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According to the less-is-more hypothesis, gene loss is an engine for evolutionary change. Loss-of-function (LoF) mutations
resulting in the natural knockout of protein-coding genes not only provide information about gene function but also play
important roles in adaptation and phenotypic diversification. Although the less-is-more hypothesis was proposed two
decades ago, it remains to be explored on a large scale. In this study, we identified 60,819 LoF variants in 1071 Arabidopsis
(Arabidopsis thaliana) genomes and found that 34% of Arabidopsis protein-coding genes annotated in the Columbia-
0 genome do not have any LoF variants. We found that nucleotide diversity, transposable element density, and gene family
size are strongly correlated with the presence of LoF variants. Intriguingly, 0.9% of LoF variants with minor allele frequency
larger than 0.5% are associated with climate change. In addition, in the Yangtze River basin population, 1% of genes with LoF
mutations were under positive selection, providing important insights into the contribution of LoF mutations to adaptation. In
particular, our results demonstrate that LoF mutations shape diverse phenotypic traits. Overall, our results highlight the
importance of the LoF variants for the adaptation and phenotypic diversification of plants.

INTRODUCTION

Variation in gene copy number plays important roles in adaptation
anddiversification. The twomajor processes that result in the gain
of genes or gene copies are de novo gene formation and gene
duplication (Chen et al., 2010; Carvunis et al., 2012; Guo, 2013;
Palmieri et al., 2014; Zhao et al., 2014; McLysaght and Guerzoni,
2015; Li et al., 2016). However, the less-is-more hypothesis
proposes thatgene lossalsocontributes toevolutionarychange in
the context of gene copy number variation (Olson, 1999). The
dosage balance hypothesis suggests that altering the stoichi-
ometry of members of macromolecular complexes can affect the
function of the whole complex and could ultimately affect phe-
notype and evolutionary fitness (Edger and Pires, 2009; Birchler
and Veitia, 2012; Hao et al., 2018). Therefore, the dosage bal-
ance hypothesis provides a more compelling explanation of
the advantages and disadvantages of removing gene copies
from a genome and explains the less-is-more hypothesis in

a mechanistic way. There are two major mechanisms underlying
gene loss: the physical removal of a gene by recombination and
gene inactivation by loss-of-function (LoF) mutations (Albalat and
Cañestro, 2016). The lattermechanismcanoccur through thegain
of a premature stop codon, splice site disruption, or disruption of
a transcript reading frame. LoF mutations are frequent and have
recently gained attention owing to the improved detection power
of advanced sequencing techniques (MacArthur and 1000 Ge-
nomes Project Consortium et al., 2012; Narasimhan et al., 2016).
Consistent with the less-is-more hypothesis, many cases of

gene loss have been reported in diverse organisms, including
unicellular organisms such as bacteria (Will et al., 2010; Hottes
etal., 2013), andmulticellular organisms, suchasplants (Zufall and
Rausher, 2004;Hoballah et al., 2007; Song et al., 2007; Tang et al.,
2007; Gujas et al., 2012; Amrad et al., 2016; Sas et al., 2016;
Wu et al., 2017) and animals (Greenberg et al., 2003; Hodgson
et al., 2014; Goldman-Huertas et al., 2015), including humans
(MacArthur and 1000 Genomes Project Consortium et al., 2012;
Narasimhanetal., 2016). LoFmutationshavebeenshowntoaffect
important biological processes, such as development and stress
resistance in plants (Gujas et al., 2012; Wu et al., 2017) and in-
tellectual disabilities in humans (Green et al., 2017). However, the
extent to which LoF mutations are correlated with adaptation
and phenotypic diversification is largely unknown (Albalat and
Cañestro, 2016). Even though LoFmutations that produce large
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and detrimental effects on fitness will be depleted in inbreeding
species compared with outcrossing plant and animal species,
inbreeders are an excellent system to study the effect of natural
homozygous knockouts, as inbreeding leads to a high frequency
of homozygous LoF mutations (Saleheen et al., 2017). The best-
characterized selfing species is Arabidopsis (Arabidopsis thali-
ana), which is naturally occurring in almost all parts of the world.

In this study, to investigate the evolutionary patterns of LoF
mutations in natural populations, we explored 1071 genomes of
Arabidopsis from the 1001 Genomes Project (2016), the African
genomesproject (Durvasula et al., 2017), andour ownsequencing
project (Zou et al., 2017). Across these 1071 Arabidopsis ge-
nomes, we identified 60,819 LoF variants, including 17,453 stop
codon–introducing (stop-gain) variants; 37,935 disruptions of
a transcript reading frame (frameshift); and 5431 splice site–
disrupting single nucleotide variants ([SNVs]; splice site). We
found that the presence of LoF mutations is correlated with the
level of nucleotide diversity, the density of transposable elements
(TEs), and gene family size. Intriguingly, 1% of genes with LoF
mutations are under positive selection in the Yangtze River basin
population, suggesting that these genes with LoF mutations are
crucial for adaptation.Overall, this studyhighlights the importance
of LoF mutations for adaptation and phenotypic diversification.

RESULTS

The Presence of LoF Variants Is Correlated with Nucleotide
Diversity, TE Density, and Gene Family Size

We scanned the genomes of 1071 accessions for LoF variants
(Figures 1Aand1B), including 893genomesdownloaded from the
1001GenomesProject (Supplemental Data Set 1; 1001Genomes
Consortium, 2016), 61 from the African genomes project
(Supplemental Data Set 2; Durvasula et al., 2017), and 117 from
our own genome project (Supplemental Data Set 3; Zou et al.,
2017). Given that LoF mutations annotated by mapping se-
quences to a reference genomewill have high false positive rates,

a series of stringent filtering steps were implemented that were
similar to those used in previous studies of human genomes
(MacArthur and 1000 Genomes Project Consortium et al., 2012;
Narasimhan et al., 2016). First, SNVs and indels (insertions/de-
letions) were removed if they matched multiple times to the ref-
erence genome or were located in short tandem repeats or if the
SNVs were in close proximity (3 bp or less) to an indel. Second,
stop-gain variants were excluded if they were within a codon that
was linked to other SNVs, and frameshift variants were removed if
theywereoccurring togetherwithother frameshifts that resulted in
the restoration of the reading frame. Third, SNVs and indels were
removed if the inferred LoFmutations occurred within the last 5%
of the transcript or were observed in the ancestral states inferred
from Arabidopsis lyrata and Capsella rubella (see “Methods”).
Fourth, LoFvariants that affect all known transcriptsof theprotein-
coding gene in the reference genome (Columbia-0 [Col-0]) were
retained for subsequent analysis. After filtering according to these
rules, we detected 17,453 (214.7 per accession) premature
stop codons that were caused bySNVs (stop-gain), 37,935 (512.2
per accession) insertion/deletion-induced frameshift variants
(frameshift) leading to the disruption of a transcript reading frame,
and 5431 (103.0) splice site–disrupting SNVs (splice site; Table 1).
Taking all of these stop-gain, frameshift, and splice site variants
together, we identified 60,819 (829.9 per accession) LoF variants
across the 1071 accessions (Table 1).
To assess the power of our detection method and to estimate

the false discovery rate (FDR) for LoF variants, we used RNA
sequencing (RNA-seq) data for eight de novo–assembled ge-
nomes (Gan et al., 2011), the Landsberg erecta genome as-
sembled with PacBio Sequel data (Zapata et al., 2016), and the
KBS-Mac-74 genome assembled with Nanopore data (Michael
et al., 2018). The results suggest that our method has a very low
FDR (2.6% in each accession on average; Supplemental Data Set
4).Given that theaccumulatedFDRacross1071accessionsmight
be higher than that in a single genome, we calculated the accu-
mulated false positive rates based on validation data in these 10
accessions.Whilewith theaddition of genomes to the analysis the
accumulated false positive LoF mutations as well as the total
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number of LoF mutations increased, the accumulated FDR was
largely stable (Supplemental Figure 1). Therefore, we estimated
that in each Arabidopsis accession, an average of 808.2 genes
have LoF mutations (3.0% of all protein-coding genes in the
reference Col-0) with an FDR of 2.6%. In particular, 80 false

positiveLoFmutations (22stop-gains, 56 frameshifts, and2splice
sites) identified in the validation process were excluded from the
subsequent analysis.
The density of genes with stop-gain, frameshift, splice site, and

LoF variants (summed up for all the stop-gain, frameshift, and

Figure 1. Identification of LoF Mutations in 1071 Arabidopsis Genomes.

(A) Geographic distribution of the 1071 accessions used in this study.
(B) Process used to identify LoF variants. SnpEff annotation indicates SNVs/indels annotated by SnpEff software (see "Methods").
(C) Variation in TE density (TE), nucleotide diversity (p), and the density of genes with stop-gain (Stop-gain), frameshift (Frameshift), splice site (Splice), and
LoF variants across chromosome 1. The values for the four other chromosomes are shown in Supplemental Figure 2. Chr1, chromosome 1.
(D)Spearmancorrelationsadjusted formultiple testingbetweendifferent gene features across thewholegenome, includingexpression level, exonnumber,
and CDS length per gene in Col-0; guanine-cytosine (GC) content in Col-0; TE density in Col-0; nucleotide diversity (p); and the density of geneswith stop-
gain (Stop-gain density), frameshift (Frameshift density), splice site (Splice density), and LoF (LoF density). Values marked with asterisks indicate strong
correlation coefficients (***P < 0.001).
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splice site variants), as calculated by dividing the number of
geneswith LoF variants (geneswith LoF variants detected in any
of the 1071 accessions) by the gene number in each 200-kb
window in the Col-0 reference genome, varied across the ge-
nome (Figure 1C; Supplemental Figure 2). By contrast, the
density of stop-gain and frameshift variants within gene bodies
was roughly evenlydistributed,withaslightly higher frequencyat
the beginning and at the end of genes (Supplemental Figure 3).
This pattern is similar to the distribution in human and great ape
genomes (MacArthur and 1000 Genomes Project Consortium
et al., 2012; de Valles-Ibáñez et al., 2016).

To infer mechanisms that favor LoF, we analyzed the cor-
relations between LoF and various gene features. The density
of geneswith LoFmutations (stop-gain, frameshift, splice site,
and LoF variants) across the Col-0 genome showed a strong
correlation with nucleotide diversity (p) across the 1071 ge-
nomes and the TE density in the Col-0 genome (Figure 1D).
Large gene families tend to have high gene redundancy
(Wagner, 2005), and gene loss in large gene families may be
an advantage according to the dosage balance hypothe-
sis (Edger and Pires, 2009; Birchler and Veitia, 2012; Hao
et al., 2018). We therefore evaluated whether these genes
were prone to acquiring LoF mutations. We classified the
27,206 protein-coding genes of the reference Col-0 genome
into 7430 gene families based on amino acid sequence
similarity. We then estimated the correlation between gene
family size and the proportion of genes with common LoF
variants (variants displaying a minor allele frequency [MAF]
larger than 5% across the 1071 accessions). For all gene
families, there was a positive correlation between gene family
size and the LoF ratio (the percentage of genes with LoF
variants in each gene family; Spearman r = 0.21, P = 2.2 3
10216). This suggests that genes belonging to larger gene
families are more likely to have LoF variants. Similarly, the
median sizes of gene families for genes with and without LoF
variants were 11 and 6, respectively (Wilcoxon sum test, P <
2.23 10216; Figure 2A). This indicates that genes belonging to
larger gene families are more likely to acquire LoF mutations.
Furthermore, analogous to previous studies (Prachumwat and
Li, 2008; Guo, 2013), we divided gene families into three
classes: one gene or singleton (class 1: 3825 families), two
genes (class 2: 1353 families), and three genes or more (class
3: 2252 families). The genes in class 3 were more likely to
contain LoF variants than the others (class 3 versus class 1 or
2; Wilcoxon sum test, all P < 0.01; Supplemental Figure 4).
Therefore, the presence of LoF variants is correlated with
nucleotide diversity, TE density, and gene family size.

A Large Fraction of Arabidopsis Genes Could Affect Fitness
in Natural Environments

Agenome-widestudyofLoFvariantscanprovide insight intogene
lethality by analyzing the frequency of all null alleles for a given
gene in natural environments (population gene lethality; Albalat
and Cañestro, 2016). We found that 9249 protein-coding genes
(34.0%of all protein-coding genes in theCol-0 referencegenome)
do not have any LoF variant within our panel of 1071 accessions.
To ask whether known essential genes are depleted of LoF var-
iants, we used a database of 358 lethal genes identified in labo-
ratory studies (Meinke et al., 2008); 88.3% of the lethal genes do
not have any natural LoF mutation, and 7.3% of the lethal genes
display a LoF allele frequency less than 0.5% across the 1071
accessions (Figure 2B). This suggests that lethal genes in Ara-
bidopsis are significantly depleted of natural LoF mutations
(Pearson’s chi-squared test, P < 2.23 10216). We then performed
gene ontology (GO) enrichment analysis of the four different gene
classes based on the LoF allele frequency in the 1071 accessions
(genes without LoF, with LoF, with a LoF allele frequency of <0.05
and $0.05). Although both the gene sets (with and without LoF
variants) were enriched for the GO term ‘unknown function’, the
only gene set highly enriched formanyotherGO termswas the set
without LoF variants (Figure 2C). These results suggest amodel in
which natural knockouts of 9249 Arabidopsis genes without LoF
variants would reduce fitness in natural environments, and in-
dividuals with LoF mutations in these nonessential genes can
likely be removed from populations by purifying selection.

LoF Variants Are Correlated with Climate Variables

LoF variants could be functionally important and associated with
climate variables. To investigate this notion, we performed a ge-
nome-wide association study (GWAS) of 14,270 LoF variants with
MAF larger than 0.5% and 20 environmental variables, including
latitude and 19 climate variables (Supplemental Data Set 5). To
validate that the associations were not random, we compared the
total number of significantly associated LoF variants with the
numberobtained from1000GWASpermutationsbasedon14,270
randomly resampled single-nucleotide polymorphisms ([SNPs];
MAF>0.5%) in thecoding regionsofprotein-codinggenesacross
the whole genome for each of the 20 environmental variables. If
LoF variants were randomly associated with environmental vari-
ables, we would expect the number of associated variants ob-
tained in thepermutation analysis and theobserved value for each
environmental variable to be similar. For 10 of the 20 environ-
mental variables, the observed number was significantly higher

Table 1. Total Number of Different LoF Variants in the 1071 Genomes

Before filteringa After filteringa

Variant type Total Per sample Total Per sample

Stop-gain 28,944 (10,350) 432.1 (403.5) 17,453 (7,264) 214.7 (214.7)
Frameshift 72,335 (14,994) 1,448.4 (1,178.9) 37,935 (10,800) 512.2 (512.2)
Splice site 10,414 (5,769) 277.5 (264.9) 5,431 (3,449) 103.0 (103.0)
Total 111,693 (17,957) 2,157.9 (1,732.8) 60,819 (12,918) 829.9 (829.9)
aNumbers in parentheses indicate the gene number; some genes have multiple LoF variants.
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than the number identified by permutation analysis (one-sample
Wilcoxon signed rank test, P < 0.05; Supplemental Figure 5),
suggesting that LoF variants are more prone to associate with
climate variables. Also, 125of the14,270LoFvariants (0.9%)were
significantly associated with at least 1 of the 10 environmental
variables, involving 124 genes (Supplemental Figures 6 to 8;
Supplemental Data Set 6). Of these genes, some are known to be
functionally important, such asCysteine-rich receptor-like protein
kinase 36 (CRK36; Supplemental Data Set 6).CRK36 encodes an
abiotic stress-inducible receptor-like protein kinases that nega-
tively regulates abscisic acid signaling (Tanaka et al., 2012).

We used RNA-seq data for 541 accessions to compare the
expression levels of alleleswith andwithout LoFmutations for each
of these environmentally associated genes (Figure 2D; Kawakatsu
and 1001 Genomes Consortium et al., 2016). Among the 124 as-
sociated genes, 49 genes have both LoF and non-LoF alleles in the
541accessions forwhichRNA-seqdatawereavailable. Therewere
no LoF variants of the other 75 genes in this set of accessions. We
therefore focused on the 49 genes with both LoF and non-LoF
alleles (differentLoFvariantsof thesamegenewerecombined).The
transcript levels of 16.4% of these genes were significantly altered
(8.2% upregulated and 8.2% downregulated) in accessions har-
boring theLoFvariants (Wilcoxonsumtest, FDRcorrectedP<0.05;
Figure 2D). Furthermore, genes with LoF variants associated with

environmental variables exhibited greater rates of upregulation (8.2
versus 3.0%) or downregulation (8.2 versus 6.5%) than genes with
LoF variants at the genome level (Figure 2E). To determine whether
the expression changes were caused by the different genetic
backgrounds of various natural accessions, we calculated the up-
and downregulated gene numbers based on 30,000 randomly
selected alleles with non-LoF variants in coding regions across the
541 accessions. A higher proportion of genes with LoF variants
associated with environmental variables are up- (8.2 versus 1.7%)
or downregulated (8.2 versus 2.4%) comparedwith those detected
when only the genetic background was taken into account
(Supplemental Figure 9). The higher proportion of upregulated
genes with LoF variants associated with environmental variables
could result fromdiversemechanisms, suchasadominant gain-of-
function effect, in which LoF mutations are effectively gain-of-
function mutations, thereby mimicking increased gene function
(Schild et al., 1995; Xie et al., 1998).

LoF Variants of KUK, PRR5, and LAZY1 Shape
Phenotypic Variation

Common LoF alleles are nearly always less deleterious than rare
LoF alleles, but some could have an impact on phenotypes
(MacArthur and 1000 Genomes Project Consortium et al., 2012).

Figure 2. Functional Analysis of Genes with and without LoF Variants.

(A)Genes from larger gene families tend tohaveLoFvariants basedon theCol-0genome. In theboxplot, theboxequals thedifferencebetween the75th and
25th percentiles. The thick line indicates themedian. The twowhiskers indicate 1.5 interquartile range of the lower quartile or the upper quartile. Outliers are
plotted as individual points. ***P < 0.001.
(B) LoF mutations are under-represented in lethal genes in Arabidopsis. <0.005 indicates MAF less than 0.5%, <0.05 indicates MAF < 5%, and >0.05
indicates MAF > 5%.
(C) GO enrichment analysis of genes with LoF, with different LoF allele frequencies, and those without LoF variants across the 1071 genomes. Colors
indicate P-values of GO enrichment analysis.
(D) Expression level variation between alleles with and without LoF variants of genes with significant GWAS signals based on RNA-seq data for 541
accessions. NS, insignificant difference.
(E) Expression level variation between alleles with and without LoF variants (6675 genes) based on RNA-seq data for 541 accessions. NS, insignificant
difference.
(F) GWAS of stop-gain variants of KUK with regard to precipitation in the wettest month. Chr, chromosome.
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Considering that stop-gain mutations can exert severe effects by
directly truncating genes, we performed an additional GWAS
analysis for stop-gain mutations and the 10 environmental
variables that are significantly associated with LoF variants
(Supplemental Figure 10). We found that many genes with stop-
gain mutations are associated with environmental variables
(Supplemental Data Set 7). One gene with a significant GWAS
signal for a precipitation-related trait (precipitation in the wettest
month) is the F-box protein gene KURZ UND KLEIN (KUK;
Figure 2F; Supplemental Figures 10 and 11), which is involved in
regulating root development in Arabidopsis (Meijón et al., 2014).
KUK alleles with and without LoF variants are widely distributed
across Eurasia, and most accessions from the Yangtze River
basin carry stop-gain variants (Supplemental Figure 12A). Based
on the phenotypic data for 129 accessions available from
a previous study (Figure 3A; Supplemental Data Set 8; Meijón
et al., 2014), the meristematic zone and mature cortical cells of
accessionswith LoF variants (stop-gain, frameshift, or total LoF;
no putative splice variation was observed) were significantly
longer than thoseof accessionswithout LoF variants (population

structure–corrected ANOVA, P < 0.05; Figure 3B; Supplemental
File).
To independently test the hypothesis that truncated versions of

KUK are associated with increased meristem and mature cell
sizes, we phenotyped accessions containing specific LoF alleles
that were not evaluated in the previous study (with one exception:
Bur-0;Meijón et al., 2014).Wechose three accessions that did not
contain a stop codon (control); three accessions with the most
commonstopcodon located in thefirst halfofKUK (111G/A:TGG-
TGA,SG111), theonly twoaccessions in the1001Genomespanel
that had a distal stop codon (652 C/T: CGA-TGA, SG652), in-
cluding one of the accessions with the largest meristem and
mature cell traits (Bur-0) according to a previous study (Meijón
et al., 2014); and two accessions with a distal frameshift (738 T/-,
FS738; Supplemental Figure 13; Supplemental Data Set 9).
Compared with the control, all three classes showed significant
increases (pairwiseWilcoxon rank sum test, P < 0.05) in meristem
length, with the most common stop codon associated with the
smallest increase (Supplemental Figure 13; Supplemental Data
Set 9). Overall, these data suggest that truncated alleles of KUK

Figure 3. Functional Differentiation of Alleles with or without LoF.

(A) Geographic distribution of different KUK alleles in 129 accessions with phenotypic data.
(B) Phenotypic variation for KUK alleles with and without LoF.
(C) Geographic distribution of PRR5 alleles in 812 accessions with flowering time data.
(D) Flowering time variation for PRR5 alleles with and without LoF. The numbers above each violin plot indicate the number of accessions containing the
particular variant type.Thedashed line indicates themedianvalueof thephenotypic trait. Populationstructure–correctedANOVA, *P<0.05, **P<0.01, ***P<
0.001.
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influence cellular traits, most likely via a dominant mechanism.
Further transgenic studies should be performed to confirm the
effects of these genetic variants in the same genetic background.

In addition to the LoF alleles of genes that were associated
with environmental variables based on the GWAS, we studied
PSEUDO-RESPONSEREGULATOR5 (PRR5),which is involved in
regulatingvariouscircadian-associatedbiological events, suchas
flowering time (Nakamichi et al., 2016). PRR5 alleles with and
without LoF variants are widely distributed in our set of 1071
accessions (Supplemental Figure 12B). Of the 812 accessions
with flowering time data (Figure 3C; Supplemental Data Set 10;
1001 Genomes Consortium, 2016), the flowering time of ac-
cessions with PRR5 LoF variants (frameshift, or total LoF; no
putative splice variation was observed) was significantly delayed

compared with accessions without LoF variants at either 10 or
16°C (population structure–corrected ANOVA, P < 0.05; Figure
3D; Supplemental File). We note that while flowering time for
the stop-gain allele was delayed relative to the non-LoF allele, the
differencewasnot significant, probablyowing to the small number
of accessions.
Given the above-mentioned two cases of genes having com-

mon LoF variants, we further studied LAZY1 as an example for
a rare LoF variant. Only one accession from the Yangtze River
basin population (29-8) showed a frameshift mutation in LAZY1,
which that was caused by a 20-bp deletion in exon 3 and resulted
in a premature stop codon (Figure 4D; Supplemental Figure 14).
LAZY1mutantplantsdisplayamuch largerbranchangle (81°) than
the wild type (42°; Yoshihara et al., 2013). As expected, we found

Figure 4. Frameshift in LAZY1 Increases Branch Angle.

(A)Representative accessionswith different branch angles. The red triangles show the tangent lines drawn for themeasurement. The boxplot (right) shows
thedistributionofbranchangles indifferentaccessions.Thebordersof theboxes indicate the75thand25thpercentiles. The thick linemarks themedian.The
two whiskers extend to the most extreme data points. n indicates the number of individuals measured for each accession.
(B) Distribution of branch angle frequency of the 684 F2 individuals from the Col-0 3 29-8 cross. The average and range of branch angles of two natural
accessions are indicated.
(C)SHOREmapanalysisofbranchangle. Thehomozygosity estimator is0at evenallele frequencies forbothnatural accessions,1whenhomozygous for the
small angle accession Col-0, and 21 when homozygous for the large angle accession 29-8. chr., chromosome.
(D) Fine mapping by genetic-linkage analysis and sequence variation in the candidate gene LAZY1. The causal locus was narrowed down to the region
betweenmarkers 4.45 and 4.69 M. The number of recombinants between the markers and the causal locus is indicated on the bottom of the linkage map.
Schematic illustration of sequence variation in LAZY1 is shown for Col-0, 3-2, and 29-8. LAZY1 is shown at the top, and the position of ATG is defined as +1.
Thin lines indicate introns; thick yellow lines indicate protein-coding sequences; the frameshift induced by the 20-bp deletion is indicated in red.
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that accession 29-8 has a large branch angle (74°; Figure 4A).
To validate that this frameshift mutation was the causal mu-
tation, we crossed accession 29-8 with accessions displaying
smaller branch angles: Col-0 (30°) and 3-2 (30°). In the Col-03
29-8 F2 population, the segregation ratio for branch angleswas
roughly 3:1, suggesting that a major, recessively acting gene
was responsible for the large branch angle of 29-8 (Figure 4B).
Using a mapping-by-sequencing approach based on 57 F2
plants from the Col-0 3 29-8 F2 population with large branch
angles (>85°), we identified a causal region on chromosome 5
(Figure 4C). To refine the target interval, we used F2 plants in
both Col-0 3 29-8 and 3-2 3 29-8 populations, and finally
narrowed down the causal locus to a 240-kb interval containing
LAZY1 (Figure 4D; Supplemental Data Sets 11 and 12). The
truncated transcript of LAZY1 in the 29-8 accession caused the
loss of the only functional domain of the nuclear localization
signal, which is located between conserved regions 3 and 4.
This nuclear localization signal is a key component during the
nuclear import process (Supplemental Figure 14; Yoshihara
et al., 2013). Overall, these results provide evidence that the
frameshift variant of LAZY1 is likely responsible for the larger
branch angle in accession 29-8.

A Subset of LoF Variants Exhibits a Signature of
Natural Selection

Compared with other SNP variants across the whole genome in
the 1071 accessions, LoF variants are biased toward low fre-
quencies (Figure5A). This suggests thatmanynatural LoFvariants
might be deleterious in Arabidopsis and are under purifying se-
lection. Similarly, compared with 1000 permutation results of
non-LoF variants associatedwith environmental variables (GWAS
non-LoF variants), LoF variants associated with environmental
variables (GWAS LoF variants) were biased toward low allele
frequencies (Figure 5A). This suggests that a large fraction of LoF
variants that are associatedwith environmental variables are likely
under purifying selection as well.
Although LoF mutations are usually deleterious, adaptive LoF

mutations can occur and spread rapidly in small populations
(Olson, 1999). To determine whether genes with LoF mutations
were influenced by natural selection, we focused on the Yangtze
River basin population (86 accessions; Supplemental Data Set 3),
a population that recently adapted to this region (Zou, 2017). In
total, 2709 genes had LoF variants (3349 LoF variants) in this
population; among them, 54 genes (64 LoF variants) were under

Figure 5. LoF Variants Are under Natural Selection.

(A)Distribution of allele frequencies of all SNP variants and LoF variants, LoF variants (GWAS LoF variants), and permutated non-LoF variants (GWAS non-
LoF variants) associated with environmental variables at the genome level across 1071 accessions.
(B)Genes under positive selection in the Yangtze River basin population based on selective sweep analysis. Gray lines indicate allele frequencies of 60,819
LoF variants across 1071 accessions; blue lines indicate genes with 3349 LoF variants in the Yangtze River basin population; and red lines indicate genes
with LoF variants in regions with positive selection in the Yangtze River basin population. The horizontal dashed line indicates an allele frequency of 95%.
Chr, chromosome. Leucine-rich repeat like protein (domain of unknown function, DUF567), Increased Salt Tolerance 12 (ISTL12), cation/H+exchanger 16
(CHX16), two Thiolation of Cytidine tRNA biosynthesis protein (TtcA), No Apical Meristem 45 (NAC45).
(C) Ecological niche modeling of KUK. The niche overlap between the LoF and non-LoF haplotype groups was assessed byWarren’s I similarity statistics
(Io = 0.877, P < 0.001); areas of suitable habitats are marked in different colors corresponding to a scale from 0 to 1, based on 100 pseudo-replicates.
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positive selection based on a selection sweep analysis in our
recent study (Figure 5B; for details, see Supplemental Data Sets
13 and 14; Zou et al., 2017). Of the 54 genes in these selected
regions, 27 genes (1.0%of the geneswith LoF variants) had a LoF
allele frequency exceeding 95% and were more likely under
positiveselection, includingKUK, inwhichoneLoFallele (111G/A:
TGG-TGA type; Supplemental Figure 11) was fixed in the Yangtze
River basin population (Supplemental Data Set 14).

Finally, we performed ecological niche modeling of non-LoF
(571) and LoF (500) alleles of KUK. In niche identity tests, the
simulated values were significantly higher than the observed
value (observed I [Io] = 0.877, P < 0.001), indicating that there is
significant ecological differentiation between the two groups
(Figure 5C; Supplemental Figure 15). This result suggests that the
LoF allele of KUK is associated with adaptation to the Yangtze
River basin.Overall, our results indicate that LoFmutations canbe
associated with adaptation and phenotypic diversification; more
importantly, at least 1.0%of the geneswith LoF variants are under
positive selection in the Yangtze River basin.

DISCUSSION

The less-is-more hypothesis proposes an evolutionary process
involving adaptive gene loss (Olson, 1999). LoF mutations have
gained increasing attention (MacArthur and 1000 Genomes
Project Consortium et al., 2012; Yang et al., 2015; Narasimhan
et al., 2016). For example, recent studies have demonstrated the
functional importance of natural LoFmutations (Gujas et al., 2012;
Lek and Exome Aggregation Consortium et al., 2016; Saleheen
et al., 2017; Wu et al., 2017). However, our understanding of the
evolutionary pattern of LoFmutations at the genome level and the
adaptive effects of LoF variants at the population level is highly
limited. In this study, we investigated the evolutionary pattern of
LoF mutations in Arabidopsis and found that a high level of nu-
cleotide diversity, high TE density, and high gene redundancy
(large gene family size) are associated with LoF mutations. The
latter two factors were also observed in a previous study of LoF
mutations in human populations (MacArthur and 1000 Genomes
Project Consortium et al., 2012). Given that these three factors
themselves are largely correlated with rates of evolution, rapid
sequence evolution could be associated with a high frequency of
LoF mutations. More importantly, we hypothesize that 34% of
Arabidopsis genes can affect fitness in natural environments, and
furthermore, 1% of genes with LoF variants are under positive
selection in the Yangtze River basin population.

The mechanisms by which LoF mutations can produce func-
tional effects are complicated. Some of the profound effects of
LoF can be explained by the dosage balance hypothesis (Birchler
and Veitia, 2007; Hou et al., 2018; Kremling et al., 2018). A simple
mechanism for a beneficial effect of a null mutation is the removal
of a protein that is detrimental in the current environment (Hottes
et al., 2013). For example, brevis radix LoF alleles in Arabidopsis
help roots adapt to acidic soil (Gujas et al., 2012). However, it is
alsopossible that LoFvariants canact asdominantmutations. For
instance, stop-gain variants of the Sex-determining region Y-box
transcription factors 9 (MiniSOX9) act in a dominant-negative
manner, thereby counteracting the activity of the wild-type vari-
ant (Abdel-Samad et al., 2011). Other stop-gain and missense

variants can act as dominant gain-of-function mutations, thereby
mimicking increased gene function (Schild et al., 1995; Xie et al.,
1998). In thecaseofKUK, agene thatactsasapositive regulatorof
meristem and cell size (Meijón et al., 2014), a hypermorphic gain-
of-function is amore likely explanation than a LoF. Althoughmost
premature stop codons result in a LoF or dominant effects, more
complex possibilities exist. For instance, in the fruitfly (Drosophila
sechellia), anolfactory receptor pseudogeneencodes a functional
receptor as a result of translation read-through of the premature
termination codon (Prieto-Godino et al., 2016).
Of themany LoF variants (or pseudogenes) that we identified in

more than 1000 natural accessions, some are presumably
functional, with a minor or altered function, rather than non-
functional. More efforts are needed to understand their functional
effects. For example, transgenic analyses are needed toclarify the
functional differences between the predicted pseudogenes and
their ancestral genes. While more function research is needed,
LoF mutational variation also provides a way of investigating the
phenotypic consequences of the loss of specific genes within
diverse genomes while establishing their role in the evolutionary
process. Overall, our study highlights the importance of natural
knockouts for adaptation and phenotypic diversification and
emphasizes the need for more in-depth studies of LoF variants.

METHODS

Data Analyzed in This Study

The genomes of 1071 accessionswere used, including 893 representative
genomes of Arabidopsis (Arabidopsis thaliana) from the 1001 Genomes
Project (Supplemental Data Set 1; 1001 Genomes Consortium, 2016), 61
from the African sequenced genomes project (Supplemental Data Set 2;
Durvasula et al., 2017), and117genomes fromour ownsequencingproject
(Supplemental Data Set 3; Zou, 2017). The 541 transcriptomes used in this
studywereobtained fromapreviousstudy (Kawakatsuand1001Genomes
Consortium et al., 2016), as indicated in Supplemental Data Set 1. All 1071
accessions with clean data were mapped against the Col-0 reference
genome, and SNPs and indels were called using Genome Analysis Toolkit
(GATK v2.1.8) with default parameters (DePristo et al., 2011).

Identification of Candidate LoF Variants

High-quality homozygousSNPs and indels (quality$ 30, quality-by-depth
ratio $ 10 [quality-by-depth ratio $ 5 for indels], ReadPosRankSum $

28.0, depth of coverage$ 3, probability of strand bias# 10.0 [probability
of strandbias#200.0 for indels]) were used to identify LoFmutations using
SnpEff software (SnpEff 3.3f; McLaren et al., 2010) . SNPs annotated as
STOP GAINED, SPLICE SITE DONOR, and SPLICE SITE ACCEPTOR
(SPLICE SITE DONOR and SPLICE SITE ACCEPTOR were combined as
splice site), and indels annotated as FRAMESHIFT, were regarded as LoF
variants and included in subsequent analyses.

Filtering of Candidate LoF Variants

To remove false positive LoF variants caused by sequencing andmapping
errors, annotation errors, and the effect of nearby variants, a series of
stringent filters were used. First, a sequence context filter was applied.
Variants that could bemapped tomultiple regions of the reference genome
(Col-0) were removed usingGenomeMultitool (Derrien et al., 2012;Marco-
Sola et al., 2012). SNVs (stop-gain and splice site) and indels (frameshift)
overlappingwith tandem repeats andSNVs in close proximity (3 bp or less)
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to a known indel were excluded. Second, multi-nucleotide polymorphism
filters were applied. To filter incorrect premature stop codon annotation,
stop-gain variants that were found within the same codon linked to other
SNVs were removed. Frameshift variants were filtered out if two frameshift
variants resulted in the restoration of the reading frame. Three or more
frameshift variants occurring in each gene of the same accession were
excluded; most resulted in the restoration of the reading frame. Third,
annotation filters were applied. SNVs and indels were filtered out if the
inferred LoF allele was also the ancestral state, as this implies that such
variants were gain-of-function or the sequencing errors of the gene model
at this location in the reference.

Two related species, Arabidopsis lyrata (MN47) and Capsella rubella
(MTE), were used to infer the ancestral state of SNVs and indels. For SNVs
and indels, ancestral states were determined using alignments of Col-0
with the A. lyrata and C. rubella reference genomes, as described in our
previous study (Li et al., 2016). SNVs and indels were filtered out if either of
the two outgroups showed the same stop-gain or frameshift mutations
observed in the 1071 accessions.

The disrupted fraction of the coding sequence of the longest transcript
causedbystop-gain and frameshift variantswas calculated, and stop-gain
or frameshift mutations occurring within the last 5% of the transcript were
removed. Because we did not determine the position of splice site dis-
ruption on the final transcript (MacArthur and 1000 Genomes Project
Consortiumet al., 2012),wewere not able toperform this analysis for splice
site variation. Finally, if there were two or more LoF variants in the same
allele, only theLoF variant closest to the start codon (ATG)wasconsidered.

Validation of LoF Mutations

Weestimated theFDRusing theassembled transcriptsof eight accessions
from a previous study (Gan et al., 2011), as well as gene sequences that
were annotated using two published long reads assembled genomes:
Landsbergerecta assembled fromPacBioSequel data (Zapata et al., 2016)
and KBS-Mac-74 assembled from Nanopore data (Michael et al., 2018).
The genes of KBS-Mac-74 and Landsberg erecta were annotated using
exonerate v2.2.0 (Slater andBirney, 2005) with coding sequences (CDS) of
Col-0. All assembled transcript sequences for geneswith LoFmutations in
the eight accessions, and annotated gene sequences of KBS-Mac-74,
Landsbergerecta, andCol-0genesequenceswerealignedusingMUSCLE
v3.8.31 (Edgar, 2004). All LoFmutations were manually checked based on
the aligned sequences. Stop-gain and frameshift variants of the 10 ac-
cessions were used to assess the curve of accumulated false positive rate
(all false positive LoF variants found in each accession combined). Splice
site variants were not used in the analysis of accumulated false positive
rate, because assembled transcripts of eight accessions were assembled
based on short reads, which are not robust enough to validate splice sites.
Nevertheless, the FDRs for splice sites in the two long reads assembled
genomes are similar or even lower than either stop-gain or frameshift. The
accumulated false positive LoF number, accumulated total LoF number
(the number of LoF variants with transcriptional or long reads data in each
accession), and accumulated false positive LoF ratio were calculated with
all probable accumulated groups.

LoF Polymorphism Variation

All parameterswere calculated using a 200-kbwindowsize and10-kb step
sizealong theCol-0 referencegenome.Thedensityofgeneswithstop-gain
variantswascalculatedbydividing thenumber of geneswith stop-gains by
the number of genes in each 200-kb window in the Col-0 reference ge-
nome. The same rationale was used to calculate the density of frameshift,
splice site, and total LoF variants (summed over all the three LoF variants).
Thepwas calculated based on the SNPmatrix of 1071 accessions in each
200-kb window. The guanine-cytosine content was calculated based on

the Col-0 genome in each 200-kb window. Exon number, CDS length, and
gene expression level were calculated for each gene based on the Col-0
genome in each 200-kb window. Gene expression levels in Col-0 were
obtained from a previous study (Kawakatsu and 1001 Genomes Con-
sortium et al., 2016). TE density was calculated as the number of TEs in
each 200-kb window in the Col-0 reference genome with TE annotations
downloaded from The Arabidopsis Information Resource (TAIR10).

Gene Family, Sequence, and Expression Analysis

Gene family analysiswas performed according to our previous study (Guo,
2013). GO term enrichment analysis was performed using agriGO (Tian
et al., 2017). All genes (5050) with candidate LoF variants were removed
from the non-LoF category in the GO analysis. PCR was performed to
obtain the LAZY1 upstream region (;1.5 kb), gene body, and downstream
regions (;0.5 kb) from Col-0, 3-2, and 29-8 (marked with an asterisk in
Supplemental Data Set 3) using Q5 polymerase (New England Biolabs).
Sequences were aligned using Lasergene Seqman (DNASTAR). Markers
used in the analysis of plants with large branch angles are listed in
Supplemental Data Sets 11 and 12. Primers used for the sequencing and
amplification are listed in Supplemental Data Set 15.

In total, 541 transcriptomes were available from the 1001 Genomes
Project (Supplemental Data Set 1; Kawakatsu and 1001 Genomes Con-
sortium et al., 2016), and 6675 genes with LoF variants whose mean ex-
pression levels (fragments per kilobase of exon per million fragments
mapped) were larger than 3 across 541 accessions were kept for sub-
sequent analysis (Meng et al., 2016). For each of the 6675 genes with LoF
variants, 541 alleles were divided into two groups: alleles with and without
LoF variants. The Wilcoxon sum test was used to evaluate the expression
data.AllP-valueswereadjusted formultiple testingbycomputing theirFDR
(Benjamini and Hochberg, 1995). Up- or downregulation was calculated
using themean expression data in the two groups (alleles with andwithout
LoF variants).

Genome-Wide Association Study

GWASwasperformedbyusing thecompressedmixed linearmodel (Zhang
et al., 2010) from theGAPITRpackage (Lipka et al., 2012) to associate data
for 20 environmental variables (latitude and 19 climate variables from the
WORLDCLIM database; Supplemental Data Set 5) with the 14,270 LoF
variants (MAF > 0.5%) of the 1071 accessions. Principal components (Q
matrix) and a kinship matrix (K matrix) were included to account for
population structure. Bayesian information criterion–based model selec-
tion as implemented in the GAPIT R package was used to find the optimal
number of principal components for each trait. The whole-genome sig-
nificance cutoff for associations was set to 0.01/total LoF variants [2log10

(p) = 6.12], p indicates p-value estimated by F-test for the association
between each SNP and phenotype value. For the GWAS permutation
analysis, the SNP matrix that contained 14,270 SNPs (MAF > 0.5%) was
randomly resampled 1000 times for those SNPs in the coding region of
protein-coding genes across the whole genome.Whether the actual value
is larger than the permutation results was tested using the one-sample
Wilcoxon signed rank test. GWAS analysis was also performed using
3822 stop-gain variants (MAF >0.5%) with these 20 environmental vari-
ables within the 1071 accessions. The significance cutoff in this analysis
was set to 0.05/total LoF variants [2log10 (p) = 4.88].

Ecological Niche Modeling Analysis

MaxEnt 3.3.3 was used to perform ecological niche modeling via max-
imum entropy with default settings (Phillips et al., 2006) to examine eco-
logical divergence between the two KUK groups (excluding redundant
and unreliable records) combined with data for 19 ecological variables
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downloaded from the WORLDCLIM database (Phillips and Dudik, 2008).
For the analysis, default settings of MaxEnt 3.3.3 were used. Ten of the
environmental variables with pairwise Pearson correlation coefficients of
20.7 < r < 0.7 were selected for final analysis (marked red in Supplemental
Data Set 5) with outputs set at 25% for testing and 75% for training the
model. The model accuracy was assessed based on the area under the
curve,with scoresbetween0.7 and0.9 indicating gooddiscrimination, and
area under the curve > 0.9 indicating reliable discrimination (Swets, 1988).
The range of suitable distributions was drawn using DIVA-GIS v7.5
(Hijmans et al., 2005).

ENMTools 1.3 (Warren et al., 2010) was used to perform niche identity
test by calculating Warren’s I, which ranged from 0 (no niche overlap) to 1
(identical niches), with 100 pseudo-replicates, between the LoF and non-
LoF KUK groups using the 10 environmental variables that were used in
MaxEnt 3.3.3. The Io was calculated using the ecological niche overlap
function implemented in ENMTools 1.3.

Measurements of Root Traits

Measurements were performed using 3.5-d-old seedlings grown on 1 3

Murashige and Skoog medium with 1% Suc under a 16-h-light/8-h-dark
cycle at 22°C (120 mmol m22 s21 light intensity). The photon flux density
was120mmolm22 s21 (five coldwhite fluorescent Philips T528W/840 light
bulbs and one warm white and yellow Philips T5 28W/830 light bulb). For
root lengthmeasurement, rootswere imagedusingcharge-coupleddevice
scanners and measured using Fiji software (Schindelin et al., 2012). More
than 15 seedlings were measured per line. To measure cellular traits, each
seedlingwas treatedwith 10mg/mLpropidium iodide solution for 2min and
washed with water twice. Each root tip was subsequently imaged under
a Zeiss 710 confocal microscope with a 203 objective. Both meristematic
zone and mature cell sizes were measured using Fiji software (Schindelin
et al., 2012). The length of the meristematic zone of each seedling was
determinedbymeasuring thedistance fromthequiescent center to the root
cortexcell below thefirst cortexcell thatwas twiceas longas thecell below.
The values for the left and right side of root longitudinal sections were
averaged to obtain the length of the meristematic zone. The length of
mature cells of each seedling was determined by averaging cell lengths of
three mature cortex cells in the zone in which the xylem strands became
visible. Five seedlings were measured per accession.

Mapping-by-Sequencing of Branch Angle

Plants of three natural accessions (Col-0, 3-2, and 29-8), and F2 pop-
ulations, were grown under long day conditions (16-h-light/8-h-dark,
120mmolm22s21 light intensity) at 20°C.When the lateral shootwas longer
than 5 cm, a protractor was used tomeasure the angle between the lateral
branch and the main stem. The branch angles were measured in 2016
and 2017.

DNAwas extracted from pooled leaves of 57 plants with a large branch
angle (>85°) selected from a group of 684 F2 plants of Col-0 3 29-8 with
a large branch angle (>85°). The pooledDNAsamplewas sequenced using
Illumina HiSeq X Ten system (150-bp pair-end reads, insert size of 450 bp).
In total, 41,757,716 total reads (;34.5-fold coverage) were mapped to the
Col-0 genome (TAIR10), and SNPs were called using SHORE. The SNPs
from pooled populations were used as markers to identify regions with an
excess of homozygous alleles across the genome using SHOREmap
(Schneeberger et al., 2009).

Statistical Analysis

Statistical analysis was performed using R (http://www.r-project.org/).
Population structure–corrected ANOVAs were performed according to
a previous study (Li et al., 2014). Significance was calculated by ANOVA

with phenotypic differences between haplotypes on the residuals after
subtracting the best linear unbiased predictors. Efficient mixed-model as-
sociationexpeditedwasused toestimate thebest linear unbiasedpredictors
with a kinship matrix calculated using an SNP matrix available based on
mixed linear models from the 1001 Genomes Project (Kang et al., 2010).

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL li-
braries under the following accession numbers: the LAZY1 (AT5G14090)
sequences ofCol-0, 3-2, and29-8 under accession numbersMF621897 to
MF621899. Other genes studied in this article can be found in The Ara-
bidopsis Information Resource database (https://www.arabidopsis.org)
under the following accession numbers: CRK36 (AT4G04490), KUK
(AT1G60370), and PRR5 (AT5G24470). The genome data for the pooled
Col-0329-8F2populationshavebeendeposited in theNationalCenter for
Biotechnology Information Sequence Read Archive under accession
number SRR5947598.

Supplemental Data

Supplemental Figure 1. Accumulated false positive LoF rate.

Supplemental Figure 2. Variation in TE density (TE), nucleotide
diversity (p), and the density of genes with stop-gain (Stop-gain),
frameshift (Frameshift), splice site (Splice), and LoF variants across the
chromosomes.

Supplemental Figure 3. Distribution of stop-gain and frameshift
variants at gene positions in all 1071 accessions, distributed in
5% bins.

Supplemental Figure 4. Gene families with multiple genes have more
LoF variants than gene families with one or two genes based on amino
acid sequence similarity in the Col-0 genome.

Supplemental Figure 5. The number of observed LoF variants based
on GWAS compared with the distribution from permutations based on
non-LoF.

Supplemental Figure 6. Histogram distributions for each bioclimatic
trait used for GWAS.

Supplemental Figure 7. The narrow sense of estimated heritability in
GWAS analysis.

Supplemental Figure 8. Genome-wide association study of LoF
variants and 10 climate parameters.

Supplemental Figure 9. Expression level variation of 30,000 random
selected non-LoF SNP variants in 541 accessions based on RNA-
seq data.

Supplemental Figure 10. Genome-wide association study of stop-
gain variants and 10 climate parameters.

Supplemental Figure 11. Examples of the origin of LoF variants in the
KUK gene based on 129 accessions with phenotypic data.

Supplemental Figure 12. Geographic distribution of LoF variants for
two genes in 1071 accessions.

Supplemental Figure 13. Cellular root trait variation for KUK alleles
with and without LoF.

Supplemental Figure 14. Alignment of Col-0, 3-2, and 29-8 LAZY1
amino acid sequences.

Supplemental Figure 15. The results of niche identity tests (I) for
niches between non-LoF and LoF groups.

Supplemental Data Set 1. Summary of the 893 samples used in this
study from the 1001 Genomes Project.

1022 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.r-project.org/
https://www.arabidopsis.org
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1


Supplemental Data Set 2. Summary of the 61 samples from African
sequenced genomes.

Supplemental Data Set 3. Summary of the 117 samples from our
genome project used in this study.

Supplemental Data Set 4. LoF mutation validation based on 10
assembled genomes.

Supplemental Data Set 5. Environmental variables used in GWAS
and ecological niche modeling.

Supplemental Data Set 6. LoF variants with significant signals in GWAS.

Supplemental Data Set 7. Stop-gain variants with significant signals
in GWAS.

Supplemental Data Set 8. The 129 samples used in the root length
analysis from a previous study.

Supplemental Data Set 9. Cellular root trait measurements for 10
individuals per accession.

Supplemental Data Set 10. The 812 samples used in the flowering
time analysis.

Supplemental Data Set 11. Markers used in the analysis of plants
with large branch angles of the F2 generation of Col-0 3 29-8.

Supplemental Data Set 12. Markers used in the analysis of plants
with large branch angles of the F2 generation of 3-2 3 29-8.

Supplemental Data Set 13. 530 Genes located in the 48 regions
under positive selection in the Yangtze River basin population.

Supplemental Data Set 14. Genes with LoF variants located within
the regions under positive selection in the Yangtze River population.

Supplemental Data Set 15. Primers used for the sequencing and
amplification of LAZY1.

Supplemental File. ANOVA/test tables.

ACKNOWLEDGMENTS

We thankMagnus Nordborg and Huijing Ma for helpful suggestions about
the study and members of the Guo lab for suggestions and comments
about this work. Especially, we thank the anonymous reviewers for their
help improving thearticle. Thisworkwassupportedby theStrategicPriority
Research Program of the Chinese Academy of Sciences (XDB27010305);
the Innovative Academy of Seed Design, Chinese Academy of Sciences;
the National Natural Science Foundation of China (91731306 to Y.-L.G.);
and start-up funds from the Salk Institute for Biological Research (toW.B.).

AUTHOR CONTRIBUTIONS

Y.-L.G. conceived the study. Y.-C.X., J.-F.C., Y.-P.Z., Q.W., Y.E.Z., and
Y.-L.G. analyzed the data. X.-M.N. and X.-X.L. conducted LAZY1 experi-
ments;W.H.andW.B.measuredcellular traits fornatural accessions.Y.-C.X.
and Y.-L.G. wrote the article with contributions from all authors.

Received October 18, 2018; revised February 25, 2019; accepted March
17, 2019; published March 18, 2019.

REFERENCES

1001 Genomes Consortium (2016). 1,135 Genomes reveal the global
pattern of polymorphism in Arabidopsis thaliana. Cell 166: 481–491.

Abdel-Samad, R., et al. (2011) MiniSOX9, a dominant-negative vari-
ant in colon cancer cells. Oncogene 30: 2493–2503.

Albalat, R., and Cañestro, C. (2016). Evolution by gene loss. Nat.
Rev. Genet. 17: 379–391.

Amrad, A., Moser, M., Mandel, T., de Vries, M., Schuurink, R.C.,
Freitas, L., and Kuhlemeier, C. (2016). Gain and loss of floral scent
production through changes in structural genes during pollinator-
mediated speciation. Curr. Biol. 26: 3303–3312.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false dis-
covery rate: A practical and powerful approach to multiple testing.
J. R. Stat. Soc. B 57: 289–300.

Birchler, J.A., and Veitia, R.A. (2007). The gene balance hypothesis:
From classical genetics to modern genomics. Plant Cell 19:
395–402.

Birchler, J.A., and Veitia, R.A. (2012). Gene balance hypothesis:
Connecting issues of dosage sensitivity across biological dis-
ciplines. Proc. Natl. Acad. Sci. USA 109: 14746–14753.

Carvunis, A.R., et al. (2012) Proto-genes and de novo gene birth.
Nature 487: 370–374.

Chen, S., Zhang, Y.E., and Long, M. (2010). New genes in Drosophila
quickly become essential. Science 330: 1682–1685.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R.,
Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M.,
McKenna, A., and Fennell, T.J., et al. (2011). A framework for vari-
ation discovery and genotyping using next-generation DNA se-
quencing data. Nat. Genet. 43: 491–498.

Derrien, T., Estellé, J., Marco Sola, S., Knowles, D.G., Raineri, E.,
Guigó, R., and Ribeca, P. (2012). Fast computation and applica-
tions of genome mappability. PLoS One 7: e30377.

de Valles-Ibáñez, G., Hernandez-Rodriguez, J., Prado-Martinez,
J., Luisi, P., Marquès-Bonet, T., and Casals, F. (2016). Genetic
load of loss-of-function polymorphic variants in great apes. Ge-
nome Biol. Evol. 8: 871–877.

Durvasula, A., Fulgione, A., Gutaker, R.M., Alacakaptan, S.I.,
Flood, P.J., Neto, C., Tsuchimatsu, T., Burbano, H.A., Picó,
F.X., Alonso-Blanco, C., and Hancock, A.M. (2017). African ge-
nomes illuminate the early history and transition to selfing in Ara-
bidopsis thaliana. Proc. Natl. Acad. Sci. USA 114: 5213–5218.

Edgar, R.C. (2004). MUSCLE: A multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics 5: 113.

Edger, P.P., and Pires, J.C. (2009). Gene and genome duplications:
The impact of dosage-sensitivity on the fate of nuclear genes.
Chromosome Res. 17: 699–717.

Gan, X., et al. (2011) Multiple reference genomes and transcriptomes
for Arabidopsis thaliana. Nature 477: 419–423.

Goldman-Huertas, B., Mitchell, R.F., Lapoint, R.T., Faucher, C.P.,
Hildebrand, J.G., and Whiteman, N.K. (2015). Evolution of her-
bivory in Drosophilidae linked to loss of behaviors, antennal re-
sponses, odorant receptors, and ancestral diet. Proc. Natl. Acad.
Sci. USA 112: 3026–3031.

Green, C., Willoughby, J., Study, D., and Balasubramanian, M.
(2017). De novo SETD5 loss-of-function variant as a cause for in-
tellectual disability in a 10-year old boy with an aberrant blind
ending bronchus. Am. J. Med. Genet. A. 173: 3165–3171.

Greenberg, A.J., Moran, J.R., Coyne, J.A., and Wu, C.I. (2003).
Ecological adaptation during incipient speciation revealed by pre-
cise gene replacement. Science 302: 1754–1757.

Gujas, B., Alonso-Blanco, C., and Hardtke, C.S. (2012). Natural
Arabidopsis brx loss-of-function alleles confer root adaptation to
acidic soil. Curr. Biol. 22: 1962–1968.

Guo, Y.L. (2013). Gene family evolution in green plants with emphasis
on the origination and evolution of Arabidopsis thaliana genes. Plant
J. 73: 941–951.

Adaptation via Loss-of-Function Mutations 1023

http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00791/DC1
http://dx.doi.org/10.13039/501100001809


Hao, Y., Washburn, J.D., Rosenthal, J., Nielsen, B., Lyons, E.,
Edger, P.P., Pires, J.C., and Conant, G.C. (2018). Patterns of
population variation in two paleopolyploid eudicot lineages suggest
that dosage-based selection on homeologs is long-lived. Genome
Biol. Evol. 10: 999–1011.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis,
A. (2005). Very high resolution interpolated climate surfaces for
global land areas. Int. J. Climatol. 25: 1965–1978.

Hoballah, M.E., Gübitz, T., Stuurman, J., Broger, L., Barone, M.,
Mandel, T., Dell’Olivo, A., Arnold, M., and Kuhlemeier, C. (2007).
Single gene-mediated shift in pollinator attraction in Petunia. Plant
Cell 19: 779–790.

Hodgson, J.A., Pickrell, J.K., Pearson, L.N., Quillen, E.E., Prista, A.,
Rocha, J., Soodyall, H., Shriver, M.D., and Perry, G.H. (2014).
Natural selection for the Duffy-null allele in the recently admixed
people of Madagascar. Proc. Biol. Sci. 281: 20140930.

Hottes, A.K., Freddolino, P.L., Khare, A., Donnell, Z.N., Liu, J.C.,
and Tavazoie, S. (2013). Bacterial adaptation through loss of
function. PLoS Genet. 9: e1003617.

Hou, J., et al. (2018) Global impacts of chromosomal imbalance on
gene expression in Arabidopsis and other taxa. Proc. Natl. Acad.
Sci. USA 115: E11321–E11330.

Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y.,
Freimer, N.B., Sabatti, C., and Eskin, E. (2010). Variance com-
ponent model to account for sample structure in genome-wide
association studies. Nat. Genet. 42: 348–354.

Kawakatsu, T., et al.; 1001 Genomes Consortium (2016). Epi-
genomic diversity in a global collection of Arabidopsis thaliana ac-
cessions. Cell 166: 492–505.

Kremling, K.A.G., Chen, S.Y., Su, M.H., Lepak, N.K., Romay, M.C.,
Swarts, K.L., Lu, F., Lorant, A., Bradbury, P.J., and Buckler, E.S.
(2018). Dysregulation of expression correlates with rare-allele bur-
den and fitness loss in maize. Nature 555: 520–523.

Lek, M., et al.; Exome Aggregation Consortium (2016). Analysis of
protein-coding genetic variation in 60,706 humans. Nature 536: 285–291.

Li, P., Filiault, D., Box, M.S., Kerdaffrec, E., van Oosterhout, C.,
Wilczek, A.M., Schmitt, J., McMullan, M., Bergelson, J.,
Nordborg, M., and Dean, C. (2014). Multiple FLC haplotypes de-
fined by independent cis-regulatory variation underpin life history
diversity in Arabidopsis thaliana. Genes Dev. 28: 1635–1640.

Li, Z.W., Chen, X., Wu, Q., Hagmann, J., Han, T.S., Zou, Y.P., Ge, S.,
and Guo, Y.L. (2016). On the origin of de novo genes in Arabidopsis
thaliana populations. Genome Biol. Evol. 8: 2190–2202.

Lipka, A.E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P.J.,
Gore, M.A., Buckler, E.S., and Zhang, Z. (2012). GAPIT: Genome
association and prediction integrated tool. Bioinformatics 28:
2397–2399.

MacArthur, D.G., et al.; 1000 Genomes Project Consortium (2012).
A systematic survey of loss-of-function variants in human protein-
coding genes. Science 335: 823–828.

Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. (2012). The
GEM mapper: Fast, accurate and versatile alignment by filtration.
Nat. Methods 9: 1185–1188.

McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., and
Cunningham, F. (2010). Deriving the consequences of genomic
variants with the Ensembl API and SNP Effect Predictor. Bio-
informatics 26: 2069–2070.

McLysaght, A., and Guerzoni, D. (2015). New genes from non-coding
sequence: The role of de novo protein-coding genes in eukaryotic
evolutionary innovation. Philos. Trans. R. Soc. Lond. B Biol. Sci.
370: 20140332.

Meijón, M., Satbhai, S.B., Tsuchimatsu, T., and Busch, W. (2014).
Genome-wide association study using cellular traits identifies a new

regulator of root development in Arabidopsis. Nat. Genet. 46:
77–81.

Meinke, D., Muralla, R., Sweeney, C., and Dickerman, A. (2008).
Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci.
13: 483–491.

Meng, D., Dubin, M., Zhang, P., Osborne, E.J., Stegle, O., Clark, R.M.,
and Nordborg, M. (2016). Limited contribution of DNA methylation
variation to expression regulation in Arabidopsis thaliana. PLoS Genet.
12: e1006141.

Michael, T.P., Jupe, F., Bemm, F., Motley, S.T., Sandoval, J.P.,
Lanz, C., Loudet, O., Weigel, D., and Ecker, J.R. (2018). High
contiguity Arabidopsis thaliana genome assembly with a single
nanopore flow cell. Nat. Commun. 9: 541.

Nakamichi, N., Takao, S., Kudo, T., Kiba, T., Wang, Y., Kinoshita,
T., and Sakakibara, H. (2016). Improvement of Arabidopsis bio-
mass and cold, drought and salinity stress tolerance by modified
circadian clock-associated PSEUDO-RESPONSE REGULATORs.
Plant Cell Physiol. 57: 1085–1097.

Narasimhan, V.M., et al. (2016) Health and population effects of rare
gene knockouts in adult humans with related parents. Science 352:
474–477.

Olson, M.V. (1999). When less is more: Gene loss as an engine of
evolutionary change. Am. J. Hum. Genet. 64: 18–23.

Palmieri, N., Kosiol, C., and Schlötterer, C. (2014). The life cycle of
Drosophila orphan genes. eLife 3: e01311.

Phillips, S.J., and Dudik, M. (2008). Modeling of species distributions
with Maxent: New extensions and a comprehensive evaluation.
Ecography 31: 161–175.

Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). Maximum
entropy modeling of species geographic distributions. Ecol. Modell.
190: 231–259.

Prachumwat, A., and Li, W.H. (2008). Gene number expansion and
contraction in vertebrate genomes with respect to invertebrate
genomes. Genome Res. 18: 221–232.

Prieto-Godino, L.L., Rytz, R., Bargeton, B., Abuin, L., Arguello, J.R.,
Peraro, M.D., and Benton, R. (2016). Olfactory receptor pseudo-
pseudogenes. Nature 539: 93–97.

Saleheen, D., et al. (2017) Human knockouts and phenotypic analy-
sis in a cohort with a high rate of consanguinity. Nature 544: 235–
239.

Sas, C., Müller, F., Kappel, C., Kent, T.V., Wright, S.I., Hilker, M.,
and Lenhard, M. (2016). Repeated inactivation of the first com-
mitted enzyme underlies the loss of benzaldehyde emission after
the selfing transition in Capsella. Curr. Biol. 26: 3313–3319.

Schild, L., Canessa, C.M., Shimkets, R.A., Gautschi, I., Lifton, R.P.,
and Rossier, B.C. (1995). A mutation in the epithelial sodium
channel causing Liddle disease increases channel activity in the
Xenopus laevis oocyte expression system. Proc. Natl. Acad. Sci.
USA 92: 5699–5703.

Schindelin, J., et al. (2012) Fiji: An open-source platform for
biological-image analysis. Nat. Methods 9: 676–682.

Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A.H.,
Nielsen, K.L., Jørgensen, J.E., Weigel, D., and Andersen, S.U.
(2009). SHOREmap: Simultaneous mapping and mutation identifi-
cation by deep sequencing. Nat. Methods 6: 550–551.

Slater, G.S., and Birney, E. (2005). Automated generation of heu-
ristics for biological sequence comparison. BMC Bioinformatics 6:
31.

Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A
QTL for rice grain width and weight encodes a previously unknown
RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630.

Swets, J.A. (1988). Measuring the accuracy of diagnostic systems.
Science 240: 1285–1293.

1024 The Plant Cell



Tanaka, H., Osakabe, Y., Katsura, S., Mizuno, S., Maruyama, K.,
Kusakabe, K., Mizoi, J., Shinozaki, K., and Yamaguchi-
Shinozaki, K. (2012). Abiotic stress-inducible receptor-like kina-
ses negatively control ABA signaling in Arabidopsis. Plant J. 70:
599–613.

Tang, C., Toomajian, C., Sherman-Broyles, S., Plagnol, V., Guo, Y.L.,
Hu, T.T., Clark, R.M., Nasrallah, J.B., Weigel, D., and Nordborg, M.
(2007). The evolution of selfing in Arabidopsis thaliana. Science 317:
1070–1072.

Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., and Su, Z.
(2017). agriGO v2.0: A GO analysis toolkit for the agricultural
community, 2017 update. Nucleic Acids Res. 45): W122–W129.

Wagner, A. (2005). Distributed robustness versus redundancy as
causes of mutational robustness. BioEssays 27: 176–188.

Warren, D.L., Glor, R.E., and Turelli, M. (2010). ENMTools: A toolbox
for comparative studies of environmental niche models. Ecography
33: 607–611.

Will, J.L., Kim, H.S., Clarke, J., Painter, J.C., Fay, J.C., and Gasch,
A.P. (2010). Incipient balancing selection through adaptive loss of
aquaporins in natural Saccharomyces cerevisiae populations. PLoS
Genet. 6: e1000893.

Wu, W., et al. (2017) A single-nucleotide polymorphism causes
smaller grain size and loss of seed shattering during African rice
domestication. Nat. Plants 3: 17064.

Xie, J., et al. (1998) Activating Smoothened mutations in sporadic
basal-cell carcinoma. Nature 391: 90–92.

Yang, H., He, B.Z., Ma, H., Tsaur, S.C., Ma, C., Wu, Y., Ting, C.T.,
and Zhang, Y.E. (2015). Expression profile and gene age jointly
shaped the genome-wide distribution of premature termination
codons in a Drosophila melanogaster population. Mol. Biol. Evol.
32: 216–228.

Yoshihara, T., Spalding, E.P., and Iino, M. (2013). AtLAZY1 is a sig-
naling component required for gravitropism of the Arabidopsis
thaliana inflorescence. Plant J. 74: 267–279.

Zapata, L., Ding, J., Willing, E.M., Hartwig, B., Bezdan, D., Jiao, W.B.,
Patel, V., Velikkakam James, G., Koornneef, M., Ossowski, S.,
and Schneeberger, K. (2016). Chromosome-level assembly of
Arabidopsis thaliana Ler reveals the extent of translocation and in-
version polymorphisms. Proc. Natl. Acad. Sci. USA 113: E4052–
E4060.

Zhang, Z., Ersoz, E., Lai, C.Q., Todhunter, R.J., Tiwari, H.K., Gore,
M.A., Bradbury, P.J., Yu, J., Arnett, D.K., Ordovas, J.M., and
Buckler, E.S. (2010). Mixed linear model approach adapted for
genome-wide association studies. Nat. Genet. 42: 355–360.

Zhao, L., Saelao, P., Jones, C.D., and Begun, D.J. (2014). Origin and
spread of de novo genes in Drosophila melanogaster populations.
Science 343: 769–772.

Zou, Y.P., (2017). Adaptation of Arabidopsis thaliana to the Yangtze
River basin. Genome Biol. 18: 239.

Zufall, R.A., and Rausher, M.D. (2004). Genetic changes associated
with floral adaptation restrict future evolutionary potential. Nature
428: 847–850.

Adaptation via Loss-of-Function Mutations 1025



DOI 10.1105/tpc.18.00791
; originally published online March 18, 2019; 2019;31;1012-1025Plant Cell

E. Zhang, Wolfgang Busch and Ya-Long Guo
Yong-Chao Xu, Xiao-Min Niu, Xin-Xin Li, Wenrong He, Jia-Fu Chen, Yu-Pan Zou, Qiong Wu, Yong

Protein-Coding Genes
Adaptation and Phenotypic Diversification in Arabidopsis through Loss-of-Function Mutations in

 
This information is current as of January 5, 2020

 

 Supplemental Data
 /content/suppl/2019/03/18/tpc.18.00791.DC2.html
 /content/suppl/2019/03/18/tpc.18.00791.DC1.html

References
 /content/31/5/1012.full.html#ref-list-1

This article cites 73 articles, 17 of which can be accessed free at:

Permissions  https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X

eTOCs
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for eTOCs at: 

CiteTrack Alerts
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for CiteTrack Alerts at:

Subscription Information
 http://www.aspb.org/publications/subscriptions.cfm

 is available at:Plant Physiology and The Plant CellSubscription Information for 

ADVANCING THE SCIENCE OF PLANT BIOLOGY 
© American Society of Plant Biologists

https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
http://www.plantcell.org/cgi/alerts/ctmain
http://www.plantcell.org/cgi/alerts/ctmain
http://www.aspb.org/publications/subscriptions.cfm

