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Weak selection can filter environmental noise in the evolution of animal behavior
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Weak selection is an important assumption in theoretical evolutionary biology, but its biological significance
remains unclear. In this study, we investigate the effect of weak selection on stochastic evolutionary stability
in a two-phenotype evolutionary game dynamics with a random payoff matrix assuming an infinite, well-mixed
population undergoing discrete, nonoverlapping generations. We show that, under weak selection, both stochastic
local stability and stochastic evolutionary stability in this system depend on the means of the random payoffs
but not on their variances. Moreover, although stochastic local stability or instability of an equilibrium may not
depend on environmental noise if selection is weak enough, the growth rate near an equilibrium not only depends
on environmental noise, but can even be enhanced by environmental noise if selection is weak. This is the case,
for instance, when the variances of the random payoffs as well as the covariances are equal. These results suggest
that natural selection could be able to filter (or resist) the effect of environmental noise on the evolution of animal
behavior if selection is weak.
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I. INTRODUCTION

Weak selection is an important assumption in theoretical
evolutionary biology. It is the assumption that there is little
difference between the individuals in reproductive success, or
fitness, so that the effects of natural selection are small. Weak
selection has a long-standing history in population genetics
[1,2]. In infinitely large populations in a constant environment,
however, increasing the intensity of selection often results in a
mere rescaling of time which does not actually affect the final
outcome of the deterministic dynamics [3,4]. On the opposite,
in finite populations, changing the intensity of selection may
have an important effect on the stochastic dynamics [1,5].
In some situations, results under weak selection have been
shown to stay valid as the intensity of selection increases [6].
In general, however, the evolutionary significance of weak
selection in finite populations remains unclear.

The assumption of weak selection has already been consid-
ered in evolutionary game theory to analyze the stochastic dy-
namics in finite populations [7]. Here, weak selection means
that the expected payoff of an individual has only a very small
effect on its fitness so that the evolutionary dynamics is mainly
driven by random fluctuations [5,8]. Under the assumption
of weak selection, Nowak et al. [5] deduced the “one-third
law” for the fixation probability in a two-phenotype game-
theoretic model and used it to provide an explanation for the
evolution of cooperation (see also [9–14]). In order to show
the robustness of outcomes in finite populations under weak
selection, Wu et al. [15,16] investigated some properties of
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weak selection in the Fermi and Moran processes, where the
environment is assumed to be fixed so that the payoff matrix
remains constant.

Environmental conditions in the real world are changing
and uncertain, and stochastic fluctuations in the surroundings
of a population may cause changes in the occurrence of inter-
actions between individuals and, more importantly, changes
in the payoffs received by the interacting individuals [17,18].
As pointed out by May [19], the birth rates, carrying capaci-
ties, competition coefficients, and other ecological parameters
which characterize natural biological systems all, to a greater
or lesser degree, exhibit random fluctuations. Therefore, a
very challenging question is whether natural selection is able
to filter (or resist) the effect of environmental noise on the
evolution of animal behavior.

Recently, in order to develop the concept of evolutionary
stability in a randomly fluctuating environment, Zheng et al.
[17,18] investigated conditions for stochastic local stability
of the fixation states and constant interior equilibria in a
two-phenotype model with random payoffs and developed the
concepts of stochastic evolutionary stability and stochastic
convergence stability. The results obtained show that stochas-
tic local stability depends not only on the averages of the
random payoffs but also on the variances of these random
payoffs. Note that Stollmeier and Nagler [20] considered also
an evolutionary game dynamics with two phenotypes and
time-dependent payoffs in an infinite population undergoing
discrete, nonoverlapping generations, but they focused on the
unfair coexistence of strategies.

Extending the analysis of stochastic local stability and
stochastic evolutionary stability, we are interested in this pa-
per in what determines the characteristics of the evolutionary
game dynamics in the presence of environmental noise if
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selection is weak. Our main goal is to reveal the fundamental
importance of weak selection in the evolution of animal
behavior, or the evolutionary biological significance of weak
selection, in a stochastic environment.

It may be useful to recall that stochastic fluctuations in
evolutionary game dynamics may be due to either intrin-
sic noise (i.e., demographic stochasticity), or extrinsic noise
(i.e., environmental stochasticity), or a combination of both.
Demographic stochasticity mainly involves the occurrence
of interactions between individuals, random events of birth
and death of individuals, etc. Demographic stochasticity in
evolutionary game dynamics due to a finite population size
has received a lot of attention as already mentioned [5–14]).
On the other hand, stochastic fluctuations in the population
state due to a finite population size can be much smaller than
those caused by changes in the environment, and then ignored,
if the population size is large enough. This assumption is
current in evolutionary game theory [3,21,22] and deserves
as much attention as the assumption of a population size
whose inverse is of order larger than, or equal to, the order
of random differences in payoffs. Weak selection, however,
another current assumption in evolutionary game theory, may
come into play in the short-term as well as the long-term
effects of random fluctuations in the environment. This is the
question addressed in the present paper, which has not been
addressed in previous studies.

II. BASIC MODEL AND DEFINITIONS

Consider an evolutionary game in an infinite population
with discrete, nonoverlapping, generations. There are two
phenotypes or pure strategies, S1 and S2, and the payoffs in
pairwise interactions at time step t � 0 are given by the game
matrix

A(t ) =
(

a11(t ) a12(t )
a21(t ) a22(t )

)
=

(
at bt

ct dt

)
, (1)

where ai j (t ) is the payoff to strategy Si against strategy S j for
i, j = 1, 2. These payoffs are assumed to be positive random
variables that are uniformly bounded below and above by
some positive constants. Therefore, there exist real numbers
A, B > 0 such that A � ai j (t ) � B for i, j = 1, 2 and all t �
0 [17]. Moreover, the probability distributions of ai j (t ) for
i, j = 1, 2 do not depend on t � 0. The means, variances, and
covariances of these random payoffs are given by 〈ai j (t )〉 =
āi j , 〈(ai j (t ) − āi j )

2〉 = σ 2
i j and 〈(ai j (t ) − āi j )(akl (t ) − ākl )〉 =

σi j,kl , respectively, for i, j, k, l = 1, 2 with (i, j) �= (k, l ). As
for s �= t , the payoffs ai j (s) and akl (t ) are assumed to be inde-
pendent of each other so that 〈(ai j (s) − āi j )(akl (t ) − ākl )〉 =
0 for i, j, k, l = 1, 2. In general, we also assume that the
variances of the random payoffs are small [17,18].

Let xt be the frequency of strategy S1 at time step t �
0 and, similarly, 1 − xt the frequency of strategy S2. Then
the expected payoffs of strategies S1 and S2 at time step

t � 0 are given by π1,t = xt at + (1 − xt )bt and π2,t = xt ct +
(1 − xt )dt , respectively. Furthermore, in order to show the
effect of selection intensity on the evolutionary dynamics
of strategies S1 and S2, and without loss of generality, the
fitnesses of S1 and S2 at time step t � 0 are simply defined
as (1 − w) + wπ1,t and (1 − w) + wπ2,t , respectively, where
w with 0 � w � 1 represents the selection intensity [5,7]. So,
the number of replicates of a strategy from one step to the next
is proportional to its fitness, and the frequency of strategy S1

at time step t + 1 is given by the recurrence equation

xt+1 = xt ((1 − w) + wπ1,t )

xt ((1 − w) + wπ1,t ) + (1 − xt )((1 − w) + wπ2,t )

(2)

for t � 0. This model can be viewed as a Wright-Fisher
model in the limit of a large population size (see, e.g., [3]),
but with fitness differences of order larger than the inverse
of the population size and subject to stochastic fluctuations.
Defining ut = xt/(1 − xt ), the recurrence equation takes the
simple form

ut+1 = ut

[
ut ((1 − w) + wat ) + ((1 − w) + wbt )

ut ((1 − w) + wct ) + ((1 − w) + wdt )

]
. (3)

Let x̂ represent a constant (nonrandom) equilibrium of (2)
that does not depend on the randomness of the payoff matrix
A(t ). This is clearly the case for both x̂ = 0 and x̂ = 1, called
the fixation states or the boundary equilibria. This may also be
the case for a constant equilibrium x̂ with 0 < x̂ < 1, called a
constant interior equilibrium. A constant equilibrium x̂ is said
to be stochastically locally stable (SLS) if for every ε > 0
there exists δ0 > 0 such that P (xt → x̂) � 1 − ε as soon as
|x0 − x̂| < δ0 [17,23,24]. This means that xt tends to x̂ as
t → ∞ with probability arbitrarily close to 1 (but different
from 1) if the initial state x0 is sufficiently near x̂. On the
other hand, a constant equilibrium x̂ can be said to be stochas-
tically locally unstable (SLU) if P (xt → x̂) = 0 as soon as
|x0 − x̂| > 0 [17,23,24]. If this is the case, then x̂ cannot be
reached with probability 1 from any initial state different from
x̂. Based on these definitions, we present some simplified
mathematical arguments for the stochastic local stability of a
constant equilibrium (the more rigorous mathematical proofs
are similar to those in [17]).

III. EFFECT OF WEAK SELECTION ON THE
STOCHASTIC LOCAL STABILITY OF AN EQUILIBRIUM

Consider first the stochastic local stability of the fixation
state x̂ = 0 in (2), which corresponds to the equilibrium û =
x̂/(1 − x̂) = 0 in (3). Note that (3) can be rewritten in the form

ut+1

ut
=

[
(1 − w) + wbt

(1 − w) + wdt

]
Rt , (4)

where

Rt = 1 + ut [((1 − w) + wat )((1 − w) + wdt ) − ((1 − w) + wbt )((1 − w) + wct )]

ut ((1 − w) + wbt )((1 − w) + wct ) − ((1 − w) + wbt )((1 − w) + wdt )
. (5)
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Then, iterating this recurrence equation leads to

1

n
[log un − log u0] = 1

n

n−1∑
t=0

log

[
(1 − w) + wbt

(1 − w) + wdt

]

+ 1

n

n−1∑
t=0

log Rt (6)

for n � 1. Therefore, if ut → 0 (which compels log Rt → 0),
then the strong law of large numbers guarantees that

lim
n→∞

1

n

[
log un − log u0

]
≈

〈
log

[
(1 − w) + wbt

(1 − w) + wdt

]〉
. (7)

Using Egorov’s theorem, it can be shown that the fixation state
x̂ = 0 is SLS if〈

log

[
(1 − w) + wbt

(1 − w) + wdt

]〉
= 〈log[(1 − w) + wbt ]〉

− 〈log[(1 − w) + wdt ]〉 < 0 , (8)

and x̂ = 0 is SLU if the inequality is reversed [17]. The mean
geometric growth rate on the left-hand side in (8) represents
the rate of convergence to 0 if 0 is SLS and the rate of
divergence from 0 if 0 is SLU.

In the case where the payoffs have small enough variances,
we have the approximation

〈log[(1 − w) + wai j (t )]〉 ≈ log[(1 − w) + wāi j]

− w2σ 2
i j

2((1 − w) + wāi j )2
(9)

for i, j = 1, 2 [17]. Then, the inequality in (8) can be rewritten
as

log

[
(1 − w) + wb̄

(1 − w) + wd̄

]
+ w2σ 2

d

2
(
(1 − w) + wd̄

)2

− w2σ 2
b

2
(
(1 − w) + wb̄

)2 < 0 . (10)

Furthermore, when w is small enough, we have the approxi-
mation

log

[
(1 − w) + wb̄

(1 − w) + wd̄

]
≈ w(b̄ − d̄ ) . (11)

Therefore, if selection is weak enough, then the fixation state
x̂ = 0 is SLS if b̄ − d̄ < 0 and SLU if b̄ − d̄ > 0. This implies
that the stochastic local stability of x̂ = 0 depends on the
means of the random payoffs bt and dt but does not depend
on their variances. An example of the stochastic local stability
of fixation state x̂ = 0 under weak selection is shown in Fig. 1.
By symmetry, under weak enough selection, the fixation state
x̂ = 1 is SLS if c̄ − ā < 0 and SLU if c̄ − ā > 0. On the other
hand, in the degenerate case where bt = dt (or at = ct ) for
all t � 0, and under weak enough selection, the fixation state
x̂ = 0 (or x̂ = 1) is SLS if ā − c̄ < 0 (or d̄ − b̄ < 0) and SLU
if ā − c̄ > 0 (or d̄ − b̄ > 0). (The mathematical proofs are
given in the Appendix.)

Moreover, as a special case, if û(at − ct ) = dt − bt for all
t � 0 where û is a positive constant, then the random payoff

0 200 400 600 800 1000
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0.1
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0.3
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time t

xt

ω =1
ω =0.1

FIG. 1. Effect of selection intensity on the stochastic local sta-
bility of fixation state x̂ = 0. Consider a random payoff matrix

A(t ) = (7 9 + ηt

8 10 + ξt

)
, where ηt and ξt are uniform random variables with

η̄ = ξ̄ = 0, σ 2
η = 5.3, and σ 2

ξ = 30 for all t � 0. Simulation results
illustrate the stochastic local stability or instability of x̂ = 0 for two
intensities of selection. When w = 1, then x̂ = 0 is SLU and the
population state is driven away from 0 even from an initial state close
to 0 such as x0 = 0.01. When w = 0.1, then x̂ = 0 is SLS and the
population state tends to 0. Each curve represents an average of 100
simulated trajectories starting from the same initial state. Note that
each trajectory in the case w = 1 fluctuates between 0 and 1 without
any convergence.

matrix A(t ) in (1) can be rewritten as(
at bt

ct dt

)
=

(
ct + zt bt

ct bt + ûzt

)

=
(

at dt − ûzt

at − zt dt

)
, (12)

where zt = at − ct for all t � 0. For this random payoff
matrix, x̂ = û/(1 + û) is a constant interior equilibrium of
(2). Similarly to the the stochastic local stability analysis of
the fixation state x̂ = 0, it can be shown that under weak
selection, the constant interior equilibrium x̂ = û/(1 + û) is
SLS if c̄ − ā > 0 and SLU if c̄ − ā < 0 (the mathematical
proofs are given in the Appendix). This result shows that,
if a constant interior equilibrium exists, then its stochastic
local stability under weak selection depends on the means of
the random payoffs but not on their variances. However, we
have to point out that even if selection is weak, whether or
not a constant interior equilibrium exists cannot in general be
determined only by the means of the random payoffs.

IV. EFFECT OF ENVIRONMENTAL NOISE ON THE
GROWTH RATE NEAR AN EQUILIBRIUM

UNDER WEAK SELECTION

A further challenging question concerns the rate of con-
vergence (or divergence) near an equilibrium in (2) with
the random payoff matrix A(t ) = (ai j (t ))2×2 in (1) at time
step t � 0, compared to the deterministic dynamics with the
constant mean payoff matrix Ā = (āi j )2×2: Does this rate
increase or decrease as the variance in the payoffs increases?

Consider first the situation where the fixation state x̂ = 0 is
SLS in the stochastic dynamics under weak selection. Owing
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FIG. 2. Simulations for the stochastic local stability of a constant interior equilibrium under weak selection. We consider the random payoff

matrix
(4 + zt 3

4 3 + ûzt

)
, where û = 1/2 is a positive constant and zt is taken as a normal random variable with mean z̄ = −0.01 and variance

σ 2
z = 4 at time step t � 0. In this case, x̂ = û/(1 + û) = 1/3 is a constant interior equilibrium. Moreover, (i) if w = 1 (i.e., strong selection),

then x̂ = 1/3 is SLU with respect to the stochastic dynamics, while (ii) x̂ = 1/3 is a globally asymptotically stable equilibrium with respect

to the deterministic dynamics with payoff matrix
(4 + z̄ 3

4 3 + ûz̄

)
. The simulations show in (a) that a decrease in the selection intensity w results

in x̂ = 1/3 becoming SLS and in (b) that the system state xt tends to x̂ = 1/3 when the selection intensity is small enough. Here, each of the
solid curves represents an average of 100 simulated curves starting at the same initial state, and the dashed curves represent the deterministic
dynamics with the payoff matrix given by the mean payoff matrix in the stochastic dynamics.

to (10) and (11), the rate of convergence to 0 is approximated
as

〈
log

[
(1 − w) + wbt

(1 − w) + wdt

]〉

≈
{

w(b̄ − d̄ ) + w2(σ 2
d −σ 2

b )
2 if σ 2

b �= σ 2
d ,

w(b̄ − d̄ ) + w3σ 2(b̄ − d̄ ) if σ 2
b = σ 2

d = σ 2 ,

(13)

where w(b̄ − d̄ ) < 0 approximates the rate of convergence in
the deterministic mean-field dynamics with payoff matrix Ā.
Therefore, the rate of convergence in the stochastic dynamics
is faster (or slower) than the rate of convergence in the deter-
ministic mean-field approximation if σ 2

b � σ 2
d (or σ 2

b < σ 2
d ).

Note that these inequalities have to be reversed for the rate of
divergence from 0 to be faster (or slower) in the stochastic
dynamics than that in the mean-field approximation in the
case where 0 is SLU with w(b̄ − d̄ ) > 0. In particular, the
growth rate is always faster in the stochastic dynamics when
σ 2

b = σ 2
d . Analogous conclusions can be drawn for the fixation

state x̂ = 1.
Similarly, in the situation where û(at − ct ) = dt − bt for

all t � 0 with û being a positive constant corresponding to
an SLS interior equilibrium x̂ = û/(1 + û) in the stochastic
dynamics under weak selection (that is, c̄ > ā), it can be
shown that the rate of convergence to x̂ in the stochastic
dynamics is faster (or slower) than that in the deterministic
mean-field approximation if û(σ 2

c − σ 2
a ) + 2(σc,d − σa,d ) � 0

(or û(σ 2
c − σ 2

a ) + 2(σc,d − σa,d ) > 0) (see the Appendix for a
proof). Moreover, the same is true for the rate of divergence
from an SLU x̂ in the stochastic dynamics under weak selec-
tion (that is, c̄ < ā) if the inequalities are reversed. Note that,
in the special case where σ 2

c = σ 2
a and σc,d = σa,d , the growth

rate is always faster in the stochastic dynamics.

All these results show that, although stochastic local sta-
bility or instability of an equilibrium state may become un-
affected by environmental noise as the intensity of selection
diminishes, the rate of convergence or divergence of the
system near equilibrium not only depends on environmental
noise, but can even be enhanced by environmental noise.
These findings are supported by simulation results presented
in Fig. 2.

V. EFFECT OF WEAK SELECTION ON STOCHASTIC
EVOLUTIONARY STABILITY

Evolutionary stability, or the evolutionarily stable strat-
egy (ESS), is the key concept in evolutionary game theory
[3,21,22]. Recently, Zheng et al. [17] extended the standard
definition of an ESS in a constant environment [21] to a
variable environment. A stochastically evolutionarily stable
(SES) strategy is defined as a strategy such that, if all the
members of the population adopt it, then the probability of
at least any slight perturbed strategy invading the population
under the influence of natural selection is arbitrarily low. More
specifically, a strategy represented by a frequency vector x̂ is
SES if x̂ fixation is SLS against any other strategy x �= x̂ at
least nearby enough [17]. Here we mainly focus on the effect
of weak selection on stochastic evolutionary stability.

For two mixed strategies x = (x, 1 − x) and x̂ = (x̂, 1 − x̂)
with the payoffs to the pure strategies at time step t � 0 given
by A(t ) in (1), the payoff matrix takes the form(

xA(t)x xA(t )x̂
x̂A(t )x x̂A(t )x̂

)
, (14)

where xA(t )x [respectively, xA(t )x̂] is the expected payoff to
strategy x against strategy x [respectively, x̂], and x̂A(t )x [re-
spectively, x̂A(t )x̂] the expected payoff to strategy x̂ against
strategy x [respectively, x̂]. Analogously to condition (10) for
the fixation state x̂ = 0 to be SLS, the fixation of strategy x̂ is
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SLS if

log

[
(1 − w) + w〈xA(t )x̂〉
(1 − w) + w〈x̂A(t )x̂〉

]

+ w2σ 2
x̂A(t )x̂

2
(
(1 − w) + w〈x̂A(t )x̂〉)2

− w2σ 2
xA(t )x̂

2
(
(1 − w) + w〈xA(t )x̂〉)2 < 0 , (15)

where σ 2
x̂A(t )x̂ and σ 2

xA(t )x̂ denote the variances of x̂A(t )x̂ and
xA(t )x̂, respectively. Therefore, under weak selection, the
fixation of strategy x̂ is SLS if 〈x̂A(t )x̂〉 − 〈xA(t )x̂〉0, that is,
x̂Āx̂ − xĀx̂ > 0. Similarly, under weak selection, the fixation
of strategy x is SLU if we have 〈xA(t )x〉 − 〈x̂A(t )x〉 < 0,
that is, xĀx − x̂Āx < 0. Combining these results, we can
conclude that, under weak selection, strategy x̂ is SES if and
only if

x̂Āx̂ − xĀx̂ � 0 for all x �= x̂ (16)

and x̂Āx − xĀx > 0 for all

x �= x̂ if the equality holds above. (17)

Therefore, under weak selection, an SES strategy is a strategy
such that, if all the members of the population adopt it, then
the probability for any mutant strategy to invade the popula-
tion under the influence of natural selection is arbitrarily low.

The above conclusion shows that the conditions for strat-
egy x̂ to be SES under weak selection depends only on the
average payoff matrix Ā and that they exactly match the stan-
dard conditions for an ESS with the payoff matrix Ā [21]. So,
under weak selection: (i) the pure strategy x̂ = (0, 1) is SES
if d̄ > b̄; (ii) the pure strategy x̂ = (1, 0) is SES if ā > c̄; and
(iii) if ā > c̄ and d̄ > b̄, or ā < c̄ and d̄ < b̄, then the mixed
strategy x̂ = (x̂, 1 − x̂) with x̂ = (b̄ − d̄ )/(b̄ − d̄ + c̄ − ā) is
SES if b̄ > d̄ and c̄ > ā [3,21]. Moreover, even if no constant
interior equilibrium exists in (2), it is still possible for a mixed
strategy to be SES. For example, consider a random payoff
matrix

(1 + ξt 3
3 2 + ξt

)
, where ξt is a random variable with mean

〈ξt 〉 = 0 and variance 〈ξ 2
t 〉 = σ 2

ξ at time step t � 0, where
σ 2

ξ is small but σ 2
ξ �= 0 such that both 1 + ξt and 2 + ξt are

positive random payoffs for t � 0. With this random payoff
matrix, although no constant interior equilibrium exists, the
mixed strategy x̂ = (x̂, 1 − x̂) with x̂ = 1/3 is SES with re-
spect to the stochastic dynamics.

VI. DISCUSSION

How natural selection can reduce the impact of environ-
mental stochastic fluctuations on the evolution of animal
behavior is a very challenging question. In this study, we have
considered the effects of weak selection on a two-phenotype
evolutionary game dynamics in an infinite population with
a random payoff matrix. The results show that, under weak
selection, both stochastic local stability and stochastic evo-
lutionary stability in this system depend only on the means
of the random payoffs and not at all on their variances.
However, although stochastic local stability or instability of an
equilibrium may not be affected by environmental noise, the

rate of convergence or divergence near an equilibrium not only
depends on environmental noise, but can even be enhanced by
environmental noise. This is the case, for instance, when the
variances of the random payoffs as well as the covariances are
equal. These predictions are supported by analytical approxi-
mations and computer simulations.

Our analysis is based on the concept of stochastic evo-
lutionary stability through the analysis of stochastic local
stability that was developed in a previous paper of ours [17]
to predict the results of long-term evolution of strategies in
a stochastic environment. This is actually an extension of the
classic concept of an evolutionarily stable strategy to take into
account random payoffs as a result of environmental noise.
These have been approximated in the case of weak selection to
show that stochastic evolutionary stability can be unaffected,
and evolution can even occur faster, in the presence of en-
vironmental noise when selection is weak enough. It might
be worth stressing that weak selection is not equivalent to
weak noise. Actually, it is almost the opposite, since selection
would often appear strong when noise is weak. It may be
obvious that the effects of weak noise can be counteracted
by the pressure of strong selection. That the effects of noise
can be counteracted by the pressure of weak selection is less
obvious, not to mention that weak selection can increase the
rate of evolution in the presence of noise. These findings have
biological implications, since they reveal an unexpected role
of weak selection in the evolution of biological populations in
a random environment.

Previous studies on the impact of environmental noise
on biological evolution involved such mechanisms as the
storage effect and the bet-hedging strategy in populations with
overlapping generations [25–28]. Such mechanisms concern
the trade-off between adult survival and reproduction but
can involve, in principle, any life history trait. They have
been used to explain the coexistence of competitors and are
somehow related to the notion of protected polymorphism
in structured populations under the effects of spatially or
temporally varying selection regimes [29]. Our study takes the
opposite view of looking at a general condition, namely, weak
selection, which could counteract the effects of random noise.
That the same condition can enhance the rate of evolution
in the presence of random noise is an unexpected bonus.
And that the results are obtained under minimal assumptions,
namely, a matrix game with random payoffs in a well-mixed
population, suggests that they might be of general validity.
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APPENDIX

1. Stochastic local stability of fixation state x̂ = 0 in degenerate cases

In the degenerate case where bt = dt for all t � 0, let vt = 1/ut = (1 − xt )/xt . From Eq.(3), we have the recurrence equation

vt+1 = vt

[(
(1 − w) + wct

) + vt
(
(1 − w) + wdt

)
(
(1 − w) + wat

) + vt
(
(1 − w) + wdt

)
]

. (A1)

Iterating this recurrence equation leads to

1

n
(vn − v0) = 1

n

n−1∑
t=0

[
(1 − w) + wct

(1 − w) + wdt
− (1 − w) + wat

(1 − w) + wdt

]
− 1

n

n−1∑
t=0

(1−w)+wat

(1−w)+wdt

(
1 − (1−w)+wat

(1−w)+wct

)
(1−w)+wat

(1−w)+wct
+ (1−w)+wdt

(1−w)+wct
vt

. (A2)

Therefore, if ut → 0 (that is, vt → ∞), then the strong law of large numbers guarantees that

lim
n→∞

1

n

(
vn − v0

) ≈
〈

(1 − w) + wct

(1 − w) + wdt
− (1 − w) + wat

(1 − w) + wdt

〉
. (A3)

Then, using Egorov’s theorem, the fixation state x̂ = 0 is SLS if〈
(1 − w) + wct

(1 − w) + wdt

〉
−

〈
(1 − w) + wat

(1 − w) + wdt

〉
> 0 (A4)

(the more rigorous mathematical proofs are similar to those in [17]).
Note that 〈

(1 − w) + wct

(1 − w) + wdt

〉
≈ (1 − w) + wc̄

(1 − w) + wd̄
+ ((1 − w) + wc̄)w2σ 2

d

((1 − w) + wd̄ )3
− w2σ 2

c,d

((1 − w) + wd̄ )2

and 〈
(1 − w) + wat

(1 − w) + wdt

〉
≈ (1 − w) + wā

(1 − w) + wd̄
+ ((1 − w) + wā)w2σ 2

d

((1 − w) + wd̄ )3
− w2σ 2

a,d

((1 − w) + wd̄ )2
.

Thus, under weak enough selection (that is, for w small enough), the fixation state x̂ = 0 is SLS if c̄ − ā > 0 and SLU if
c̄ − ā < 0.

Similarly, in the degenerate case where at = ct for all t � 0, under weak enough selection, the fixation state x̂ = 1 is SLS if
b̄ − d̄ > 0 and SLU if b̄ − d̄ < 0.

2. Stochastic local stability of a constant interior equilibrium

With the random payoff matrix A(t ) in Eq. (12) where û > 0, the recurrence equation in Eq.(3) can be rewritten in the form

ut+1 = ut

[
ut [(1 − w) + w(ct + zt )] + [(1 − w) + wbt ]

ut [(1 − w) + wct ] + [(1 − w) + w(bt + ûzt )]

]
. (A5)

From this equation and the equality û(at − ct ) = dt − bt , we have

ut+1 − û = (ut − û)

[
ut ((1 − w) + wct ) + utwzt + ûwzt + ((1 − w) + wbt )

ut ((1 − w) + wct ) + ((1 − w) + wbt ) + ûwzt

]

= (ut − û)

[
ut ((1 − w) + wat ) + ((1 − w) + wdt )

ut ((1 − w) + wct ) + ((1 − w) + wdt )

]
. (A6)

In particular, this ensures that ut+1 − û > 0 if ut − û > 0, and ut+1 − û < 0 if ut − û < 0. Moreover, some algebraic manipula-
tions yield

ut ((1 − w) + wat ) + ((1 − w) + wdt )

ut ((1 − w) + wct ) + ((1 − w) + wdt )
=

[
û((1 − w) + wat ) + ((1 − w) + wdt )

û((1 − w) + wct ) + ((1 − w) + wdt )

]
Qt ,

where

Qt = 1 − (ut − û)((1 − w) + wdt )wzt

Dt
(A7)

with

Dt = [û((1 − w) + wat ) + ((1 − w) + wdt )]

× [û((1 − w) + wct ) + ((1 − w) + wdt ) + (ut − û)((1 − w) + wct )] . (A8)
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Therefore, iterating Eq. (A6) leads to

lim
n→∞

1

n
log

[
un − û

u0 − û

]
= lim

n→∞
1

n

n−1∑
t=0

log

[
û((1 − w) + wat ) + ((1 − w) + wdt )

û((1 − w) + wct ) + ((1 − w) + wdt )

]
+ lim

n→∞
1

n

n−1∑
t=0

log Qt . (A9)

If ut → û (which compels Qt → 1), then the strong law of large numbers guarantees that

lim
n→∞

1

n
log

[
un − û

u0 − û

]
≈

〈
log

[
û((1 − w) + wat ) + ((1 − w) + wdt )

û((1 − w) + wct ) + ((1 − w) + wdt )

]〉
. (A10)

Using Egorov’s theorem, the constant interior equilibrium x̂ = û/(1 + û) is SLS if〈
log

[
û((1 − w) + wat ) + ((1 − w) + wdt )

û((1 − w) + wct ) + ((1 − w) + wdt )

]〉
< 0 (A11)

and SLU if the inequality is reversed.
Note that

〈log[û((1 − w) + wat ) + ((1 − w) + wdt )]〉 ≈ log[û((1 − w) + wā) + ((1 − w) + wd̄ )]

− û2w2σ 2
a + w2σ 2

d + 2ûw2σa,d

2[û((1 − w) + wā) + ((1 − w) + wd̄ )]2

and

〈log[û((1 − w) + wct ) + ((1 − w) + wdt )]〉 ≈ log[û((1 − w) + wc̄) + ((1 − w) + wd̄ )]

− û2w2σ 2
c + w2σ 2

d + 2ûw2σc,d

2[û((1 − w) + wc̄) + ((1 − w) + wd̄ )]2
.

Thus, under weak enough selection, x̂ = û/(1 + û) is SLS if c̄ − ā > 0 and SLU if c̄ − ā < 0.

3. Convergence rate near an SLS constant interior equilibrium

With the random payoff matrix A(t ) in Eq. (12), we have shown that, under weak enough selection, the constant interior
equilibrium x̂ = û/(1 + û) is SLS if c̄ − ā > 0. When the system state is near this constant interior equilibrium, the convergence
rate of the system to it is given by the right-hand member in Eq. (A10). Under weak selection, the convergence rate is
approximated as 〈

log

[
û((1 − w) + wat ) + ((1 − w) + wdt )

û((1 − w) + wct ) + ((1 − w) + wdt )

]〉
≈ log

[
û((1 − w) + wā) + ((1 − w) + wd̄ )

û((1 − w) + wc̄) + ((1 − w) + wd̄ )

]

− w2
(
û2σ 2

a + σ 2
d + 2ûσa,d

)
2[û((1 − w) + wā) + ((1 − w) + wd̄ )]2

+ w2
(
û2σ 2

c + σ 2
d + 2ûσc,d

)
2[û((1 − w) + wc̄) + ((1 − w) + wd̄ )]2

, (A12)

where the term

log

[
û((1 − w) + wā) + ((1 − w) + wd̄ )

û((1 − w) + wc̄) + ((1 − w) + wd̄ )

]

corresponds to the convergence rate of the deterministic system with payoff matrix Ā. Furthermore, if w is small enough, we
have the approximations

log

[
û((1 − w) + wā) + ((1 − w) + wd̄ )

û((1 − w) + wc̄) + ((1 − w) + wd̄ )

]
≈ w(ā − c̄)

(1 + û)
, (A13)

w2
(
û2σ 2

a + σ 2
d + 2ûσa,d

)
2[û((1 − w) + wā) + ((1 − w) + wd̄ )]2

≈ w2
(
û2σ 2

a + σ 2
d + 2ûσa,d

)
2(1 + û)2

, (A14)

w2
(
û2σ 2

c + σ 2
d + 2ûσc,d

)
2[û((1 − w) + wc̄) + ((1 − w) + wd̄ )]2

≈ w2
(
û2σ 2

c + σ 2
d + 2ûσc,d

)
2(1 + û)2

. (A15)

Therefore, Eq. (A12) can be rewritten as〈
log

[
û((1 − w) + wat ) + ((1 − w) + wdt )

û((1 − w) + wct ) + ((1 − w) + wdt )

]〉

≈ w(ā − c̄)

(1 + û)
+

{
ûw2

2(1+û)2

[
û
(
σ 2

c − σ 2
a

) + 2(σc,d − σa,d )
]

if û
(
σ 2

c − σ 2
a

) + 2(σc,d − σa,d ) �= 0 ,

w3

(1+û)3

(
û2σ 2

a + σ 2
d + 2ûσa,d

)
(ā − c̄) if û

(
σ 2

c − σ 2
a

) + 2(σc,d − σa,d ) = 0 .
(A16)
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This implies that, under weak enough selection, the convergence rate near the SLS constant interior equilibrium û > 0 in the
stochastic dynamics (with c̄ > ā) is faster [or slower] than that in the deterministic mean-field approximation if û(σ 2

c − σ 2
a ) +

2(σc,d − σa,d ) � 0 [or û(σ 2
c − σ 2

a ) + 2(σc,d − σa,d ) > 0].
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