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Abstract. Polycystic ovary syndrome (PCOS), a familial aggregation disease that causes anovulation in women, has 
well-recognised characteristics, two of which are hyperinsulinaemia and hyperandrogenaemia. To determine whether the 
DNA methylation status is altered in oocytes by high insulin and androgen levels, we generated a mouse model with 
hyperinsulinaemia and hyperandrogenaemia by injection of insulin and human chorionic gonadotrophin and investigated 
DNA methylation changes through single-cell level whole genome bisulphite sequencing. Our results showed that 
hyperinsulinaemia and hyperandrogenaemia had no significant effects on the global DNA methylation profile and 
different functional regions of genes, but did alter methylation status of some genes, which were significantly enriched in 
17 gene ontology (GO) terms (P , 0.05) by GO analysis. Among differently methylated genes, some were related to the 
occurrence of PCOS. Based on our results, we suggest that hyperinsulinaemia and hyperandrogenaemia may cause 
changes in some DNA methylation loci in oocytes.
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Introduction

Hyperinsulinaemia and hyperandrogenism are well-recognised

characteristics of polycystic ovary syndrome (PCOS). Both of
them are always caused by unhealthy lifestyle habits along with
the symptoms of obesity, irregular menstrual cycles and even

increased risk of Type 2 diabetes mellitus or cardiovascular
diseases (Wild et al. 2000; Carmina 2009).

DNA methylation is an important epigenetic marker that is

critical for embryo development and has its specificity in
relation to species and tissues. It is deemed as stable and a
potential marker for diagnostic purposes. At present, the DNA
methylation status of adipose tissue (Kokosar et al. 2016),

granulosa cells (Xu et al. 2016) and ovaries (Zhang et al.

2014; Yu et al. 2015) has been examined in humans with PCOS.
Although it has been confirmed that DNA methylation changes

with PCOS in some reproductive tissues, it is still not known
whether the DNA methylation status is changed by hyperinsu-

linaemia and hyperandrogenism or by some other stimulus.
We have previously generated a mouse model with hyper-

insulinaemia and hyperandrogenism by injection of insulin and

human chorionic gonadotrophin (hCG) and found that hyper-
insulinaemia and hyperandrogenism evidently affected oocyte
quality and developmental competence (Ou et al. 2012). In the

present study we used this mouse model to investigate whether
hyperinsulinaemia and hyperandrogenism could influenceDNA
methylation status in oocytes. We chose a new technique named
single-cell level whole genome bisulphite sequencing (SC-

WGBS) to examine the global DNA profile. Global DNA
methylation status was compared between normal oocytes and
the oocytes from model mice.
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Materials and methods

Hyperinsulinaemia and hyperandrogenism mouse model

Female ICR mice at 30 or 34 days of age were purchased from
SPF Biotechnology Co., Ltd. The feeding conditions were in

accordance with the stipulations promulgated by the Ethics
Committee of the Institute of Zoology, Chinese Academy of
Sciences. Themicewere randomly divided into three groups: (1)

subcutaneous (s.c.) injection of saline (control), (2) s.c. injection
of insulin (insulin) and (3) s.c. injection of insulin and hCG
(insulin–hCG). The injection dose of insulin was 0.05 IU twice a

day for 16 days, then the dose was increased gradually to 0.8 IU
for 6 days (Ou et al. 2012). The injection dose of hCG was
0.075 IU twice a day (Lima et al. 2006).

Serum detection and oocyte collection

The model mice were given an i.p. injection with 8 IU pregnant
mare serum gonadotrophin (PMSG; Ningbo). Intraperitoneal
injectionwith 8 IU hCG (Ningbo)was performed 48 h later, then

14 h after hCG blood was collected by removing the eyeball and
MII oocytes were recovered and cumulus cells were removed by
1 mg mL�1 hyaluronidase (Sigma) treatment. The zona pellu-

cida was removed by treatment with Tyrode’s solution (Sigma).
The blood was stored overnight at 48C and was centrifuged at
4000g for 10min at 378C. Then serumwas used to detect insulin

and testosterone levels, which were conducted at the biochem-
ical laboratory (KemeiCo.). If the insulin and testosterone levels
were significantly higher than the control, then the oocytes were
prepared for SC-WGBS.

SC-WGBS analysis

SC-WGBSwas performed by Annoroad Gene Tech. Co., Ltd. A
total of 30 oocytes were collected from five mice in each group.
The samples were kept in 1.5 mL 20 mg mL�1 proteinase K
(Sigma) at 378C for 1 h. Bisulphite conversionwas performed on

cell lysates using anEZDNAMethylation-GoldKit (Zymo). CT
Conversion Reagent (65 mL) was added into the sample and
incubated at 988C for 10min then 648C for 3 h and stored at 48C;

the following steps were consistent with the kit’s instructions.
lDNA was added in this process to evaluate the conversion
efficiency. Finally, DNA was eluted from the column in 10 mM

Tris-Cl. Biotin-labelled oligo 1 was added together with dNTPs
and reaction buffer and the mix was incubated at 658C for 3 min,
then cooled down to 48C for primer annealing. Klenow exo– (50
U; NEB) was used for structuring the first strand and following

steps were consistent with Smallwood et al. (2014). We used
0.8� Agencourt Ampure XP beads and M-280 Streptavidin
Dynabeads (Life Technologies) for DNA purification. Klenow

exo– (100 U; Enzymatics) was used for structuring the second
strand, then the purified DNA was used for polymerase chain
reaction (PCR) amplification, which included enzyme activa-

tion (958C for 2 min), amplification (12–13 cycles of 948C for
80 s, 658C for 30 s and 728C for 30 s) and final cooling at 48C.
After PCR amplification, 0.8� Agencourt Ampure XP beads

were again used for purification. An Agilent Bioanalyzer and
StepOnePlus Real-Time PCR System was used for library
quantification and 125-bp paired-end sequencing was executed
by a HiSeq2500 platform.

Statistical analyses

The original data was converted to raw data by CASAVA
(Illumina), then filtered to get clean reads (see Table S1 avail-

able as Supplementary Material to this paper). Both clean reads
and themouse genomewere carried on C-to-T (Forward) andG-
to-A (Reverse) conversion. The converted reads weremapped to

the converted genome by Bismark (Krueger and Andrews 2011;
ver. 0.9.0; bismark -p -n -1 -2 -un –bowtie2 -path_to_bowtie
-bam -samtools_path -o). Potential methylation site statistics

was performed in accordance with the methods of Guo et al.

(2013). The methylation status of the genome was divided by
sliding a 2-kb window and then used for cluster analysis by pair-
wise Pearson’s correlation. Cluster analysis was also carried out

on the methylation status of each locus between different
groups. Data was analysed by R software (http://www.r-project.
org; accessed 1 September 2009). Gene ontology (GO) function

analysis was performed by DAVID software (http://david.abcc.
ncifcrf.gov/; accessed 1 September 2017).

Results

Establishment of hyperinsulinaemia and hyperandrogenism
mouse model

For the reason that hyperinsulinaemia and hyperan-
drogenaemia are two important diagnostic criteria for PCOS,

we generated a mouse model with these two parameters by
injection with insulin and hCG. Through different treatments,
the mice were divided into three groups: control mice (control),

hyperinsulinaemia mice (insulin) and hyperinsulinaemia–
hyperandrogenism mice (insulin–hCG). This mouse model was
previously established by our laboratory in 2012 (Ou et al.

2012). We detected insulin and testosterone levels in our
treated mice and the results were consistent with our previous
report.

The overview of SC-WGBS

To investigate the DNA methylation profile in oocytes, we
adopted a single-cell level whole genome bisulphite sequencing

(SC-WGBS) approach. More than 160� 106 clean reads were
obtained in each group (Table S1) and the clean reads were
transformed and compared with the genome. The mapped rates
were 51.42, 49.19 and 49.22% in the control, insulin-treated and

insulin–hCG-treated mice respectively (Table S2).

CpG island analysis

The methylation status of CpG islands (CGIs) is important for
gene transcription, especially in mammals.We used the mapped

reads to find the CpG islands of the whole genome (Fig S1
available as Supplementary Material to this paper). The CpG
islands statistical analysis showed the relationship between

coverage depth and ratios in Fig. 1 (Table S3). The overall
methylation level in each group is shown in Fig. 2 and pair-wise
Pearson’s correlation is shown in Fig. 3 (Table S4). The meth-

ylation levels of different functional regions of genes are shown
in Fig. 4. There was no significant difference in global meth-
ylation and methylation distribution of different gene functional
regions between the three groups.
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Differentially methylated regions (DMRs) and cluster
analysis

Differentially methylated regions (DMRs) were found between
different groups. There were 53 DMRs between the control and
insulin groups, 44 DMRs between the control and insulin–hCG
groups and 52 DMRs between the insulin and insulin–hCG

groups (Table S5; Figs S2–S4). Cluster analyses between dif-
ferent groups were carried out and are shown by their heat maps
(Fig. 5). It helped us confirm the DMRs with significant

differences.

Differential genes and GO analysis

After we found DMRs, we confirmed the corresponding gene
names in Table 1. There were 17 GO terms that were signifi-

cantly enriched (P, 0.05; Fig. 6; Tables 2, S6).

Discussion

PCOS is a disease that always shows familial aggregation.
Numerous studies have been conducted by using ovary, blood or
other tissues from patients, trying to find the genetic sites

associated with PCOS by high-throughput sequencing technol-
ogy and differentially expressed genes have been confirmed.
These approaches are direct, but it is nevertheless hard to dis-

tinguish the causes of PCOS since, in addition to genetic
inheritance, epigenetic inheritance and hormone changes are
always affected by environmental stress. In order to determine
whether environment stress affects the DNA methylation of the
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patients, given the premise that the genetic background is con-
sistent, we chose to use the model animals. We generated

hyperinsulinaemia and hyperandrogenaemia mouse models by
injection of insulin and hCG to find the relationship between
environmental factors and DNA methylation in oocytes of
PCOS-like mice.

Because environmental factors and experimental individuals
were important for epigenetic experiments, themice used for the
experiments were specific pathogen-free (SPF) animals, whose

feeding conditions were strictly kept. The weight of these mice
differed by 2 g when they were bought. During the 22-day
treatment, we tried to avoid the influence of environmental

factors and experimental individuals as carefully as possible to
ensure a consistent outcome. The oocytes and serum from a
single mouse were collected at the same time. When the
hormone was significantly different between different groups,

then the oocytes were used for SC-WGBS. A total of 30 oocytes

from five mice in each group were used for SC-WGBS to make
the data as reliable as possible.

We chose oocytes at MII stage, the last phase before
fertilisation. Since it is difficult to obtain a large number of
oocytes for analysis, we thus chose a new technique named
single-cell level whole genome bisulphite sequencing to get the

global DNA methylation status. Our results showed that the
hyperinsulinaemia and hyperandrogenaemia did not cause
changes in the global DNA methylation profile and different

functional regions of genes in oocytes, but some differently
methylated genes were found and were enriched in 17 GO
terms.

The pathogenesis of PCOS always shows familial clustering.
The data from 1332 monozygotic twins and 1873 dizygotic
twins proved that genetic factors have a significant influence on
PCOS (Vink et al. 2006); however, the causal genetic factors

were not identified. With the development of sequencing
technology, genome-wide association studies (GWAS) was
used to determine the loci for PCOS risk (Chen et al. 2011;

Shi et al. 2012; Lee et al. 2015). For these loci, some studies
have been carried out for genetic screening and found several
PCOS candidate genes including LHCGR, FSHR, INSR and

DENND1A (Gammoh et al. 2015; McAllister et al. 2015).
The differently methylated genes that we found were

correlated with LHCGR, FSHR, INSR and DENND1A in

humans, as revealed by STRING (https://string-db.org/cgi/
input.pl; accessed 1 September 2017; Szklarczyk et al. 2015,
2017; Fig. 7). We also used the gene expression profiles
differentially expressed in PCOS patients between non-

hyperinsulinaemia and hyperinsulinaemia granulosa cells to

Table 1. Differently methylated genes

3110070M22Rik, A830018 L16Rik, Adra1b, Atp1b3, Atp7b, Cenpv, Ctu1,

Flg2,Gm7120,Hace1,Hdac5,Hsdl1,Ncor2,Nim1k, Papln, Pigm, Prdm16,

Ptprn2, Slc4a5, Tmem267, Topors, Vwf. Note: These names are official

names (Provided by MGI), which can be researched via NCBI

Comparison groups Gene names

Control Insulin Gm7120, Ptprn2, Cenpv, Hsdl1, Ctu1,

Prdm16, Topors

Control Insulin–hCG Tmem267, 3110070M22Rik, Ptprn2, Cenpv,

Hsdl1, Ctu1, Prdm16, Topors

Insulin Insulin–hCG A830018 L16Rik, Pigm, Flg2, Prdm16,

Ncor2, Slc4a5, Vwf, Atp7b, Atp1b3, Hace1,

Adra1b, Hdac5, Papln, Nim1k
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Fig. 6. GO analysis of differently methylated genes.

Table 2. GO enrichment analysis of differently methylated genes

GO accession Description P-value

GO:0007595 Lactation 0.002134

GO:0045893 Positive regulation of transcription,

DNA-templated

0.009990

GO:0045892 Negative regulation of transcription,

DNA-templated

0.010170

GO:0006355 Regulation of transcription, DNA-

templated

0.015290

GO:0048103 Somatic stem cell division 0.016308

GO:0090051 Negative regulation of cell migration

involved in sprouting angiogenesis

0.017777

GO:0006351 Transcription, DNA-templated 0.018063

GO:0016740 Transferase activity 0.018917

GO:0010832 Negative regulation of myotube

differentiation

0.019245

GO:0010812 Negative regulation of cell-substrate

adhesion

0.022174

GO:0050872 White fat cell differentiation 0.023635

GO:0005112 Notch binding 0.029404

GO:0003682 Chromatin binding 0.031223

GO:0030001 Metal ion transport 0.036693

GO:0046982 Protein heterodimerisation activity 0.040005

GO:0042113 B-cell activation 0.042442

GO:0046872 Metal ion binding 0.047530

DNA methylation in similar PCOS oocyte Reproduction, Fertility and Development E

https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl


calculate the correlation coefficient between each different

methylation gene and the four differential genes in PCOS
patients (Kaur et al. 2012; Fig. 8). It showed that most of them
(Adarb2, Adra1b, Arhgef37, Arx, Atp1b3, Bdkrb2, Ccdc151,

Cenpv, Dapk1, Fam219a, Flg2, Fzd7, Hace1, Hdac5, Hsdl1,
Ncor2, Papln, Pex1, Pigm, Prdm16, Prdm6, Slc4a5, Topors,
Treml1, Usf2) were highly correlated with one of the four

important genes.
In conclusion, hyperinsulinaemia and hyperandrogenaemia

do not have a significant effect on the global DNA methylation

status and different functional regions of genes in oocytes, but
they do affect methylation of some genes. These genes were

associated with four PCOS-related genes, LHCGR,FSHR, INSR

and DENND1A in humans. We hypothesise that environment
stress alters some DNA methylation loci in oocytes.
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Fig. 8. Correlation coefficient between each differently methylated gene and the four differential genes in PCOS patients.
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