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Sex pheromone levels are associated with paternity rate in brown rats

Yao-Hua Zhang1
& Lei Zhao1,2

& Xiao Guo1,2
& Jin-Hua Zhang1

& Jian-Xu Zhang1

Received: 18 April 2018 /Revised: 4 December 2018 /Accepted: 12 December 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In muroid rodents, urine-borne volatile compounds and major urinary proteins (MUPs) constitute the key male pheromones that
shape the sexual attractiveness of males. Here, we aimed to examine whether male pheromone levels were related to sexual
attractiveness and reproductive success in the North China subspecies of the brown rat (Rattus norvegicus humiliatus). According
to the abundance of 2-heptanone (2H), the predominant male pheromone in male urine, male rats were first categorized into a
high-2H group and a low-2H group. The levels of the whole volatile profile and non-volatile MUPs were found to be higher in the
high-2H group than in the low-2H group. Moreover, the abundances of urinary volatile pheromones or pheromone candidates
were positively correlated with the abundance of total MUPs. Two-way choice tests revealed that male urine from the high-2H
group was more attractive to females than that from the low-2H group. Microsatellite loci analysis of paternal lineage revealed
that the females had single-paternity offspring and that the high-2H group sired more offspring and had higher rates of paternity
than did the low-2H group. These results suggest that urine-borne volatile pheromones alone or together with MUP pheromones
can predict sexual attractiveness and reproductive success in male rats.

Significance statement
Sexual attractiveness can be quantified using volatile andMUP pheromones and their candidates in deposited urine. 2-Heptanone
(a major pheromone) and other urine-borne volatile pheromones or their candidates and total MUPs showed the same difference
patterns in males and predicted male sexual attractiveness. The abundances of volatile pheromones or their candidates and total
MUPs were associated with reproductive success and paternity rate in males.
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Introduction

In sexual selection studies, the relationships of male attrac-
tive traits with female mate choice, male reproductive suc-
cess, and paternity are of considerable interest (Andersson
and Simmons 2006). Mate choice, or intersexual selection,
as one of two components of sexual selection, often refers
to a female’s choice of a male mate and depends on the
attractiveness of the male’s phenotypic traits (Andersson
and Simmons 2006; Møller 2017). Females typically prefer
to mate with more attractive males over less attractive
ones, which leads to more attractive male members of a
population often (but not always) having greater reproduc-
tive success and higher rates of paternity (Kortet and
Hedrick 2005; Hosken et al. 2008; Hunt et al. 2009;
Møller 2017). To date, several mate choice hypotheses
have been proposed to explain the evolution of mate
choice, which assumes that the traits associated with repro-
ductive success are heritable (Andersson and Simmons
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2006; Taylor et al. 2007; Ingleby et al. 2013). Females
often prefer to mate with attractive males because of the
direct benefits they obtain or the indirect genetic benefits
accrued by their offspring, such as good genes and sexy
sons, which are conferred by the favorable alleles inherited
from their attractive father (Qvarnstrom and Forsgren
1998; Wedell and Tregenza 1999; Andersson and
Simmons 2006; Taylor et al. 2007). Some work revealed
that the effect of male sexual attractiveness on female mate
choice may be more powerful than that of genetic
compatibility/similarity (e.g., inbreeding avoidance); for
instance, mating among relatives occurs more often than
expected by chance (Tregenza and Wedell 2000; Roberts
and Gosling 2003; Szulkin et al. 2013; Zhang and Zhang
2014). The evolution of male attractive traits can be driven
by female choice, as exemplified by the auditory and visual
signals in crickets, fishes, and birds (Andersson and
Simmons 2006). However, the relationships of specific
male attractive traits with female mate choice and paternity
have seldom been experimentally investigated in muroid
rodents, particularly wild ones. The lack of such studies
might be due to the greater difficulties involved in
deciphering released chemosensory signals as determi-
nants of male attractiveness compared to deciphering audi-
tory and visual ones (Drickamer et al. 2000; Roberts and
Gosling 2003; Nelson et al. 2013; Kumar et al. 2014;
Zhang and Zhang 2014; Nelson et al. 2015; Fang et al.
2016).

Overall sexual attractiveness is a composite trait, but it is
difficult to quantify by measuring multiple characteristics
(Scheuber et al. 2003; Taylor et al. 2007; Simmons et al. 2013;
Lopes and König 2016). Pheromones that function as intraspe-
cific chemosensory signals play vital roles in socio-sexual inter-
actions in rodents, and they can be used by females to precisely
assess the quality of a potential mate of the same species (Roberts
and Gosling 2003; Roberts et al. 2010; Wyatt 2014; Zhang and
Zhang 2014; Fang et al. 2016). In mice and rats, urine-borne
male pheromones include volatile organic compounds (VOCs)
and major urinary proteins (MUPs) (Dewsbury 1990; Roberts
et al. 2010; Kumar et al. 2014; Zhang and Zhang 2014; Guo
et al. 2015; Fang et al. 2016). Deposited urine as a pheromone
source remains consistently attractive to females in the physical
absence of a male and should indicate the overall sexual attrac-
tiveness of the male; therefore, urinary VOCs and MUPs can be
used to quantify the sexual attractiveness of males to females
(Novotny et al. 1990; Penn and Potts 1998a; Johansson and
Jones 2007; Roberts et al. 2010; Kumar et al. 2014).
Additionally, numerous studies have demonstrated that some
volatile male pheromones or MUP pheromones serve as indica-
tors of immunocompetence and male quality and evoke female
olfactory preferences for potential mates in mice and rats
(Roberts and Gosling 2003; Roberts et al. 2010; Zhang et al.
2010; Nelson et al. 2013; Kumar et al. 2014; Guo et al. 2015,

2018; Fang et al. 2016; Lee et al. 2017). However, direct evi-
dence regarding the relationships between reproductive success
and specific pheromone components, particularly those related to
overall sexual attractiveness in rodents, remains lacking.

The brown rat (Rattus norvegicus) is a worldwide pest
species and the wild predecessor to the laboratory rats used
for biological research. Based on genetic linkage analysis per-
formed via methods such as DNA fingerprinting and micro-
satellite loci analysis, female brown rats have been demon-
strated to be promiscuous, to be attracted to the specific attri-
butes of a particular male rat, and to make definitive and
consistent mate choices rather than random choices
(Shimmin et al. 1995; Berdoy and Drickamer 2007; Zewail-
Foote et al. 2009; Winland et al. 2012; Kumar et al. 2014;
Costa et al. 2016). Female rats typically prefer one male
among multiple potential mates and produce the majority of
pups in the litter with one male in a group (Lovell et al. 2007;
Zewail-Foote et al. 2009; Winland et al. 2012). Urine-borne
pheromones have been shown to be potentially related to male
sexual attractiveness to females andmale reproductive success
in rats (Papes et al. 2010; Kumar et al. 2014; Zhang and Zhang
2014). Several male pheromones, such as urinary volatile ke-
tones (4-heptanone, 2-heptanone and 9-hydroxy-2-nonanone)
and two MUP pheromones (OBP3 and MUP13), have been
recently identified in rats and exhibit androgen-dependency,
sexual dimorphism, and sexual attractiveness to females;
therefore, it is feasible to examine the relationships between
attractive traits and male paternity in rat species (Kumar et al.
2014; Zhang and Zhang 2014; Guo et al. 2018).

Brown rats have morphologically and genetically differen-
tiated into four subspecies in China. Among these subspecies,
R. n. humiliatus possesses high levels of pheromone expres-
sion in male urine and a small body size, and it is mainly
distributed in Beijing and Hebei Province of northern China
(Wu 1982;Wang 2003;Musser and Carleton 2005; Guo 2016;
Teng et al. 2017). Here, using third- or fourth-generation cap-
tive-bred adult R. n. humiliatus, we investigated the relation-
ships between the abundances of urinary volatile pheromones
or pheromone candidates and MUPs in males and the number
of sired pups through two-way chemosensory choice tests and
paternity tests conducted via microsatellite loci analysis to
determine the paternal lineages. We hypothesized that urine-
borne pheromones and pheromone candidates would predict
sexual attractiveness and rate of paternity in males of the R. n.
humiliatus subspecies.

Materials and methods

Animals

The ancestors of captive-bred brown rats (R. n. humiliatus)
were live-captured in rural areas of Beijing, China and

   15 Page 2 of 10 Behav Ecol Sociobiol           (2019) 73:15 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=rural%20Beijing%20area
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=rural%20Beijing%20area


maintained as an outbred colony of approximately 400
individuals in our laboratory. All the rats used for breeding
were maintained as male-female pairs in plastic rat cages
(37 × 26 × 17 cm) (purchased from the Suzhou Feng
Laboratory Animal Equipment Co Ltd., Suzhou, China) with
wood-shaving bedding (Beijing KeAoXieLi Feeds Co., Ltd.,
Beijing, China). Standard rat chow (Beijing KeAoXieLi
Feeds Co., Ltd., Beijing, China) and tap water were provided
ad libitum. The housing room had a reversed 14:10-h light:
dark photoperiod (lights on at 19:00) and was maintained at
23 ± 2 °C. The rats used for the female chemosensory prefer-
ence and paternity tests were third- or fourth-generation rats
and were caged in groups of three or four same-sex siblings
after weaning at 4 weeks of age. All the male rats aged 3 to
6 months were caged individually for 2 weeks prior to urine
collection and paternity test.

Twelve sex-naïve females aged 12–16weeks were caged in
groups of four and first used as scent recipients to test the
chemosensory responses to male urine. Then, they were sub-
jected to breeding trios for mate choice and paternity tests. All
the female rats used had a 4- and 5-day estrous cycle, and only
the estrous individuals were used for chemosensory prefer-
ence tests. The phase of the estrous cycle was determined by
vaginal smear cytology (Marcondes et al. 2002).

Urine collection

Twelve male individuals aged 3 to 6 months were used urine
donors and then assigned to breeding trios for paternity tests.
We used 20 clean metabolic rat cages to collect urine from the
rats during the dark phase of the light cycle in the room. The
urine from each metabolic cage was fed into a collection tube
immersed in an ice box. Urine was collected from each rat for
8 h, and food and water were constantly available. The urine
samples were stored at − 20 °C until use. The metabolic cages
were cleaned thoroughly with water and 75% alcohol between
collections.

Gas chromatography-mass spectrometry analysis

To prepare the samples for gas chromatography-mass spec-
trometry analysis (GC-MS) assay, we used dichloromethane
(purity > 99.5%; DIMA Technology, Inc., Muskegon, MI,
USA) and added 5 ppm of 1-tridecanol as an internal standard
as a solvent for urine extraction. We mixed 150 μL of urine
sample from each male donor with 150 μL of dichlorometh-
ane, stirred each subsample thoroughly, and stored the sub-
samples at 4 °C for 12 h. The bottom phase (the layer with
dichloromethane) was used for chemical analysis (Zhang and
Zhang 2014).

Chemical analysis was performed on an Agilent
Technologies Network 6890N GC system coupled with a
5973 Mass Selective Detector (NIST 2008 version; Agilent

Technologies, Inc., Santa Clara, CA, USA). The GC was
equipped with an HP5-MS capillary column (30-m long,
0.25-mm inner diameter, 0.25-μm film). The carrier gas was
helium (1.0 mL/min). The injection temperature was 280 °C.
The oven temperature was initially set at 40 °C, then increased
by 5 °C/min to 100 °C, then ramped at 10 °C/min to 280 °C,
and held for 5 min. Finally, the temperature was increased to
300 °C and held for 10 min to clean the column. Electron
impact ionization was accomplished at 70 eV. The transfer
line temperature was 280 °C. The scanning mass ranged from
30 to 450 amu. The samples (4 μL) were injected in splitless
mode. Tentative identification was made by comparing the
mass spectra of the GC peaks with peaks in the MS library
(NIST2002). The presence of 4-heptanone, 2-heptanone, and
9-hydroxy-2-nonanone (all purity > 98%; ACROS Organics,
Thermo Fisher Scientific Inc., Waltham, MA, USA) was fur-
ther confirmed by matching their retention times and mass
spectra with authentic analogs.

Grouping of male rats according to the abundance
of urinary 2-heptanone

Twenty-four sexually naïve males at 3 to 6months of age were
selected from 10 litters, with two or three males selected per
litter. After urine collection and GC-MS analysis, the 12 rats
that had higher abundances of urinary 2-heptanone (the most
predominant volatile pheromone in male rat urine) were
placed in a high-2H group, and the remaining 12 rats, which
had lower abundances of urinary 2-heptanone, were placed in
a low-2H group (2-heptanone abundance: median [inter quar-
tile range]: high-2H 89.98 [63.45–192.79], low-2H 21.56
[15.33–32.59], z = 4.157, n = 12, p < 0.001) (Zhang et al.
2008; Zhang and Zhang 2014). The three breeding trios that
failed to produce offspring were excluded from the analysis of
urinary volatile compounds and total MUPs, paternity rate,
and body weights between paired males.

Quantification of total MUPs via SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) was carried out using the Mini Protean II appa-
ratus (Bio-Rad Laboratories, Hercules, CA, USA). We diluted
the urine samples by four-fold and mixed them with 5× sam-
ple buffer (250-mMTris-HCl at pH 6.8, 10% (w/v) SDS, 0.5%
(w/v) bromophenol blue, 50% (v/v) glycerol, and 5% (v/v) β-
mercaptoethanol). We fractionated 2-μL samples by SDS-
PAGE on a 15% gel at a 130-V constant voltage (Armstrong
et al. 2005; Guo et al. 2015). Images were captured using a
ChemiDoc XRS System (Bio-Rad Laboratories, Hercules,
CA, USA), and the band intensities were quantified using
the ImageJ program (Public Domain Image Processing
Program, NIH, Bethesda, MD, USA). The band intensity of
each urine sample was normalized by its ratio with the band
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intensity of the same urine sample used as a reference in dif-
ferent gels and then used as the measure of MUP abundance
for later pairwise comparisons (Ilayaraja et al. 2014; Lanuza
et al. 2014).

Two-way chemosensory preference tests

To minimize observer bias, blinded methods were used when
all behavioral data were recorded and/or analyzed. One male
urine sample selected from the high-2H group was paired with
another non-sibling male from the low-2H group and present-
ed to a female to test female chemosensory preferences as
previously described (Zhang and Zhang 2014). Tests were
carried out under dim red light during the dark phase of the
light cycle. For each test, we left one estrous female subject in
its home cage after removing its cage-mates. Two scented
glass rods (20-cm long, 4-mm diameter each), each of which
had been scented with 2 μL of urine sample from either the
high-2H group or the low-2H group, were simultaneously
presented to the subject through the bars of the cage. We
recorded the investigation time for each urine sample for
3 min after the subject first sniffed or licked the rod tip. For
each trial, a urine sample from the high-2H group was ran-
domly paired with a sample from the low-2H group, and each
pair of urine samples was used only once. To control for ex-
perimenter bias, the experimenter was blind to the nature of
the sample, and the positions of the high-2H samples and low-
2H samples were alternated each trial. The tests of each female
subject were replicated with urine from different pairs of
males over four consecutive days. Then, the sum of the four
investigation times for each female was used to compare
chemosensory preferences between the high-2H group and
the low-2H group. Each female subject was tested only once
a day.

Two-way mate choice tests

Analogous to the chemosensory preference tests, one male
from the high-2H group was randomly paired with a non-
sibling male from the low-2H group and presented to individ-
ual females in a choice test; eachmale was subsequently tested
for paternity. The trials were carried out in a three-chamber
testing apparatus constructed from three plastic rat cages
(37 × 26 × 17 cm). Two cages served as choice cages (plastic,
37 × 26 × 17 cm) and were symmetrically connected to the
long side of the neutral cage by acrylic tubes (50-cm long,
7-cm inner diameter). The connected tubes had a removable
perforated galvanized iron sheet as a door. A sexually naïve,
non-sibling female was placed in the neutral cage, whereas the
male subjects were fitted with small plastic collars and loosely
tethered within the choice cages. The two males, one from the
high-2H group and one from the low-2H group, were in sep-
arate choice cages and had no direct contact with each other

(Fig. 1). We acclimated the animals in the apparatus for 24 h
and then removed the doors, allowing the female to freely
move throughout the apparatus.We checked the animals twice
a day, and the doors were closed once the females gave birth to
pups. Pups were counted and subjected to tail biopsy at 3 days
of age. Three millimeters of the tail tip from each pup was
collected using sterile sharp scissors. After the pups weaned,
the adults were anesthetized (pentobarbital sodium 45mg/kg),
and 3 mm of tail tip was collected from each adult. Each tail
sample was stored in a 1.5-mL centrifuge tube at − 80 °C until
DNA extraction.

The paired males in a breeding trio had similar body
weights (with differences less than 5%; mean ± SE, 240.50
± 18.113 g vs. 239.40 ± 22.096 g, z = 0.102, n = 9, p = 0.919).

DNA extraction and microsatellite analysis
of paternity

The phenol-chloroform method was performed to isolate ge-
nomic DNA. Four hundred microliters of lysis buffer (20-mM
Tris-HCl, 5-mM EDTA, 400-mM NaCl, 1% SDS (m/V),
200-μg/mLTrypsin K, pH = 8.0) was mixed with DNA sam-
ples in 1.5-mL centrifuge tubes, which were then bathed in
55-°C water overnight. We removed the impurities of RNAs
and proteins by adding phenol:chloroform:isoamyl alcohol
(25:24:1, Dingguo Biotechnology Co. Ltd., Beijing, China)
to the digestion fluid. DNA was obtained via washing and
precipitating the supernatant after centrifugation using
isopropanol and ethanol separately. We air-dried the DNA

♀

high-2H♂

low-2H♂
Fig. 1 Two-choice test device. A three-chamber testing apparatus was
used in the mating preference and paternity tests. Two rat cages served
as choice cages (plastic, 37 × 26 × 17 cm) and were symmetrically con-
nected to the long side of the third, neutral cage (37 × 26 × 17 cm) by
acrylic tubes (50-cm long; 7-cm inner diameter). The connected tubes had
a removable perforated galvanized iron sheet as a door. Two male rats
(high pheromone, dark gray; low pheromone, gray) were fitted with small
plastic collars and loosely tethered within the choice cages; they were in
separate choice cages and had no direct contact with each other. The
female was placed in the neutral cage. The animals were acclimated in
the apparatus for 24 h, and then, the doors were removed. The female was
free to move throughout the apparatus
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for 10 min, dissolved it in sterile water, and stored it at − 20 °C
until use.

A NanoDrop spectrophotometer (Thermo Fisher Scientific
Inc., Waltham, MA, USA) was used to determinate the con-
centration and purity of DNA by measuring OD260/OD280.
The concentration of satisfactory DNA was calibrated to
80~90 ng/μL for microsatellite analysis. Nine polymorphic
microsatellite loci labeled with FAM, HEX and TAMRA dyes
were synthesized from Invitrogen (Thermo Fisher Scientific
Inc., Waltham, MA, USA) (Table 1). We genotyped subjects
from all groups by PCR amplification (thermal cycler EDC-
810, Eastwin Life Sciences Inc., Beijing, China) and capillary
electrophoresis performed on an ABI 3130 genetic analyzer
(Applied Biosystems, Thermo Fisher Scientific Inc.,
Waltham, MA, USA). PCR was carried out in a total volume
of 20 μL that included 0.8 U of Takara Taq, 0.15 mM of each
dNTP, 2-mM MgCl2, 2 μL of PCR Buffer (Takara, Dalian,
China), 0.4 μM of each primer (forward primer and reverse
primer), and 80–90 ng of genomic DNA. An amplification
procedure of denaturation at 94 °C for 5 min; 35 cycles of
denaturation at 94 °C for 30 s, annealing for 40 s and exten-
sion at 72 °C for 1 min; and a last extension at 72 °C for
10 min was followed.

Amplified products and allele sizes were analyzed and
compared by using GeneMarker software (SoftGenetics,
State College, PA, USA). In the current work, the relationships
between mothers and their pups had already been determined.
Based on half of the alleles of a pup being of maternal origin
and the other half being of paternal origin, we isolated and
identified the candidate fathers of all pups from among the
paired males. The Cervus 3.0 program was used to evaluate
exclusion probabilities for possible paternity (Marshall et al.

1998; Kalinowski et al. 2007). We excluded an irrelevant can-
didate male from paternal assignment by setting a minimum of
90% possibility. Power Stats V1.2 software (Promega,
Madision, WI, USA) was applied to calculate the combined
probability of exclusion through all nine microsatellite loci.

Statistical analysis

The distributions of the raw data were examined using a
Kolmogorov–Smirnov test. Parametric tests and non-
parametric tests were used for normally and non-normally
distributed data, respectively. The abundance of each volatile
compound in each urine sample was calculated as the com-
pound’s normalized GC peak area, determined by dividing its
peak area with the peak area of 1-tridecanol, the internal stan-
dard, and multiplying it by 100. We tested for differences in
the abundance of each volatile compound and the abundance
of MUPs between the high- and low-2H groups using the
independent t test or Mann-Whitney U test. Multiple compar-
isons were corrected by the false discovery rate (FDR) method
(Benjamini and Yekutieli 2001). We also conducted principal
component analysis on the abundance of the 11 early-eluting
compounds and multivariate analysis of variance (MANOVA)
with the principal components (Whittaker et al. 2010; Amo
et al. 2012; Zhang et al. 2013). Pearson correlation analysis
was used to assess the relationships between the principal
components of the abundance of volatile compounds and the
abundance ofMUPs. The investigation time and litter per dam
were examined for differences using Wilcoxon signed-rank
test and binomial test, respectively. All statistical analyses
were conducted using SPSS 18.0 software (SPSS Inc.,

Table 1 Microsatellite loci
selected for paternity
determination of individuals of a
R. norvegicus subspecies (R. n.
humiliatus) collected in Beijing.
Related information (fluorescent
dye types, primer sequences for
amplification, and products of
three microsatellites for capillary
electrophoresis) is provided for
each locus

Locus Label Primer sequences Multiplex partner

D1Wox31 5′-HEX 5′-CATGCACACCCACTTACACAC-3′ D8Wox7, D12wox1
5′-CCTATTAGAACTTCCCCCTTC-3′

D8Wox7 5′-FAM 5′-GGTATACAAAGCCTCGTGCA-3′ D1Wox31, D12wox1
5′-TGGGCTAAAGCTTATCCATTTA-3′

D12wox1 5′-TAMAR 5′-GACATTAAGGGGTCTTCCTAAG-3′ D1Wox31, D8Wox7
5′-TATCTTTGCAACGCTGAGG-3′

D6wox2 5′-TAMAR 5′-CCAGTCCATACTTATCCATCTG-3′ D2Wox27, D19Wox11
5′-CATTTAGATAGGTGATAGAT

TCAG-3′

D2Wox27 5′-HEX 5′-GATAATTGACATGTCCAGTTCC-3′ D6wox2, D19Wox11
5′-CTGGCTGATGGTAGGATGAG-3′

D19Wox11 5′-FAM 5′-CTACCCACCCATCTATTCATCC-3′ D6wox2, D2Wox27
5′-GTTTCCAGCACCCATGTCC-3′

D4Wox7 5′-TAMAR 5′-GATAGCATAAAATCCCTAGAGGTT-3′ D3Wox12, D10Wox11
5′-TGCATTTATCTGAAACCATCAC-3′

D3Wox12 5′-HEX 5′-TATAGTAAGTTCGAGGCCGG-3′ D4Wox7, D10Wox11
5′-AGGGGACCAGTGAGACTCAC-3′

D10Wox11 5′-FAM 5′-TCATCTGGTGGGGACATAAC-3′ D4Wox7, D3Wox12
5′-GATGAACCAGCACATGGAAG-3′
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Chicago, IL, USA), and the significance level was set at
p < 0.05.

Results

The abundance of urinary 2-hepatanone and sexual
attractiveness

R. n. humiliatus females preferred the urine of high-2H males
to that of low-2H males (median [inter quartile range]: high-
2H 6.20 [2.55–8.37], low-2H 4.78 [0.93–5.78], z = 2.629, p =
0.009, n = 12 for each group).

Group differences in the whole volatile profile
and total MUPs

We detected and identified 11 early-eluting compounds from
voided urine by GC-MS, including seven ketones, three phe-
nols, and one sulfone. As the most abundant one of urinary
volatiles judged by GC area values, 2-heptanone were con-
firmed by statistics to exhibit significant differences between
the high-2H group and the low-2H group (2-heptanone, z =
3.576, p < 0.001, n = 9 for each group, Figs. 2 and 3). GC-MS
further revealed higher abundances in the high-2H group than
in the low-2H group of an additional six ketones that are
potential male pheromone components and dimethyl sulfone
(4-heptanone, z = 3.488, p < 0.001; dimethyl sulfone, t =
4.789, p < 0.001; 6-methyl-5-hepten-2-one, z = 3.578,
p < 0.001; 3-ethyl-2,4-heptanedione, z = 3.490, p < 0.001; a
dialkyl tetrahydro-2H-pyran-2-one, z = 2.871, p = 0.006; a
dialkyl tetrahydro-2H-pyran-2-one, t = 2.505, p = 0.032; 9-hy-
droxy-2-nonanone, z = 3.329, p = 0.002, n = 9 for each group
for Mann-Whitney U test and df = 16 for t test, Figs. 2 and 3).
However, those phenols that are non-pheromone compounds
showed no significant differences between groups (phenol,
t = 1.500, df = 16, p = 0.168; 4-methyl-phenol, z = 1.810, p =

0.086, n = 9 for each group; 4-ethyl-phenol, z = 1.104, p =
0.270, n = 9 for each group; Figs. 2 and 3).

We extracted the three principal components with eigen-
values over 1 from the 11 early-eluting compounds, which
differed significantly between the high-2H and low-2H groups
(MANOVA, F3,14 = 23.312, p < 0.001). PC1, accounting for
59.95% of the extracted variation, differed significantly be-
tween groups (F1,16 = 39.922, p < 0.001), for which 2-
heptanone, 4-heptanone, 6-methyl-5-hepten-2-one, 3-ethyl-
2,4-heptanedione, a dialkyl tetrahydro-2H-pyran-2-one, and
9-hydroxy-2-nonanone had PCA loading scores ≥ 0.85. PC2,
which accounted for 16.18% of the variation, and PC3, which
accounted for 9.97% of the variation, showed no differences
between groups (PC2, F1,16 = 0.124, p = 0.729; PC3, F1,16 =
2.010, p = 0.175).
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sulfone; P = phenol; 6M5H2N = 6-methyl-5-hepten-2-one; 4MP = 4-
methyl-phenol; 3E2,4HD = 3-ethyl-2,4-heptanedione; 4EP = 4-ethyl-
phenol; DT2HP2N = a dialkyl tetrahydro-2H-pyran-2-one; 9H2N = 9-hy-
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0

20

60

140

180

4H 2H DS P

6M
5H

2N
4M

P

3E
2,4

HD
4E

P

DT2
HP2N

9H
2N

DT2
HP2N

low-2H high-2H 

**

**

**

** ** ***

Ab
un

da
nc

e

**

Fig. 3 Pairwise comparisons of the abundances of the 11 major urinary
volatiles between the high-2H (black bars) and low-2H (white bars)
groups (mean ± SE, *p < 0.05, **p < 0.01 based on the independent t test
or Mann-Whitney U test) (4H = 4-heptanone; 2H = 2-heptanone; DS =
dimethyl sulfone; P = phenol; 6M5H2N = 6-methyl-5-hepten-2-one;
4MP = 4-methyl-phenol; 3E2,4HD = 3-ethyl-2,4-heptanedione; 4EP = 4-
ethyl-phenol; DT2HP2N = a dialkyl tetrahydro-2H-pyran-2-one;
9H2N= 9-hydroxy-2-honanone)

   15 Page 6 of 10 Behav Ecol Sociobiol           (2019) 73:15 



The total MUPs in the high-2H group were also present at
higher abundances than those in the low-2H group (t = 4.423,
n = 8 for high-2H group, n = 7 for low-2H group, df = 13, p =
0.001, Fig. 4). The abundance of MUPs was strongly corre-
lated with PC1 (PC1, r = 0.831, p < 0.001; PC2, r = 0.129, p =
0.647; PC3, r = 0.014, p = 0.960, n = 15).

Male pheromones and paternity rates

In the paternity tests, nine females successfully produced 76
pups for parental analysis. Females gave birth to an average of
8.44 pups (ranging from 4 to 10). Remarkably, the parentage
testing through microsatellite analysis of genomic DNA re-
vealed that the 69 pups of eight dams were all sired by males
of the high-2H group, whereas the seven pups of the remain-
ing dam were sired by a male of the low-2H group. Males of
the high-2H group sired more offspring than did males of the
low-2H group (binomial test, n = 9, p = 0.039).

Discussion

Females typically (but not always) prefer to mate with more
attractive males over less attractive ones; therefore, the more
attractive male members of a population are often believed to
have greater reproductive success (Kortet and Hedrick 2005;
Hosken et al. 2008). In rats, urine-borne volatile pheromones
and MUPs of males have been demonstrated to determine the
sexual attractiveness of males to female rats. Therefore, it has
been inferred that these compounds might be correlated with
reproductive success (Papes et al. 2010; Kumar et al. 2014;
Zhang and Zhang 2014). Here, we provided the first experimen-
tal evidence that males bearing higher abundances of urinary
pheromonesweremore sexually attractive to females,which then
led to siring more offspring by the males, in brown rats.

Urine-borne male pheromones and pheromone candidates
have been well documented and can be used to predict sexual
attractiveness in rats (Papes et al. 2010; Zhang and Zhang

2011, 2014; Kumar et al. 2014; Takacs et al. 2016; Guo
et al. 2018). Our previous work identified seven ketones in
urine as male pheromone candidates based on their signifi-
cantly higher levels in males than in females and their being
under androgen control. Among these ketones, 4-heptanone,
2-heptanone, and 9-hydroxy-2-nonanone were synthesized
and experimentally demonstrated to act as male pheromones
and attract females in SD rats, BN rats, and Lewis rats (Zhang
et al. 2008; Zhang and Zhang 2014). In this previous work, the
band of approximately 19 kDa (predicted molecular weight)
in SDS-PAGE clearly showed both male-biased sexual dimor-
phism and testosterone dependency, and the MUP phero-
mones corresponding to this bandwere consequently regarded
as male pheromone candidates and putative male attractants to
females. Among these candidates, OBP3 and MUP13 have
since been verified to evoke the attraction and sexual arousal
of female rats based on research using their recombinant ana-
logs (Calzada-Garcia et al. 1996; Gómez-Baena et al. 2014;
Kumar et al. 2014; Guo et al. 2018). Therefore, the abun-
dances of VOCs analyzed by GC-MS and the abundance of
total MUPs revealed by SDS-PAGE may be used to roughly
calculate the sexual attractiveness of male urine in rats. In
addition, we need to improve the procedures to quantify the
amount of MUPs using protein assay, such as Western blot
and optimizing urine sample loadings in our future work
(Ilayaraja et al. 2014; Kumar et al. 2014; Lanuza et al. 2014).

As for R. n. humiliatus, the above-mentioned pheromones
and pheromone candidates apparently exist in voided urine
(Guo 2016). Here, we found that the abundances of both
urine-borne volatile pheromones and MUPs exhibited quanti-
tative variations among male individuals in R. n. humiliatus.
In the high-2H rats and low-2H rats, which were categorized
based on the abundance of urinary 2-heptanone, other ketones
and total MUPs of pheromones or pheromone candidates
expressed the same difference patterns. In particular, the
PC1 of urine-borne volatile compounds, which had high fac-
tor loadings for the ketones and represented the whole VOC
profile, was correlated with the abundance of total MUPs,
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Fig. 4 Pairwise comparisons of the abundances of total major urine
proteins (MUPs) between the high-2H and low-2H groups. The predom-
inant bands between the marker of 22 and 14 kDa are MUPs. The abun-
dance of total MUPs was determined by SDS-PAGE. The band intensities

were quantified using the ImageJ program, and each band was normal-
ized by the ratio with the same band from the same urine sample in
different gels and used for pairwise comparison (mean ± SE, **p < 0.01
based on the independent t test)
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suggesting that the volatile pheromones and the MUP phero-
mones might work together to enhance sexual attractiveness
(Roberts and Gosling 2003; Roberts et al. 2010; Fang et al.
2016). Furthermore, more volatiles require more MUPs to be
bound to slow down their release for lasting communicative
function (Armstrong et al. 2005; Roberts et al. 2010; Kumar
et al. 2014). In this study, two-way chemosensory tests re-
vealed that male urine containing higher abundances of these
VOC components and MUPs had higher sexual attractiveness
to females than did that with lower abundances in R. n.
humiliatus.

Furthermore, using two-way mate choice tests and micro-
satellite analysis, we found that the more attractive male rats
sired more offspring and exhibited higher rates of paternity
than did the less attractive males, consistent with previous
descriptions in many other animals (Kortet and Hedrick
2005; Hosken et al. 2008). Although the brown rat is a pro-
miscuous species and females typically mate with multiple
males within an estrous cycle, a single male typically sires
the majority of a litter (Shimmin et al. 1995; Zewail-Foote
et al. 2009; Winland et al. 2012; Costa et al. 2016). Here, we
showed that the male rats possessing higher abundances of
volatile pheromones and MUPs sired the vast majority of the
pups; however, only single paternity was observed in each of
the nine litters: In the two-way mate choice tests, eight litters
were sired by males from the high-2H group, and one litter
was sired by a male from the low-2H group. This study is the
first to demonstrate that the pheromone-related attractiveness
of male rats predicts the reproductive success of the bearers in
the rat subspecies R. n. humiliatus. Our results are consistent
with previous reports in house mice (Mus musculus) but in-
consistent with previous results in other rat subspecies or lab-
oratory rats (Drickamer et al. 2000; Hinson et al. 2006;
Winland et al. 2012).

Multiple mate choice hypotheses, such as indicator
mechanisms (Bgood genes^ or Bhandicap mechanisms^)
and the Fisherian sexy son mechanism, can explain how
the attractive traits or ornaments of males are often used by
female choosers to assess the quality of potential mates and
select males that yield indirect benefits through their off-
spring (Shimmin et al. 1995; Andersson and Simmons
2006; Zewail-Foote et al. 2009). Indicator mechanisms
(Bgood genes^ or Bhandicap mechanisms^) may best illus-
trate the relationship between attractive traits and male ge-
netic quality (Andersson and Simmons 2006). The immu-
nocompetence handicap hypothesis (ICHH) states that the
expression of male sexual signals involves the interaction
of the endocrine system and immune function and that only
high-quality males can afford to fully display sexual char-
acteristics without experiencing immunosuppression or
high parasite loads. Females that choose such males can
provide heritable disease resistance to their offspring via
the inheritance of favorable alleles from the sire (Folstad

and Karter 1992; Penn and Potts 1998b; Lopes and König
2016). It is well-documented that the pheromone produc-
tion is associated with androgen levels and immunocom-
petence in animals (Zhang et al. 2010; Guo et al. 2015,
2018). For example, immunocompetence-deficient male
mice show reduced abundances of certain urinary volatile
pheromones and Darcin (a male MUP pheromone) and
consequently lower sexual attractiveness to females
(Roberts et al. 2010; Zhang et al. 2010; Lopes and König
2016). In R. n. humiliatus, we speculate that if females
prefer to mate with males carrying an abundance of pher-
omones such as 2-heptanone, they might choose higher
quality male mates and pass on the genetic benefits, such
as disease resistance, to their offspring (Rantala et al. 2002;
Berdoy and Drickamer 2007; Lovell et al. 2007; Zewail-
Foote et al. 2009; Winland et al. 2012; Kumar et al. 2014).

The evolution of sexual traits in natural populations of
brown rats might also be affected by factors other than female
mate choice. For example, rats bearing high abundances of
sex pheromones might be subject to higher mortality because
of increased predation risk (Brooks 2000; Fang et al. 2016;
Zhang et al. 2016). In some cases, male-male competition can
generate selection on sexually dimorphic traits that opposes
that generated from female mate choice (Hunt et al. 2009).
Therefore, further research on the influences of intrasexual
selection, especially sperm competition, and natural selection
on male pheromones is necessary to understand the evolution
of male pheromones in natural populations of R.n. humiliatus.

Conclusions

VOCs, either alone or together with MUPs, act as male pher-
omones to attract females for mating in rats. Male brown rats
with higher pheromone abundance were more sexually attrac-
tive to female mates and had higher rates of paternity com-
pared to male rats with lower pheromone abundance.
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