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Abstract Brown adipose tissue (BAT) plays a fundamental role in maintaining body temperature by producing
heat. BAT that had been know to exist only in mammals and the human neonate has received great attention for
the treatment of obesity and diabetes due to its important function in energy metabolism, ever since it is recently
reported that human adults have functional BAT. In addition, beige adipocytes, brown adipocytes in white adipose
tissue (WAT), have also been shown to take part in whole body metabolism. Multiple lines of evidence
demonstrated that transplantation or activation of BAT or/and beige adipocytes reversed obesity and improved
insulin sensitivity. Furthermore, many genes involved in BATactivation and/or the recruitment of beige cells have
been found, thereby providing new promising strategies for future clinical application of BAT activation to treat
obesity andmetabolic diseases. This review focuses on recent advances of BAT function in the metabolic aspect and
the relationship between BAT and cancer cachexia, a pathological process accompanied with decreased body
weight and increased energy expenditure in cancer patients. The underlying possible mechanisms to reduce BAT
mass and its activity in the elderly are also discussed.
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Introduction

Adipose tissue is an essential organ in regulating energy
homeostasis. Human and small mammals exhibit mainly
two different types of fat tissue, namely, white adipose
tissue (WAT) and brown adipose tissue (BAT). BAT, as a
thermogenic organ, is involved in the maintenance of body
temperature. BAT consumes energy by generating heat
through the expression of uncoupling protein 1 (UCP1) in
its inner mitochondrial membrane [1]. BAT, as an
endocrine organ, also plays a key role in glucose and
lipid metabolism by consuming fatty acids (FAs) and
glucose and regulating energy homeostasis [2,3]. Human
adults possess functional BAT and the presence and/or
activity of BAT is negatively related to age, body mass
index (BMI), and glucose level [4–6]. Thermogenesis is a

major function of BAT in rodent and human adult [7–9]. In
terms of human neonates, the core and skin temperature
can decrease immediately after delivery at a rate of
approximately 0.1 and 0.3 °C per minute, respectively, due
to physical characteristics and environmental factor [10].
To prevent hypothermia, the neonate should activate
nonshivering thermogenesis (NST), which is associated
with lipolysis in BAT to accelerate heat production [11]. In
newborn sheep, impaired BAT thermogenesis results in
life-threatening hypothermia [12]. Human neonates who
died of cold syndrome also show BAT depletion, whereas
healthy neonates exhibit a considerable amount of BAT
[13]. Therefore, BAT might also be important for human
neonates to maintain body temperature. However, the
thermogenic function of BAT in human neonates is not
well studied due to the absence of safe protocol for
temperature challenge.
Brown adipocyte arises from progenitor cell that shares

common myogenic transcriptional characteristic, such as
Myf5 and Pax7 [14–16]. PRD1-BF-1-RIZ1 homologous
domain 16 (PRDM16) and CCAAT/enhancer binding
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protein-β (C/EBPβ) complexes that induce the expression
of peroxisome proliferator-activated receptor g (PPARg)
and peroxisome proliferator-activated receptor-g coacti-
vator-1 (PGC-1), key regulators of the brown fat
programming, are responsible for the differentiation of
brown adipocyte from myoblast [14,17]. As a third type of
adipocyte, beige cells that are recruited in WAT by
cold exposure or β3-adrenoceptor agonist treatment
express large amount of UCP1, a specific marker of
brown adipocyte [18,19]. Beige cell originates from
PDGFRα+CD34+Sca1+ precursor cell rather than from
Myf5-positive myoblast [15,20], but its gene character-
istics show a similarity to that of classical BAT [21]. For
the brown adipogenesis, brown adipocyte-specific proteins
such as PGC-1α, PRDM16, and UCP1 are essential [22].
UCP1, mainly expressed in brown adipocytes and beige
cells, releases chemical energy as heat by dissipating pH
gradient generated by oxidative phosphorylation [23,24].
Originally, UCP1-deficient mouse has an impairment of
thermoregulation, whereas UCP1 deficiency is not asso-
ciated with hyperphagia or obesity due to a compensation
mechanism of UCP2 induction [25]. However, UCP1
ablation results in obesity and impairment of diet-induced
thermogenesis at thermoneutrality [26]. Thus, UCP1 is
essential for thermoregulation and control of metabolism
in thermoneutral condition.
Although the different functions between classical

brown adipocytes and beige cells should be elucidated,
both cells express thermogenic genes and thereby play a
critical role in the maintenance of body temperature under
cold environment. Therefore, brown and beige adipocytes
are promising targets for the treatment of obesity and its
related metabolic disorders.

Anti-obesity effect of BAT and beige fat

When energy intake exceeds energy consumption, obesity
occurs as a result of caloric imbalance. Although
decreasing energy intake is the primary option to prevent
and treat obesity, the effort is not effective. BAT, as a
thermogenic organ, provides a new therapeutic strategy for
the treatment of obesity because BAT activity is negatively
correlated with BMI in human [4,27–29].
When the BAT from healthy mouse is transplanted in

mouse to simply increase its mass, increased BAT mass
prevents and reverses obesity in high-fat diet (HFD)-
induced obese mice [30–32] and Ob/Ob mice [33].
Transplanted BAT increases the activity of endogenous
BAT by secreting IL-6 [30], adiponectin [33], or unknown
potential cytokines [31,32]. These findings suggested that
increased BAT mass enhances energy expenditure, which
results in an anti-obesity effect. Nevertheless, BAT
transplantation is not applicable to human. Cell-based
strategy, such as transplantation of thermogenic adipocytes

that are differentiated in vitro from autologous cells after
autopsy, is considered an alternative option to overcome
this issue [34].
Cold exposure-induced NST remarkably reduces body

weight in HFD-induced rodent models or fat mass in
human subjects [35–37], since cold exposure activates
BAT and induces the recruitment of beige adipocytes in
WAT. Cold challenge activates sympathetic nervous
system (SNS) to release noradrenaline (NE) that binds to
β3-adrenergic receptor (β3-AR) and eventually promotes
the expression of UCP1 in BAT [38,39] and WAT [40,41].
The treatment of CL-316243, a β3-AR agonist, also
reduces adiposity in rodent models through activating BAT
thermogenesis [42,43]. In addition, eosinophils, type II
cytokines, and group 2 innate lymphoid cells (ILC2) play
important roles in beige fat formation [44–46]. Fibroblast
growth factor 21 (FGF21) [47,48], bone morphogenetic
proteins (BMPs) [49–51], and cardiac natriuretic peptide
[52] also regulate brown and beige fat activity, thereby
reducing body weight by activating thermogenesis in
rodent models. In obese human subjects, a clinical study
with LY2405319, a FGF21 mimetic, shows beneficial
metabolic effects with modest body weight reduction [53].
In addition to a β3-AR agonist and FGF21 mimetic, natural
compounds, such as capsaicin and capsinoid, can reduce
body fat mass in small rodents and humans [54] by
activating transient receptor potential cation channel,
subfamily V, member 1, which stimulates SNS to release
NE and enhances the activity of BAT [54–58]. For clinical
usage of these compounds, defined clinical studies are
required because BAT activation could induce adverse
effects on other metabolic diseases such as atherosclerosis.
In spite of the anti-obesity potential of BAT, BAT

activation-induced lipolysis increases more plasma lipo-
protein remnant than that of hepatic clearance capacity,
thereby aggravating the atherosclerotic plaque develop-
ment and instability in ApoE- or LDLR-deficient mice
[59]. However, BAT activation in APOE*3-Leiden.CETP
transgenic mice, which preserves hepatic remnant clear-
ance, protects atherosclerosis. It indicates that BAT
activation attenuates atherosclerosis only when the liver
can clear lipoprotein remnants [60]. Therefore, clinical
application with chemicals or natural compounds for the
activation of BAT should be carefully considered yet for
patients who possess metabolic complications, except for
simple obesity.

Role of BAT and beige fat in diabetes
mellitus (DM)

BAT tightly regulates the systemic level of FA and glucose
that are the main fuel for UCP1-mediated BAT thermo-
genesis [2,8,61]. The BAT mass ranging from ~30 g to
300 g is able to contribute to 20% of daily resting energy
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expenditure (REE) [4,62]. In addition, BAT mass and its
ability to uptake glucose in basal and cold environment are
decreased in obese and diabetes patients [27–29], indicat-
ing that decreased BATactivity is associated with DM. The
number of studies describing that BAT mass or its activity
mediates insulin resistance has been increasing in recent
years. In streptozotocin-induced and autoimmune-
mediated type 1 DM (T1DM) mice, BAT transplantation
improves glucose tolerance and reverses polydipsia,
polyphagia, and polyuria that are major symptoms of
T1DM, resulting in euglycemia [63,64]. Furthermore, BAT
transplantation in HFD and Ob/Ob mice significantly
enhances glucose tolerance and insulin sensitivity [30–33].
Implantation of differentiated human UCP1-positive beige
adipocytes or functional brown adipocytes differentiated
from human pluripotent stem cells (hPSCdBA) also
enhances glucose tolerance in mice [65–67]. Additionally,
prolonged exposure to cold or CL-316,243 treatment
increases BAT mass and results in improved glucose
intolerance in obese rat [36,42,43]. In humans, cold-
induced BAT activation also increases glucose uptake by
~12 folds [68] and enhances glucose homeostasis and
insulin sensitivity [69]. These studies supported that
activated BAT markedly increases the uptake rate of
triglyceride, ameliorating the insulin resistance in mice
[61].
These beneficial effects are, at least in part, from

batokines defined as cytokines released from BAT. BAT
expresses FGF21, IL-6, adiponectin, T3, BMP8B, pros-
taglandin D2 synthase (PTGDS), Nrg4, VEGFA, and
VEGFB [70–72]. In particular, FGF21 [73–75], IL-6
[30,76,77], adiponectin [33], PTGDs [78], and BMP8B
[51] reverse hyperglycemia and improve insulin sensitivity
through autocrine and/or endocrine mechanisms. Nrg4
regulates glucose homeostasis by activating ErbB3 and
ErbB4 signaling pathway in the liver [79]. Additionally,
VEGFA and VEGFB exhibit antidiabetic effect through
endocrine and paracrine mechanisms [80–83].
For the clinical application of BAT activation on obesity

or DM, determining molecules with remarkable efficiency
as that of cold exposure or CL-316,243 would be a
valuable therapeutic approach.

Mass and activity of BAT in aging

According to the 18F-FDG PET-CT imaging analysis, most
prominent 18F-FDG uptake regions are cervical-supracla-
vicular and paracervical adipose tissues in human [4–6].
The gene characteristics of human UCP1+ brown adipo-
cytes are more similar to those of mouse beige adipocytes
than those of mouse classical brown adipocytes [19,84].
The amount of BAT after cold stimulus is inversely
correlated with age, and BAT is barely detected in the
elderly who is more than 60 years old [85]. The reason why

BAT mass is reduced in human is unknown. Wide
distribution of BATs in human neonates is associated
with NST for protection against cold because they possess
an immature heat generation mechanism. However, adults
exhibit another mechanism to produce heat from shivering
and voluntary muscular activity in cold environment.
Therefore, a transition from nonshivering to shivering
thermogenic mechanism might exist with aging [86,87].
The proposed mechanisms for the reduction of BAT in

the elderly include defective hormonal signals (pituitary
growth hormone and sex hormones) [85], BAT stem cell
alteration [88], mitochondrial dysfunction [89], and
decreased brain activity [90]. Sex hormones, such as
estrogens and androgens, decline in late adulthood and
inhibit the activity of glucocorticoids that negatively
regulate BAT activity [85]. Aging is accompanied with
progressive impairment of stem cell function, which leads
to the regenerative defect of BAT in the elderly [88].
Reduced sensitivity to sympathetic tone, accumulated
DNA mutations and ROS damages could be possible
explanations for the defective function of stem cell in the
elderly [88,89]. Recently, the central nervous system is
suggested to be responsible for the decreased BAT activity
in aging. After cold exposure, regional brain FDG uptake
analyzed by 18F-FDG PET-CT imaging is remarkably
attenuated in an old man compared with that in a young
man [90]. Given that brain circuit mediates the autonomic
nervous system that is dysfunctional in obesity and aging,
impairment of central nervous activity could have caused
BAT inactivity in the elderly. Liver-derived FGF21
regulates insulin sensitivity, mitochondrial activity, lipid
metabolism, ketogenesis, and lifespan extension in mice.
More than 30% of female FGF21-Tg mice extend their
lifespan to approximately 44 months [91] by activating
AMPK and Sirt1 [92], that promote longevity [93]. BAT
increases FGF21 secretion after cold exposure or chemical
compound administration [94]. In addition, FGF21 over-
expression increases the perithymic BAT and protects age-
related thymic lipoatrophy, thereby delaying immune
senescence. The reduction of thymic lipotoxicity induced
by BAT lipid uptake can be regarded as one of the most
important mechanisms for the delay of immune senescence
[95]. The cause of attenuated BAT activity in the elderly is
multifactorial. Thus, considerable amount of work is
needed to understand the underlying mechanisms for the
reduction of BAT in the elderly.

Role of BAT in cancer cachexia

BAT activation has received considerable attention for the
development of cancer cachexia in animal model. Cancer
cachexia is a multifactorial syndrome defined as a
continuous loss of skeletal muscle and fat mass that cannot
be completely reversed by conventional nutritional
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support. Therefore, cancer cachexia eventually leads to
progressive functional impairment. The diagnostic criteria
for cachexia in clinic include weight loss of higher than 5%
of stable body weight over the past six months, ongoing
weight loss that is higher than 2% in patients with a BMI of
less than 20 kg/m2, or depletion of skeletal muscle mass
(sarcopenia) [96]. Cancer patients who lose weight show
higher REE than those of patients with a stable weight
[97].
Enhanced thermogenesis in BAT is suggested as a

primary reason for increased REE in certain cancer patients
[98], since elevation of BAT activity results in hypermeta-
bolic diseases and is partially responsible for the weight
loss in tumor-bearing mice [99]. In C26 colon carcinoma-
induced cachectic mice, β3-AR that is responsible for the
activation of BAT, is activated and thereby induces
delipidation in BAT with a higher induction of UCP1 at
the protein level [100]. Furthermore, 18F-FDG PET
imaging shows more BAT positive sites in cachectic C26
colon carcinoma-bearing mouse than that of nontumor-
bearing mouse [101], supporting that cancer cachexia
could be associated with increased BAT activity in animal
models. Adipose tissue browning, the recruitment of beige
cells in WAT, is also found in cachexia mouse model.
Adipose tissue specific Prdm16 deficient mouse inhibits
adipose tissue wasting in Lewis lung carcinoma (LLC)-
bearing tumorigenesis [102]. Tumor-derived IL-6 and β3-
AR activation is associated with cancer cachexia-mediated
adipose tissue browning in genetically engineered cancer
cachexia mice, and neutralization of IL-6 or β3-AR
significantly ameliorates cancer cachexia [103]. Although
the main role of IL-6 on metabolism remains poorly
understood, IL-6, at least in part, contributes to systemic
metabolism by regulating BAT activation and adipose
tissue browning [76,104]. Introduction of IL-6 in brain
using adenoviral system significantly increases UCP1
expression only in sympathetic innervated BAT, not
denervated one, indicating that IL-6 activates BAT through
β3-AR signaling pathway [76]. Additionally, tumor cell-
derived parathyroid-hormone-related protein (PTHrP) is
responsible for cancer cachexia [102]. While PTHrP
treatment does not alter tumor size, it leads to cancer
cachexia-associated weight loss with skeletal muscle
wasting in LLC-bearing mouse. Instead, blocking PTHrP
with neutralizing antibody prevents adipose tissue and
skeletal muscle wasting. Furthermore, PTHrP shares G-
protein-couple receptor signaling pathway with β3 ago-
nists to upregulate UCP1 expression at protein level in
white and brown adipocytes [102]. Therefore, tumor cell-
derived IL-6 and PTHrP might play an important role in
cancer cachexia by activating BAT and/or adipose tissue
browning at least in mouse tumor models.
However, it is not clear yet whether BAT activation

contributes to cancer cachexia in human. In human
periadrenal tissue, BATs are observed in 80% of total 25

cancer patients compared with the 13% of total 16 age-
matched healthy subjects [105]. 18F-FDG PET-CT study
with a small number of cancer patients revealed that the
prevalence of activated BAT in cancer patients (~50%) is
similar to that in healthy control subjects (~56%) [29].
Discrepancies in previous results may result from the
individual difference in BAT activity because BAT
activation is regulated by various factors such as age,
sex, outdoor temperature, obesity, and exercise [4,106].
Therefore, well-designed studies with a large number of
cancer patients and appropriate control subjects are
required to investigate the effect of BAT activation on
cancer cachexia.

Signaling pathways for BAT activation and
browning

The activation of β3-AR and its downstream signaling is a
major signaling pathway for thermogenic gene induction.
FGF21, an endocrine hormone, belongs to the FGF family
and regulates BAT activation through β3-AR signaling. To
induce thermogenic ability, FGF21 directly binds to
adipocytes [107] and consequently activates BAT or
inguinal adipocytes by increasing sympathetic activity
[108] and/or enhancing PGC-1α, a key factor of browning
[109]. Type II cytokine plays an important role in beige
formation during cold exposure and exercise by adrenergic
regulation [44]. Cold exposure or excise induces beige
formation by increasing the expression level of eosinophil-
derived IL-4 and activates M2 macrophage-derived
catecholamine through IL4Ra signal pathway [110,111].
In particular, IL-33-mediated activation of type 2 innate
lymphoid cells (ILC2s) promotes the expansion of
PDGFRα+ bipotential adipocyte precursors and the
commitment to beige adipocytes via IL4Ra pathway
[111]. Alternatively, activated ILC2s also secrete methio-
nine-enkephalin peptides that directly induce UCP1
expression and browning in the IL4Ra independent
pathway [46]. Adiponectin also regulates cold-induced
browning by promoting M2 macrophage in WAT with
unknown mechanism [112].
However, BMPs induce thermogenic genes without

adrenergic pathways. BMPs, as pleiotropic members of the
transforming growth factor β superfamily, regulate adipo-
genesis through BMP receptors (type I and II) rather than
β3-AR, as evidenced by the fact that the ablation of type
1A BMP receptor in brown adipogenic progenitor cells
prevents brown adipogenesis in BAT. Instead, the ablation
of BAM receptor promotes beige cell recruitment by
increased sympathetic input to WAT [113]. BMP4 requires
PGC-1β and PGC-1α for white to brown transition of
mouse WAT and human adipose stem cells, respectively
[49,114]. BMP7 is originally identified as a hormone for
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bone formation, but it regulates BAT growth and activation
in vitro and in vivo through p38 MAP kinase-mediated
PGC-1α and PGC-1β [50]. In addition, BMP7 also
enhances white-to-beige transition in primary adipocytes
[114].
Although various signaling pathways and cell types

involved in BAT activation and browning have been
uncovered, better understanding of crosstalk among
signaling pathways is required for the development of
drugs that stimulate BAT activation on the purpose of
clinical application in the near future.

Conclusions

BAT plays an important role in human physiology and
metabolic diseases. BAT transplantation or its activation
enhances energy expenditure, reduces weight loss,
improves insulin sensitivity, and reverses hyperinsulinemia
in animal and human studies. The recruitment of beige
cells in WAT also shows similar effects. However, BAT
activation could deteriorate cancer cachexia. From the
pathophysiological point of view, BAT activation is
associated with cancer cachexia in animal models. In
addition, direct evidence between BAT activity and human
cancer cachexia has not been observed yet. In the elderly,
BAT mass and activity are negatively correlated with
aging. Therefore, BAT activation with chemicals or natural
compounds could be a new therapeutic strategy to treat
obesity and metabolic diseases and extend life span.
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