in mice. We 
further demonstrated that UTX cKO mice display abnor-
malities of neuronal morphology, long-term potentiation, 
and basal synaptic transmission in area CA1 of the hip-
pocampus (Tang and others 2017). Some genes critical 
for synaptic plasticity, and/or dendrite development 
including nitric oxide synthase 1 (NOS1), actin filament 
cross-linker a-actinin-2 (ACTN2), zinc finger transcrip-
tion factor EGR3, transforming growth factor-b2 
(TGFB2), and WNT4 are verified as the downstream tar-
gets of UTX in the hippocampus (Tang and others 2017). 
Taken together, these findings suggest that PRC2 plays a 
key role in modulating neuronal migration and matura-
tion, and contributes to dendrite development and synap-
tic plasticity.

PRC2 Plays Important Roles in 
Regulating Gliogenesis

PRC2 is involved in the transition from neural stem cells 
to glial cells and regulates the production of glial cells 
(Liu and Casaccia 2010). In CNS, PRC2/CRL4B (cullin 
4B) complexes limit the expression of prostaglandin-H2 
D-isomerase (PTGDS) to restrain glial fibrillary acidic 
protein (GFAP) expression, illustrating the important role 
of PRC2 in the regulation of glial development (Zhao and 
others 2015b) (Fig. 4). Forced expression of EZH2 in 
astrocytes induces their dedifferentiation toward neural 

stem cells in vitro (Sher Boddeke and Copray 2011). 
PRC2 directly modulates gliogenesis by regulating the 
transient expression of Gcm/Glide fate determinant in the 
Drosophila nervous system (Popkova and others 2012). 
Moreover, EED/PRC2 knockdown dramatically pro-
motes neurogenic-to-gliogenic fate switching in late-
stage NPCs (Hirabayashi and others 2009; Liu and 
Casaccia 2010).

PRC2 also has an instructive role in the differentiation 
of oligodendrocytes (Liu and others 2015). Recent stud-
ies have shown that the levels and activity of PRC2 com-
plex increase on exposure to oligodendrocyte 
differentiation stimuli and this increase contributes to the 
final differentiation of oligodendrocyte progenitor cells 
(OPCs) into myelinating oligodendrocytes (OLs) (He and 
others 2017; Liu and others 2015; Sher Boddeke Olah 
and Copray 2012). SUZ12, together with long non-cod-
ing RNAs, is required for OPC maturation through tran-
scriptional repression of OPC-associated genes by 
deposition of repressive H3K27me3 marks on their 
enhancers and promoters (He and others 2017). EZH2 
remains at a high level in OPCs (Sher and others 2008), 
but is completely suppressed when NSCs differentiate 
into astrocytes (Liu and Casaccia 2010). In contrast, 
overexpression of EZH2 in cultured neural precursor 
cells promotes oligodendrocyte development and reduces 
astrocytes (Sher and others 2008). A recent study showed 
that EZH2 enhances the levels of H3K27me3 in nucleo-
somes by promoting chromatin compaction, conferring a 
repressive epigenetic signature at OLIG1&2 sites and 
thereby affecting oligodendrocyte development and 
myelination (Deng and others 2017) (Fig. 4). In the 
peripheral nervous system, PRC2 is important for myelin 
homeostasis. Loss of EED results in hypermyelination of 
smaller-diameter axons and focal myelin enfolding, 
revealing that PRC2-mediated H3K27me3 constitutes a 
novel determinant of mature myelin thickness (Ma and 
others 2015). Furthermore, EZH2 has recently been 
shown to mediate p57KIP2 activity in Schwann cells, and 
misregulation of EZH2 results in impaired cellular matu-
ration and inhibition of myelin gene expression (Heinen 
and others 2012). Taken together, PRC2 regulates the 
expression of essential transcription factors during the 
maturation of oligodendrocytes and has key roles in 
myelination.

Abnormal Expressions of PRC2 
Members Cause Neurological 
Disorders

Genome sequencing data from cancer studies reveal that 
PRC2 and PRC2-mediated H3K27 methylations are fre-
quently misregulated (Conway and others 2015). EZH2 
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has been reported to be highly expressed in multiple can-
cers (Han Li and Chen 2015; Kim and Roberts 2016; Zhao 
and others 2016). As early as 2003, PRC2 was found to be 
involved in pediatric glioblastoma (GBM), the most 
aggressive primary brain tumor in humans (Lewis and 
others 2013). Recent evidence demonstrates that PRC2 
components EZH2, EED, and SUZ12 are highly related to 
GBM (Abdouh and others 2009; De Raedt and others 
2014; Dubuc and others 2013; Martinez and others 2009). 
EZH2 is also highly expressed in medulloblastoma, 
another malignant brain tumor of childhood. SUZ12 also 
plays a central role in malignant transformation, as somatic 
mutations of SUZ12 are found in malignant peripheral 
nerve sheath tumors (MPNSTs) (Zhang and others 2014b). 
More importantly, inhibition of EZH2 suppresses medul-
loblastoma tumor cell growth (Alimova and others 2012), 
supporting the notion that targeting PRC2 complexes may 
have therapeutic potentials for treating CNS tumors (Crea 
and others 2012; Dubuc and others 2013).

Both gain- and loss-of-function mutations of PRC2 
subunits in humans lead to a pathogenic state and are 
associated with several neurological disorders (Imagawa 
and others 2017) (Table 1). EZH2 has been verified as a 
target of CHD8, an important autism gene during cortical 
neurogenesis (Durak and others 2016). Indeed, EZH2 
mutation leads to weaver syndrome, an extremely rare 
congenital disorder with advanced osseous maturation, 
and distinctive craniofacial, skeletal, and neurological 
abnormalities (Gibson and others 2012; Imagawa and 
others 2017; Tatton-Brown and others 2011; Tatton-
Brown and others 2013; Weaver and others 1974). 
Deregulated expression of EZH2 is also found in con-
genital brainstem disconnection (Barth and others 2017). 
Besides EZH2, loss-of-function and mutations of EED 

are suggested as causes for Weaver syndrome (an 
extremely rare congenital disorder with intellectual dis-
ability) and Chiari malformation with neurological prob-
lems, respectively (Cooney and others 2017; Imagawa 
and others 2017; Miro and others 2009). In an adult 
mouse model of status epilepticus (SE), SE produces an 
early increase in the expression of EZH2 and SUZL2 in 
the hippocampus, implying that PcG proteins might play 
important roles in injury and tolerance (Reynolds and 
others 2015).

Accumulating evidence also suggests that PRC2 is 
involved in neurodegeneration. EZH2-mediated H3K27 tri-
methylation is thought as a crucial step leading to neurode-
generation in ataxia-telangiectasia (A-T). In A-T patients 
and mouse models, the physical association between EZH2 
and H3K27 methylation is significantly increased, suggest-
ing that increased trimethylation of H3K27 mediated by 
PRC2 is an important factor in the degeneration of neurons 
in A-T patients (Li and others 2013). In a Parkinsonian 
mouse model, dopamine signaling in terminally differenti-
ated brain neurons induces an increase in H3K27me3S28 
phosphorylation with aberrant expression of a subset of 
PcG repressed genes, indicating that PcGs are associated 
with Parkinson’s disease (PD) (Sodersten and others 2014). 
As for Huntington’s disease (HD), a comprehensive analy-
sis of H3K4me3 ChIP-sequencing data shows that EZH2 
and SUZ12 are differentially enriched in HD H3K4me3 
distal peaks, and that PRC2 repressive state is substantially 
abolished in HD-enriched peaks, suggesting that PRC2 
deletion may be related with H3K4me3 upregulation in HD 
(Dong and others 2015). The full-length recombinant hun-
tingtin protein significantly increased the histone H3K27 
trimethylase activity, which gives us a novel starting point 
for studying the role of PRC2 and molecular mechanisms in 

Table 1. Mutations in Genes Coding for PRC2 Subunits in Neurological Diseases.

Gene Expression/Mutation Disease Reference

EZH2 Overexpression Glioblastoma (Lewis and others 2013)
 Overexpression Medulloblastoma (Alimova and others 2012)
 Deletion/mutation Weaver syndrome (Cohen and others 2016; Imagawa and others 2017; 

Usemann and others 2016)
 Knockdown Febrile seizures (Wang and others 2017)
 Overexpression Ataxia-telangiectasia (Li and others 2013; Li and Jiang 2015)
 Overexpression Huntington’s disease (Dong and others 2015)
EED Missense mutation Weaver syndrome (Cooney and others 2017; Imagawa and others 2017)
 Mutations Glioblastoma (De Raedt and others 2014)
SUZ12 Missense mutation Weaver syndrome (Imagawa and others 2017)
 Mutations Glioblastoma (De Raedt and others 2014)
 Overexpression Huntington’s disease (Dong and others 2015)
 Mutations Malignant peripheral 

nerve sheath tumor
(Zhang and others 2014b)

JARID2 Deficient Chiari malformation (Miro and others 2009)
 Deletion Autism spectrum disorder (Celestino-Soper and others 2012; Ramos and others 2012)
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HD (Seong and others 2010). The changes of the transcrip-
tional program in PRC2-deleted neurons lead to “progres-
sive and fatal neurodegeneration in mice,” implying that 
PRC2 plays key roles in protecting neurons against degen-
eration (von Schimmelmann and others 2016). In addition, 
EED is identified as an interaction partner of neutral sphin-
gomyelinase 2 (nSMase2), a major mediator in diseases 
such as Alzheimer’s and ischemia/reperfusion-induced 
brain damage (Gu and others 2013; Philipp and others 
2010). Therefore, PRC2 might represent a common target 
of multiple pathological processes that drive neurodegen-
erative diseases. However, an important question that 
remains unanswered is how the alterations of various PRC2 
components and histone H3K27 methylation contribute to 
these neurological diseases. Future studies to elucidate 
these mechanisms will help discover novel molecule targets 
for treating these devastating neurological disorders.

In conclusion, as PRC2 and PRC2-mediated H3K27 
methylation have numerous molecular functions, under-
standing the multifaceted roles of PRC2 will likely con-
tinue to be a hot topic in the coming years. Although 
dysregulations of several PRC2 components have been 
linked with neurological diseases, the underlying mecha-
nisms have not been well defined yet. Given the fact that 
many mouse lines have been generated for constitutive or 
conditional knockout of PRC2 subunits (Li and others 
2013; Pereira and others 2010; Vizan and others 2015), 
animal models with defined pathogenic/genetic back-
grounds may provide invaluable resources for discover-
ing the functions of PRC2 components in the process of 
neurological disorders. With the emergence of powerful 
deep-sequencing and modern biology technologies, there 
is no doubt that further investigations of the complete pic-
ture of the intricate and complex regulatory networks of 
PRC2 in nervous system, especially the dynamics of core 
PRC2 components and the interplay between PRC2 and 
other associated factors, will enable us to efficiently gen-
erate specific brain cell types and develop new therapeu-
tic approaches for treating neurological diseases.
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