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ABSTRACT

Pluripotent stem cells (PSCs) can immortally self-renew
in culture with a high proliferation rate, and they pos-
sess unique metabolic characteristics that facilitate
pluripotency regulation. Here, we review recent pro-
gress in understanding the mechanisms that link cellu-
lar metabolism and homeostasis to pluripotency
regulation, with particular emphasis on pathways
involving amino acid metabolism, lipid metabolism, the
ubiquitin-proteasome system and autophagy. Metabo-
lism of amino acids and lipids is tightly coupled to epi-
genetic modification, organelle remodeling and cell
signaling pathways for pluripotency regulation. PSCs
harness enhanced proteasome and autophagy activity
to meet the material and energy requirements for cellu-
lar homeostasis. These regulatory events reflect a fine
balance between the intrinsic cellular requirements and
the extrinsic environment. A more complete under-
standing of this balance will pave new ways to manip-
ulate PSC fate.

KEYWORDS autophagy, amino acid metabolism, lipid
metabolism, pluripotent stem cell (PSC), ubiquitin-
proteasome system (UPS)

INTRODUCTION

Pluripotent stem cells (PSCs), including embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs),
have the capacity to self-renew and differentiate into all cell
types of our bodies (Liu et al., 2014; Martello and Smith,

2014). These properties depend on a series of pluripotency
genes that are highly expressed and coordinately regulated
in PSCs (Boyer et al., 2005; Orkin and Hochedlinger, 2011).
At the same time, PSCs have developed unique cell cycle
characteristics and a high proliferation rate to match the
activity of pluripotency gene networks (Wang et al., 2008;
Singh and Dalton, 2009). Emerging evidence shows that
metabolic pathways are mediators of crosstalk between
cellular degradation, cellular recycling, epigenetic regulation,
signal transduction and stem cell fate determination (Folmes
et al., 2012; Buck et al., 2016; Gascon et al., 2016; Zhang
et al., 2016b; Zheng et al., 2016).

Cellular metabolism, including anabolism and catabolism,
involves multiple complex biochemical processes, such as
amino acid metabolism, nucleic acid metabolism, fatty acid
metabolism, glycolysis, oxidative phosphorylation, the ubiq-
uitin-proteasome degradation system, autophagy, and so on
(Naujokat and Saric, 2007; Vessoni et al., 2012; Kilberg
et al., 2016; Wang et al., 2017). Metabolism is not only
involved in energy production and degradation and biosyn-
thesis of cellular components, but also takes part in signal
transduction for genetic and epigenetic regulation through its
intermediate metabolites (Zhang et al., 2018). Cells utilize
anabolism to produce biological macromolecules and orga-
nelles. Catabolism is responsible for degrading and recycling
both normal and harmful substances and dysfunctional
organelles by breaking them down into small molecules
(Mathieu and Ruohola-Baker, 2017). Anabolism and cata-
bolism are tightly coordinated and essential for maintaining
cell proliferation and function (Zhang et al., 2014; Kaur and
Debnath, 2015).

Existing studies have proposed that PSCs mainly rely on
glycolysis for energy generation, while somatic cells prefer
oxidative phosphorylation for ATP production; this issue has
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been vigorously discussed by several excellent reviews
(Folmes et al., 2012; Zhang et al., 2012; Xu et al., 2013;
Mathieu and Ruohola-Baker, 2017; Zhang et al., 2018). Here
we mainly summarize recent research progress in under-
standing how pluripotency is regulated by metabolic path-
ways involving amino acids, fatty acids, the ubiquitin-
proteasome system and autophagy.

AMINO ACID METABOLISM AND PLURIPOTENCY

The important role of amino acids in the later stages of preim-
plantation embryo development was firstly noted by Gwatkin
while he was formulating mouse embryo culture medium. He
initially found that adding amino acids into the culture medium
induced the attachment and outgrowth of mouse blastocysts
(Gwatkin, 1966). Following these observations, Spindle and
Pedersen demonstrated that adding amino acids into culture
medium not only improved attachment and outgrowth of blas-
tocysts but also increased embryo hatching rate (Spindle and
Pedersen, 1973). It was later found that preimplantation
embryos have transporters for specific amino acids and can
maintain an endogenous pool of amino acids (Schultz et al.,
1981; Sellens et al., 1981; Van Winkle, 2001).

In cellular biosynthetic pathways, amino acids are
essential nutrients that contribute directly to protein synthe-
sis as well as providing compounds for chemical modifica-
tions. Although the amino acid metabolism and protein
synthesis pathways are well defined in somatic cells, rela-
tively little is known about the contribution of amino acid
metabolism to pluripotency regulation in PSCs. Emerging
studies provide evidence that amino acids regulate pluripo-
tency by providing chemical groups for chromatin modifica-
tions (Kilberg et al., 2016; D’Aniello et al., 2019).

Threonine metabolism and pluripotency

Threonine is an essential amino acid, which can be catab-
olized by threonine dehydrogenase (TDH) to glycine and
acetyl-coenzyme A (acetyl-CoA). Glycine can be catabolized
by glycine decarboxylase (Gldc) to generate folate interme-
diates to fuel one-carbon metabolism. The folate intermedi-
ates fuel nucleotide synthesis and remethylation of
homocysteine to form methionine (Met) and S-adenosyl-
methionine (SAM). SAM serves as a universal methyl donor
for DNA and histone methylation reactions. Acetyl-CoA
feeds the tricarboxylic acid (TCA) cycle as well as serving as
the donor of acetyl groups (Fig. 1).

Mouse ESCs (mESCs) exist in a high-flux metabolic state
that depends on threonine catabolism. By depriving mESCs
of each of the 20 amino acids individually, Wang et al. have
shown that threonine catabolism is required for mESC
identity maintenance (Wang et al., 2009). The underlying
mechanism was revealed by Shyh-Chang et al.: threonine
maintains mESC pluripotency by providing SAM for
trimethylation of histone H3 lysine 4 (H3K4me3) (Shyh-
Chang et al., 2013).

In addition, Alexander et al. have shown that mESCs
rapidly discontinue DNA synthesis, arrest cell division and
eventually die after threonine deprivation (Alexander et al.,
2011). When threonine is withdrawn for 1 to 4 days, the
expression of pluripotency marker genes decreases,
accompanied by increased expression of trophoectodermal
and mesodermal marker genes. Refeeding threonine one
day after deprivation leads to increased expression of cyclin
D1 and E in mESCs. They proposed that threonine regulates
mESC proliferation by stimulating G1/S transition through
lipid raft/caveolae-dependent PI3K/Akt, MAPKs, mTOR,
p70S6K, and 4E-BP1 signaling pathways (Ryu and Han,
2011; Kilberg et al., 2016).

The enzyme L-threnonine-3-dehydrogenase (TDH) is
highly expressed in mESCs and is the first and rate-limiting
enzyme in the pathway that hydrolyzes threonine into glycine
and acetyl-CoA in mitochondria. High activity and expression
of TDH maintain a high SAM/SAH(S-adenosylhomocys-
teine) ratio in mESCs, which is tightly correlated with
H3K4me3 levels (Wang et al., 2009; Ang et al., 2011; Shyh-
Chang et al., 2013). During reprogramming, induction of
TDH enhances, whereas knockdown of TDH inhibits,
reprogramming efficiency (Han et al., 2013). TDH expres-
sion can be negatively regulated at the post-transcriptional
level by microRNA-9, and positively regulated by protein
arginine methyltransferase (PRMT5) (Han et al., 2013).

Methionine metabolism and pluripotency

Methionine metabolism is involved in epigenetic mainte-
nance, redox homeostasis and organism development (Tang
et al., 2017). Methionine can be directly converted to SAM in
a reaction catalyzed by methionine adenosyltransferase 2a
(MAT2a), which provides a threonine-independent route for
generating SAM. SIRT1, the most conserved mammalian
NAD+-dependent protein deacetylase, critically regulates the
activity of MAT2a in coordination withMyc. Deletion of SIRT1
in mESCs increased the hypersensitivity of the cells to
methionine restriction/depletion-induced differentiation and
apoptosis (Tang et al., 2017).

Unlike the situation in mESCs, absence of threonine does
not evidently affect the pluripotency of human ESCs
(hESCs), as the TDH gene is a non-functional pseudogene
in humans (Edgar, 2002). Instead, methionine directly pro-
duces SAM in hESCs. Depletion of methionine induces a
rapid decrease of intracellular SAM in hPSCs, resulting in
decreased global H3K4me3, activation of p53-p38 signaling,
reduction of NANOG expression, and thereafter differentia-
tion and apoptosis of hPSCs (Shiraki et al., 2014). Interest-
ingly, the precise level of SAM, which is restricted by a
nicotinamide N-methyltransferase (NNMT)-dependent SAM-
consuming pathway, is critical for maintaining the naïve state
of hESCs. NNMT consumes SAM to keep it at a low level to
preserve the naïve state of hESCs, while a high level of SAM
promotes the naïve-to-primed transition through H3K27me3
(Sperber et al., 2015).
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L-proline (L-Pro) and pluripotency

The intracellular concentration of L-Pro in mESCs is around
4-fold lower than in mESCs in the L-Pro-induced primed
state, and 10-fold lower than in mouse embryonic fibroblasts.
The cellular level of L-Pro in mESCs is strictly regulated by
the Gcn2-Eif2α-Atf4 amino acid starvation response (AAR)
pathway (D’Aniello et al., 2015). The low level of intracellular
L-Pro induces expression of Atf4 to enhance intracellular
synthesis of L-Pro through activation of Aldh18a1/Pycr1; this
maintains a naïve state of pluripotency that is less depen-
dent on exogenous L-Pro supplementation. Excessive sup-
plementation with L-Pro inactivates Gcn2-Eif2α-Atf4 AAR
and thus inhibits intracellular L-Pro synthesis, resulting in
mESC mesenchymal transition. This feedback regulatory
loop precisely maintains the appropriate intrinsic L-Pro level,
which restricts proliferation of tightly packed dome-like
mESC colonies and safeguards mESC identity (Fig. 1).

Differentiation of pluripotent cells within the mammalian
blastocyst starts with the formation of the primitive ectoderm,
or epiblast, from the inner cell mass (ICM). This early dif-
ferentiation step can be recaptured in vitro by culturing

mESCs in MEDII conditioned medium, which leads to for-
mation of primitive ectoderm-like cells. Supplementation with
L-Pro promotes, whereas depletion of L-Pro uptake inhibits,
the differentiation of mESCs toward primitive ectoderm
(Washington et al., 2010; Kilberg et al., 2016). In support of
this observation, another independent study identified that
L-Pro induces mESCs toward an epiblast-like stem cell
(EpiSCs) phenotype in a dose- and time- dependent manner.
This EpiSC phenotype induced by L-Pro can be reversed by
either withdrawal of L-Pro or addition of L-ascorbic acid (vi-
tamin C, Vc) (Casalino et al., 2011).

Following on from these studies, Comes et al. showed
that the phenotype remodeling in EpiSCs is reminiscent of a
change toward a mesenchymal-like state. They proposed
that L-Pro serves as a signaling molecule to promote mESC
differentiation by stimulation of the epithelial-to-mesenchy-
mal transition (Comes et al., 2013). Interestingly, this ESC-
to-mesenchymal transition is accompanied by a genome-
wide increase of DNA methylation and specific histone
modifications (H3K9me2/H3K9me3 and H3K36me3)
(Comes et al., 2013; D’Aniello et al., 2017). These changes
in histone modification can be reversed by either removal of
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L-Pro or treatment with Vc. Conversely, somatic cell repro-
gramming to iPSCs involves a mesenchymal-to-epithelial
transition, which can be promoted by Vc through the H3K36
demethylase Jhdm1a/1b (Wang et al., 2011). Thus, L-Pro
antagonizes Vc in terms of DNA methylation and chromatin
structure, which leads to opposing effects on pluripotency
regulation.

Glutamine/α-Ketoglutarate and pluripotency

In mESCs, glutamine can be catabolized to α-ketoglutarate
(α-KG) to support TCA cycle anaplerosis. α-KG is an
important metabolic intermediate that acts as a cofactor for
Jumonji domain-containing histone demethylases (JMDH)
and the ten-eleven translocation family of enzymes (TETs)
that are involved in DNA demethylation (Fig. 1). Glutamine
contributes to pluripotency by generating α-KG to regulate
cellular DNA/histone methylation states.

Naïve mESCs use both glucose and glutamine catabo-
lism to generate a high level of cellular α-KG, which con-
tributes to a low level of intracellular H3K27me3 and
increases TET-dependent DNA demethylation (Carey et al.,
2015). Direct manipulation of the intracellular α-KG level is
sufficient to change the levels of cellular H3K27me3 and
TET-dependent DNA demethylation, which are correlated
with pluripotency gene expression. Cellular α-KG levels can
be regulated by phosphoserine aminotransferase1 (Psat1),
which is an Oct4/Sox2/Nanog target protein. Decreased
expression of Psat1 in mESCs lowers the levels of DNA 5’-
hydroxymethylcytosine and H3K9me3, resulting in acceler-
ated differentiation of mESCs (Hwang et al., 2016).

FATTY ACID SYNTHESIS AND PLURIPOTENCY

Lipids serve as the predominant components of plasma and
organelle membranes, as secondary messengers for signal
transduction, and as an important source of energy. In a
search for new molecules that contribute to long-term hESC
self-renewal, Garcia-Gonzalo and Izpisua Belmonte identi-
fied that the lipids in lipid-rich albumin from a chemically-
defined medium stimulated hESC pluripotency (Garcia-
Gonzalo and Izpisua Belmonte, 2008). This provided the first
evidence to show that lipids contribute to pluripotency reg-
ulation. Using mass spectrometry-based metabolomics
analysis, Yanes et al. identified that unsaturated lipid levels
decreased upon mESC differentiation (Yanes et al., 2010).
Inhibition of the eicosanoid signaling pathway maintained the
levels of unsaturated fatty acids and improved pluripotency.
In accordance with these observation, Wang et al. demon-
strated that de novo synthesis of fatty acids, which is
mediated by the rate-limiting enzyme ACC1 (acetyl-Coen-
zyme A carboxylase alpha), is required for pluripotency
acquisition and maintenance (Wang et al., 2017). Activation
of ACC1 leads to decreased acetyl-CoA production and
increased cellular lipid generation, which promotes mito-
chondrial fission and cellular pluripotency (Fig. 2A). This

pathway is conserved in both human and mouse ESCs
(Wang et al., 2017). Conversely, Dunning et al. showed that
promoting fatty acid beta-oxidation by carnitine supplemen-
tation during in vitro culture of early mouse embryos
increased the blastocyst hatching rate and the ICM cell
number (Dunning et al., 2010). The reason for this discrep-
ancy is unclear. One possible interpretation is that the bal-
ance between fatty acid oxidation and fatty acid synthesis
maintains an appropriate cellular fatty acid level in ESCs that
facilitates pluripotency regulation.

By comprehensive metabolic flux analysis of hESCs cul-
tured either in mouse embryonic fibroblast (MEF)-condi-
tioned medium or essential 8 minimal medium (E8, no lipids),
Zhang et al. demonstrated that the lack of lipids in E8
medium promotes oxidative pentose phosphate pathway
(PPP) flux for NADPH synthesis, de novo lipogenesis and
reductive carboxylation, while simultaneously decreasing
mitochondrial respiration. Supplementation of E8 medium
with lipids resulted in decreased lipogenesis and increased
oxidative mitochondrial metabolism in hESCs (Zhang et al.,
2016a). Most recently, Cornacchia et al. demonstrated that
hESCs cultured in E8 medium captured a naïve-to-primed
intermediate state of pluripotency with de novo lipogenesis
and endogenous ERK inhibition that mimics in vivo regula-
tion during pre-implantation development (Fig. 2B) (Cor-
nacchia et al., 2019).

Together, these data indicate that de novo lipogenesis
and appropriate cellular levels of lipids play critical roles in
pluripotency regulation in both mouse and human PSCs. In
addition, these studies deliver supporting evidence that
mitochondrial respiration contributes to pluripotency main-
tenance, which challenges the traditional notion that mito-
chondrial function is dispensable for pluripotent stem cell
function.

THE UBIQUITIN-PROTEASOME SYSTEM
AND PLURIPOTENCY

Ubiquitination is a cascade enzymatic reaction that involves
covalent addition of ubiquitin (Ub) to target proteins (Fig. 3A).
The E1 Ub-activating enzyme activates Ub in an ATP-de-
pendent manner, and forms a thioester bond between a
cysteine in the enzyme and the carboxyl terminus of Ub.
Then, activated Ub is transferred to E2 (Ub carrier enzyme or
Ub-conjugating enzyme). Delivery of the Ub by E2 to the
target protein is dependent on the E3 Ub protein ligase. The
E3 enzyme is responsible for substrate recognition and for
promoting the elongation of Ub chains (Weissman, 2001).
Deubiquitinating enzymes (DUBs) are required to specifi-
cally disassemble ubiquitin chains, thus balancing ubiquiti-
nation and deubiquitination (Chandrasekaran et al., 2017).

The 26S/30S proteasome consists of the 20S core
structure (which contains the proteolytic active site) and 19S
cap structures (which regulate the activity of the holo-com-
plex 26S, single and 30S, double capped) (Finley, 2009).
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The proteasome has caspase-, trypsin-, and chymotrypsin-
like activity that degrades ubiquitin-labeled target proteins
into 2–24 amino acid peptides (Bedford et al., 2010; Dikic,
2017).

The ubiquitin-proteasome system (UPS) functions in a
variety of cellular processes including proliferation, differen-
tiation, apoptosis and senescence (Mayer, 2000). The car-
dinal role of ubiquitination is to generate poly-ubiquitinated
proteins that are recognized and degraded by the 26S pro-
teasome (Weissman, 2001).

Early studies have shown that ubiquitin ligases are
involved in degradation of pluripotency factors (Fig. 3B). For
example, Xu et al. demonstrated that WWP2, an E3 ubiquitin
(Ub)-protein ligase, interacts with the pluripotency protein
OCT4 and enhances its Ub modification in both mouse and
human ESCs (Xu et al., 2004; Xu et al., 2009). Accordingly,
disruption of WWP2-mediated OCT4 ubiquitination promotes
reprogramming of mouse embryonic fibroblasts (Li et al.,
2018). Interestingly, WWP2 specifically interacts with Set7-
methylated SOX2 and induces SOX2 ubiquitination and
degradation in mESCs, which can be antagonized by AKT1-
mediated phosphorylation at T118. AKT1 activity dominates
over Set7 to maintain SOX2 stability and pluripotency in
mESCs (Fang et al., 2014). In addition, the X-encoded E3
ubiquitin ligase RNF12 has been identified to mediate
degradation of REX1 in a dose-dependent manner in
mESCs, thereby contributing to X-chromosome inactivation
(Jonkers et al., 2009; Gontan et al., 2012). Furthermore,
Ddb1, a component of the CUL4-DDB1 E3 ligase complex,
was demonstrated to contribute to pluripotency regulation.
Deletion of DDB1 results in mESC differentiation (Gao et al.,
2015).

In addition to E3 ligases, the E2 ligase UBE2S (ubiquitin-
conjugating enzyme E2S) directly interacts with SOX2 at the
K123 residue to maintain a proper SOX2 protein level
through K11-linked polyubiquitination, thus reinforcing the
undifferentiated state of mESCs (Wang et al., 2016).

A high-throughput functional genetic screening study
using a cDNA-based random RNA interference library in
mESCs revealed that knockdown of ubiquitin increased the
formation of ESC colonies in the absence of LIF (Jian et al.,
2007). A more comprehensive study using UPS-targeted
RNAi screens identified that the DUBs PSMD14 and
USP9X; the E3 ligases RBX1, RFWD2, RNF12, UBR5, and
DDB1; and the putative E3 ligases TRIM28 and PHF5a
contribute to ESC self-renewal, whereas the E3 ligases
FBXW7, RNF152, RNF31, RNF8, SOCS3, and TOPORS;
the putative ligases RNF36 and TNFRSF25; and the ubiq-
uitin-like protein UBL5 regulate early ESC differentiation
(Buckley et al., 2012). The authors provided evidence to
show that, mechanistically, the E3 ligase FBXW7 acts as a
key regulator of ESC differentiation through regulation of
c-MYC stability. Silencing of Fbxw7 expression inhibited
ESC differentiation and enhanced cellular reprogramming
through stabilization of c-MYC. In contrast, the DUB
PSMD14 maintains mESC self-renewal by deubiquitination

and subsequent degradation of target proteins. Knockdown
of Psmd14 significantly inhibits mESC self-renewal and
pluripotency (Buckley et al., 2012). In support of these find-
ings, subsequent studies have shown that the DUB USP21
maintains mESC stemness via stabilization of NANOG (Jin
et al., 2016; Liu et al., 2016b; Kwon et al., 2017). A motif rich
in proline, glutamine, serine, and threonine from amino acids
47 to 72 in the N-terminus of NANOG was identified as the
target for degradation (Ramakrishna et al., 2011). In addition,
the prolyl isomerase PIN1 interacts with and stabilizes
NANOG by inhibiting NANOG ubiquitination, thus maintain-
ing pluripotency in both mouse and human ESCs (Moretto-
Zita et al., 2010).

In parallel with these findings, Szutorisz et al. have
demonstrated that proteasomes target transcription factors
and RNA polymerase II bound at tissue-specific gene
domains in mESCs to restrict permissive transcription and
maintain these genes in a poised state, facilitating the fol-
lowing differentiation initiations (Szutorisz et al., 2006).

Interestingly, Vilchez et al. have shown that hESCs exhibit
high proteasome activity, which is characterized by
increased levels of the 19S proteasome subunit PSMD11
and corresponding enhanced assembly of 26S/30S protea-
somes. The expression of PSMD11 is regulated by the
insulin/insulin-like growth factor-I (IGF-I)-responsive tran-
scription factor FOXO4 (Vilchez et al., 2012).

Together, these existing studies provide supporting evi-
dence that enhanced proteasome activity in ESCs is
essential for cellular proteostasis regulation and pluripotency
maintenance. On one hand, components of the UPS interact
with multiple pluripotency factors like OCT4, SOX2, NANOG,
c-MYC, and REX1 to fine-tune their cellular levels to meet
pluripotency requirements; on the other hand, the UPS
regulates the degradation of transcription factors and RNA
polymerase II bound to tissue-specific genes in ESCs to
maintain the pluripotent state of ESCs.

AUTOPHAGIC DEGRADATION
AND PLURIPOTENCY

Autophagy is a lysosome-dependent catabolic process, in
which cytosolic materials (including proteins, organelles, and
lipids) are sequestrated into double-membrane vesicles
(termed autophagosome) and delivered to lysosomes for
degradation (Klionsky and Emr, 2000). Autophagy recycles
damaged or superfluous cytoplasmic contents to maintain
cellular homeostasis. Increasing numbers of studies suggest
that autophagy plays important roles in regulating ESC cel-
lular homeostasis to maintain self-renewal and pluripotency
(Fig. 4).

Autophagy was first revealed to regulate cellular home-
ostasis in ESCs by Yoshimori’s group, who used Atg5-null
mESCs to study autophagy mechanisms. They found that
ATG5 is critical for autophagosome formation, and ATG5-
dependent autophagy accounts for the majority of protein
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degradation by lysosomes in mESCs (Mizushima et al.,
2001). Autophagic flux is maintained by a core molecular
machinery which is composed of autophagy sensor sys-
tems, the induction complex, and autophagosome formation
systems. mESCs possess a powerful autophagic infras-
tructure with enhanced expression of most of the core
autophagy machinery genes compared to somatic fibrob-
lasts (Liu et al., 2017). This substantial infrastructure, regu-
lated by the master transcriptional factor FOXO1, endows
mESCs with a high autophagic flux. Downregulation of
autophagic flux compromised mESC self-renewal and
pluripotency (Liu et al., 2017). Furthermore, deletion of the
autophagy regulator Atg3 in mESCs resulted in increased
accumulation of abnormal mitochondria and enhanced pro-
duction of reactive oxygen species (ROS), together with
decreased mitochondrial potential and ATP generation (Liu
et al., 2016a).

In the search for molecules that protect pluripotency in
mouse ESCs, Gu et al. identified EPG5, a eukaryotic-
specific autophagy regulator which mediates autophago-
some/lysosome fusion, as a guardian of ESC stemness.
Deubiquitination of EPG5 by USP8 at Lys 252 consolidates
the interaction between EPG5 and LC3 and thus sustains a
high autophagic flux for stemness maintenance (Gu et al.,
2019). In addition, the mammalian autophagy-initiating
kinase ULK1 is highly expressed in mESCs, and constitutive
activation of ULK1 by AMPK (AMP activated protein kinase)
functions as an intrinsic signaling pathway in ESCs to reg-
ulate their identity under normal physiological conditions
(Gong et al., 2018).

An appropriate cellular level of pluripotency proteins in
ESCs is critical for pluripotency maintenance. The stability of
the pluripotency proteins OCT4, SOX2 and NANOG in
hESCs is regulated by autophagy in addition to regulation by
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Figure 4. Regulation of pluripotency by autophagy. PSCs exhibit a high autophagic flux that is regulated by FOXO1, which

coordinates the autophagy machinery gene program at the transcriptional level. High autophagic flux maintains appropriate levels of

cellular pluripotency factors like OCT4, SOX2 and NANOG, and organelles like mitochondria (M). Inhibition of autophagy leads to

accumulation of abnormal mitochondria and breakdown of pluripotency in spite of increased levels of pluripotency proteins. Activation
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factors SOX2, KLK4 or c-MYC facilitates somatic cell reprogramming to pluripotency.
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the UPS as described above. Autophagy inhibition led to
reduction of pluripotency despite accumulation of these
pluripotency proteins (Cho et al., 2014).

PSCs are distinct from somatic cells in having a smaller
volume and fewer mitochondria. During somatic cell repro-
gramming, treatment with mTOR (mammalian target of
rapamycin) inhibitors like rapamycin or PP242, or the autop-
hagy inducer spermidine, significantly improved the speed
and efficiency of iPSC generation, which indicates that
autophagy is involved in this cellular remodeling (Chen et al.,
2011; Menendez et al., 2011). In support of this proposition,
the reprogramming factor SOX2 was identified to directly bind
to the promoter of mTOR to recruit the NuRD complex. This
resulted in transcriptional repression of mTOR, thus inducing
a transient activation of autophagy, which accounted for
successful reprogramming (Wang et al., 2013). In addition,
KLF4 and c-MYC were found to inhibit mTORC1 (mechanistic
target of rapamycin complex 1) during pluripotency acquisi-
tion, leading to autophagy activation, mitochondrial remodel-
ing and cell size reduction, which facilitated reprogramming
(Wu et al., 2015). Consistent with this, silencing of canonical
autophagy by Atg3 deletion inhibited mitochondrial remodel-
ing during pluripotency induction, resulting in decreased
reprogramming efficiency and more abnormal mitochondria in
established mouse iPSCs (Liu et al., 2016a). Interestingly, in
parallel with these findings, Ma et al. demonstrated that an
AMPK-activated Atg5-independent autophagy pathway con-
tributes to mitochondrial clearance, and facilitates the meta-
bolic switch from mitochondrial oxidative phosphorylation to
glycolysis during somatic cell reprogramming (Ma et al.,
2015). Mitophagy, the specific clearance of mitochondria by
autophagy, can be initiated by BNIP3L (BCL2/adenovirus E1B
interacting protein 3-like). BNIP3L-mediated mitophagy con-
tributes to mitochondrial clearance during reprogramming
induced by OCT4/SO2/KLF4 but not OCT4/SO2/KLF4/c-MYC
(Xiang et al., 2017).

Taken together, the existing studies deliver supporting
evidence that a high level of autophagy activity is required in
ESCs to maintain cellular homeostasis of proteins and
mitochondria, thus safeguarding pluripotency. During
somatic cell reprogramming, both canonical and non-
canonical autophagy contribute to cellular remodeling
(Fig. 4).

FUTURE DIRECTIONS

PSCs can potentially provide unlimited resources to benefit
regenerative medicine through in vitro-directed differentia-
tion. Significant achievements have been made in under-
standing the mechanistic roles of transcription factors,
epigenetic factors and signaling pathways in pluripotency
regulation, which will facilitate the optimization of differenti-
ation protocols. However, efficient generation of the desired
specific cell type from PSCs remains a major challenge. This
is partly because there are still gaps in our knowledge about
pluripotency regulation. The recent findings described here

—that cellular catabolism, anabolism and homeostasis
pathways contribute to pluripotency maintenance—provide
new insights into PSC fate determination and pave new
ways for stem cell fate manipulation. These findings raise a
number of questions: (1) What are the upstream signals for
metabolic switching during cell fate transition? (2) How is the
balance between anabolism and catabolism regulated in
pluripotency acquisition and maintenance? (3) What is the
role and mechanism of anabolism and catabolism in regu-
lating reprogramming and differentiation? (4) How does the
UPS cooperate with autophagy to regulate pluripotency? (5)
How do intermediate metabolites play roles in cell fate
transition? (6) Is it possible to optimize PSC differentiation
protocols by manipulating anabolism, catabolism, UPS or
autophagy? Given the rapid development of omics tech-
nologies like proteomics, transcriptomics, epigenomics and
metabolomics, together with bioinformatics and artificial
intelligence, our understanding of the metabolic regulation of
pluripotency will rapidly move forward and thus significantly
benefit regenerative medicine.
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