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Abstract

The placenta, which originates from the trophectoderm (TE), is the first organ to form during

mammalian embryogenesis. Recent studies based on bioinformatics analysis have revealed that

heterogeneous gene expression initiates cell-fate decisions and directs two distinct cell fates by

modulating the balance of pluripotency and differentiation as early as the four-cell stage. However,

direct developmental evidence to support this is still lacking. To address at which stage the cell fate

of the TE and inner cell mass (ICM) is determined, in this study, we administered a microinjection

of Cre mRNA into a single blastomere of the mTmG mouse at different cleavage stages before

implantation to examine the distributions of the descendants of the single-labeled cell in the mouse

fetus and the placenta at E12.5. We found that the descendants of the labeled cells at the two-cell

stage contributed to both the placenta and the fetus. Notably, the derivatives of the labeled cells at

the four-cell stage fell into three categories: (1) distributed in both embryonic and extraembryonic

lineages, (2) distributed only in mouse placental trophoblast layers, or (3) distributed only in

the lineage derived from the ICM. In addition, these results fell in line with single-cell studies

focusing on gene expression patterns that characterize particular lineages within the blastocyst. In

conclusion, this study shows that the four-cell blastomeres differ in their individual developmental

properties insofar as they contribute to either or both the ICM and trophoblast fate.

Summary sentence

The four-cell blastomeres differ in their individual developmental properties insofar as they

contribute to either or both the embryonic and extraembryonic lineage.

Key words: Cre mRNA, the mTmG mouse, placental trophoblast fate, the four-cell stage

Introduction

The formation of the zygote heralds the beginning of a new gen-
eration in mammals. After cleavage and compaction, the mouse
blastocyst forms by E3.5 and organizes into three cell lineages: the

trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE)

when the blastocyst prepares for implantation [1–3]. As development
proceeds, the TE will develop into the placenta; the EPI gives rise

to the future fetus; and the PE forms the yolk sac. The mature
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mouse placenta is composed of three principal layers: an outer
layer of trophoblast giant cells [4, 5], a middle spongiotrophoblast
layer, and the innermost labyrinth, which contains cells of both
trophoblast and mesodermal origin that will develop into the fetal
components of the placental vascular network [6, 7]. The placenta
plays a large part in the exchange of materials between the maternal
and fetal environments [8, 9], in addition to involvement in immune
protection of the fetus [5]. As the main structural and functional
components, the origin of the trophoblast lineage in the placenta
remains an unresolved issue.

The lineage specification between the TE and the ICM is the
earliest cell-fate determination during embryonic development [10,
11]. Many studies have been performed to trace cell lineages in
the early mouse embryo with different approaches, such as optical
lineage tracing [12–15] and sequence-based lineage tracing [16]. It
was assumed that blastomeres at the two-cell stage are totipotent
and were not biased in their contribution along the Em–Ab axis
of the blastocyst [17–19]. This view, however, is challenged as
the study shows that in separated two-cell stage blastomeres, only
one generates the functional blastocyst with sufficient epiblast cells
[20], and a current study discovered heterogeneities between sister
blastomeres of late two-cell stage embryo [21]. In contrast to the con-
troversy at two-cell stage embryos, a viewpoint, that heterogeneous
gene expression initiates cell-fate decisions, as early as the four-cell
stage, is now gaining support as recent studies have demonstrated
heterogeneity in four-cell-stage embryos, which exhibits differences
in gene expression [16, 22–24] and developmental potential [25,
26]. PRDM14 [24] and Sox21 [16] were asymmetrically distributed
among four-cell-stage blastomeres, lower levels of which promote
extraembryonic fate over pluripotency. These advances came from
the studies performed in preimplantation or early postimplantation
mouse embryos; however, two labeling experiments performed at
the two-cell stage resulted in different cell distribution patterns at
different developmental stages [27], which led to the present study
examining the distribution of labeled cells at a later developmental
stage.

In this study, mTmG mice [28] were used to trace the cell fate
of blastomeres at different embryonic stages. The blastomeres were
labeled with injection of Cre mRNA at the two-cell to eight-cell
stage. We observed that the derivatives of the labeled blastomere at
the four- and eight-stages display three types of distribution patterns
between the fetus and placenta at E12.5, and an increased bias of
labeled blastomeres is observed at the eight-cell stage. In addition,
we applied single-cell RNA-seq on sorted green fluorescent protein
(GFP)-positive cells from the blastocysts, expression analysis of genes
implicated in TE vs. ICM lineage bias indicated that both the four-
and eight-cell blastomeres displayed three-cell-fate potentials. This
lineage tracing strategy provides new insights into cell-fate decisions
and allows us to re-examine the distributions of descendants of the
labeled blastomeres after implantation.

Materials and methods

Mice

Wild-type CD1 mice were purchased from Charles River Labora-
tories China Inc. and housed with an artificial 12:12 h light cycle
(temperature, 22–24 ◦C; relative humidity, 40–50%). The laboratory
of Haibin Wang presented the mTmG mice. All animal experiments
were approved by the animal ethic committee and the Institutional
Animal Care and Use Committee, Institute of Zoology, Chinese
Academy of Sciences.

Embryo collection

For the lineage tracing experiments, 6-week-old wild-type CD1
females were superovulated by injection of 10 IU pregnant
mare serum gonadotropin followed by 10 IU human chorionic
gonadotropin after 46–48 h. The mTmG [28] male mice were crossed
with the superovulated females. One-cell stage embryos were flushed
from swollen ampullae with M2 medium (H3506, Sigma) containing
0.5 mg/ml of hyaluronidase (H3506, Sigma) several times to remove
the surrounding cumulus cells. The embryos at the early two-, four-
or eight-cell stages were obtained from the oviduct and then moved
to drops of EmbryoMax potassium simplex optimized medium
(KSOM) (MR-107-D, Specialty Media) covered with paraffin oil
after washing several times in M2 medium and cultured in KSOM
medium in an incubator at 37 ◦C and 5% CO2.

Generation of Cre mRNA

The recombined plasmid pXT7-CRE was constructed by Biomed,
China. The pXT7-CRE construct was linearized with XbaI and then
the linearized plasmid to be transcribed was examined on a gel to
confirm that cleavage was complete. According to the instructions
from the mMESSAGE mMACHINETM T7 Kit (AM1344, Invitro-
gen), the linearized plasmid was transcribed in vitro. Cre mRNA was
purified with the RNeasy Mini Kit (D40724, QIAGEN) and diluted
in ddH2O at a final concentration of 0.2 μg/μl.

Cell labeling

To label a single blastomere, Cre mRNA was injected at the con-
centration of 0.2 μg/μl into the nucleus of one blastomere from one,
two-, four- and eight-cell-stage embryos, and then morphologically
normal embryos were transferred into oviducts of pseudopregnant
CD1 female mice.

Immunofluorescence

The fetuses and placentas were collected at E12.5 and fixed with
4% paraformaldehyde overnight at 4 ◦C. The fixed fetuses and
placentas were dehydrated through 70, 90, and 100% ethanol and
then embedded in paraffin wax. Immunofluorescence was conducted
on 6-μm sections. After dewaxing and rehydrating, the sections
were blocked with 2% bovine serum albumin (BSA) in phosphate-
buffered saline (PBS) for 1 h. The sections were then incubated
overnight at 4 ◦C with primary antibodies (Supplementary Table
S1). The slides were incubated with secondary antibodies for 1 h
at room temperature. The nuclei were stained with 6′-diamidino-2-
phenylindole (DAPI). The sections were washed with PBS (3 × 5 min)
between each step. Images were obtained with a Zeiss 780 confocal
microscope and processed with ZEN software.

Statistical analysis

The data were analyzed by χ2-tests using the RStudio. P values of
less than 0.05 were considered significant.

Isolation of individual blastomeres at the blastocyst

stage

The injected embryos were cultured in KSOM medium until the
blastocyst stage. Then the blastocysts were exposed to acid Tyrode
solution to remove the zona pellucida and washed thoroughly in
PBS with 0.1% BSA. The denuded embryos were treated with 0.5%
trypsin for 10 min at 37 ◦C and dispersed them using thorough pipet-
ting. Single GFP-positive cells were deposited into 2.5 μl lysis buffer
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with a mouth pipette, which were subsequently reverse transcribed
and amplified using the modified smart-seq2 method [29].

Reads mapping and gene expression quantification

The Smart-seq2 data with paired-end reads were processed were
processed using the standard pipeline of Drop-seq_tools-2.0.0
[30] (http://mccarrolllab.com/dropseq/). For read2, bases 1–8 were
tagged with the cell barcode, and bases 9–16 were tagged with
molecule barcode. Read1 was trimmed at the 5′ end to remove
adaptor and template switch oligo (TSO) sequence, and the 3′ end
was trimmed to remove poly(A) sequences with length 6 or more. We
used STAR aligner to align the filtered fastq file to Mus_musculus.
GRCm38.84 genome reference files were incorporated with
enhanced green fluorescent protein (EGFP) annotation information.
The gene expression matrix (count value) for each cell was generated
with the Digital Expression command. The gene number of single
cells from mouse blastocysts is shown in the Supplementary
Data. The raw data and processed expression matrix data were
deposited in the Gene Expression Omnibus database (accession
number: GSE133639, the access token will be provided upon
request).

Analysis of single-cell RNA-seq data

We used Seurat V3.0 R package to analyze the single-cell data.
First, we used the vst and mean. Var. plot methods individually
to calculate variable genes of 579 cells with at least 1000 genes
expressed and performed unsupervised clustering. After excluding
ambiguous ICM or TE cells, we obtained 525 cells for the following
analysis. The t-distributed stochastic neighbor embedding (t-SNE)
plot of 525 cells, unsupervised clustering, and generation of a heat
map showing differentially expressed genes were performed with the
Seurat package. We defined EGFP-positive cells by the scaled value
of the EGFP gene, which was more than 2, and 116 EGFP-positive
cells were obtained. Only EGFP-positive cells with more than 2 were
further used for the statistical analysis, and the results are shown in
the pie chart.

Results

GFP signals were efficiently activated by Cre mRNA

injection

To study the cell-fate determination of different blastomeres, a
single blastomere from mTmG transgenic mice was injected with
Cre mRNA at different embryonic stages. The distribution of
descendants of labeled blastomeres was examined at E12.5. In
this mouse model, green fluorescence will be activated after Cre
excision (Figure 1). To verify this system, Cre mRNA was injected
at the one-cell stage and the distribution of GFP-positive cells was
examined at E12.5. As shown in Figure 2, both fetuses and placentas
were GFP-positive under whole-mount observation. To examine the
detailed distribution of the GFP-positive cells, immunofluorescence
was performed with serial paraffin sections. The cells in the fetus and
placenta were uniformly GFP positive (Figure 2D–G). To strengthen
the data on embryos and placentas that are indeed green, even if
the low-magnification overview images appear black, PCR across
the LoxP recombination site excluded the presence of GFP-negative
cells (Figure 2C and Supplementary Figure S3), indicating GFP was
efficiently activated by Cre mRNA injection during the embryonic
stage.

Figure 1. Schematic diagram for labeling single blastomeres. (A) The mT/mG

construct before and after Cre-mediated recombination. (B) Working model

for labeling a single blastomere at the two-cell, four-cell, or eight-cell stages

by microinjection of Cre mRNA.

Progeny of blastomeres at the two-cell stage

distributed in both the fetus and placenta

To investigate whether the cell fate of each blastomere is determined
in a two-cell-stage embryo, a single blastomere of a two-cell embryo
was randomly injected with Cre mRNA. The fetuses and placentas
were collected at E12.5. As shown in Figure 3, GFP signals were
detected in both fetuses and placentas in 27 of the collected embryos.
In other embryos, a GFP signal was not detected in either the fetus or
placenta. The GFP signal was not activated in these embryos, which
is probably due to the low efficiency of Cre activity. The results of
immunostaining experiments showed that GFP-positive cells were
randomly distributed along body axes and in all layers of the pla-
centa (Figure 3B and C). These results suggest that the blastomeres
at the two-cell stage display equal developmental potential and that
the cell fate of different blastomeres is not determined at this stage.

The developmental bias of blastomeres was noted at

the four-cell stage

Next, the developmental potential of blastomeres at the four-cell
stage was examined by single blastomere Cre mRNA injection.
A total of 94 morphologically normal fetuses and placentas were
examined at E12.5. Three different distribution patterns of GFP-
positive cells were observed. The whole-mount images and the
representative images of immunostaining were shown in Figure 4.
In 19 embryos, the GFP signal was only detected in the placenta and
the GFP signal was completely absent in fetal tissue (Figure 4A–C).
The results of immunostaining with serial sections also showed that
GFP-positive cells were distributed randomly in all layers of the
placenta, but no positive cells were observed in the fetal tissues.
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Figure 2. GFP-positive cells were detected in both the fetus and placenta when Cre mRNA was injected at the one-cell stage. (A) Schematic representation of the

constitutions of embryo and placenta or trophoblast. (B) Whole mount image of GFP-positive fetus and placenta at E12.5. (C) The PCR products encompassing

the LoxP sites amplified from the genomic DNA prepared from WT, mTmG, P and F. M1, Marker 1 (1 kb); WT, wild-type; mTmG, tail of the mTmG mouse without

Cre recombination; P, E12.5 placenta with Cre recombination; F, E12.5 fetus with Cre recombination; M2, Marker 2 (100 kb). (D) A representative section of the

E12.5 fetus showing that GFP-positive cells are distributed along the fetal body axes (F) A representative section of the E12.5 placenta showing that GFP-positive

cells are distributed in all layers and that the maternal decidua is GFP negative. (E and G) Higher magnifications show the GFP-positive cells in the fetus and

placenta. MCT4 and DAPI were used to label the labyrinth layer of the placenta and the nuclei, respectively. MT, maternal decidua; Sp, spongiotrophoblast layer;

Lab, labyrinth layer.

Figure 3. Descendants of a labeled single blastomere at the two-cell stage were randomly distributed in the placenta and fetal tissues at E12.5. (A) Whole mount

image of GFP-positive fetus and placenta at E12.5. (B) GFP-positive cells were distributed in all layers of the placenta at E12.5. (C) A representative section of the

E12.5 fetus showing that GFP-labeled cells are randomly distributed in the fetus. Nuclei were labeled with DAPI. MT, maternal decidua; Sp, spongiotrophoblast

layer; Lab, labyrinth layer.

By contrast, in 18 embryos (Figure 4D–F), the GFP signals were
detected only in the fetal tissue, and no GFP-positive cells were
detected in the placenta. In 57 embryos, GFP signals were detected
in both the placenta and fetus (Figure 4G–L), which was similar to
the distribution pattern observed at the two-cell stage. Interestingly,
in 15 out of the 57 embryos, a GFP signal was detected in both the
fetus and placenta by whole-mount observation. However, to further

verify the origin of these cells, the immunostaining results of placenta
sections showed that the localization of GFP-positive cells was co-
localized with Laminin-positive cells (Figure 4K), and Laminin was
used to label vascular endothelial cells of the placenta [9]. Because the
fetal vessels in the placenta are derived from the ICM, these embryos
were considered fetus positive and placenta negative. These results
suggest that different developmental potentials of signal blastomeres
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Figure 4. Three different distribution patterns of GFP-positive cells when a single blastomere was labeled at four-cell stage. (A, D, G and J) Whole mount image

of GFP-positive fetus and placenta at E12.5; (B and E) sections of the placentas in A and D, respectively; (C and F) sections of the fetuses in A and D, respectively.

(H and I) A representative section showing that GFP-positive cells are distributed randomly in the placenta and fetus. (K) A representative section showing GFP-

positive cells are only detected in the fetus vessels of the placenta. (L) GFP-positive cells are intermingled with GFP-negative cells in the fetus. MCT4 and DAPI

were used to, respectively, label the labyrinth layer of the placenta and the nuclei. MT, maternal decidua; Sp, the spongiotrophoblast layer; Lab, the labyrinth

layer.
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Figure 5. The distribution of the descendants labeled a single blastomere at eight-cell stage. (A, D, G, and J) Whole mount image of GFP-positive fetus and

placenta at E12.5; (B and E) sections of the placentas in A and D, respectively; (C and F) sections of the fetuses in A and D, respectively. (H and I) A representative

section showing that GFP-positive cells are distributed randomly in the placenta and fetus. (K) A representative section showing GFP-positive cells are detected

in the fetal blood vessels of the placenta. (L) GFP-positive cells are intermingled with negative cells in the fetus. Laminin was used to label fetal vessels of the

placenta. MCT4 and DAPI were used to label the labyrinth layer of the placenta and the nuclei, respectively. MT, maternal decidua; Sp, spongiotrophoblast layer;

Lab, labyrinth layer.
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Figure 6. The TE and ICM lineage segregation of labeled cells in the blastocysts. (A) Summary of distribution patterns of the labeled cells in the mouse placenta

and fetus at E12.5. (B) t-SNE plot showing unsupervised clustering of 525 blastocyst cells (ICM and TE). (C) Heat map illustrating the differential expression of

genes that are implicated in TE vs. ICM lineage bias. (D) t-SNE plot showing the expression of Cdx2, Gata3 and Sox2 in TE and ICM cells. (E) The t-SNE plot

shows the defined GFP-positive cells selected from the samples shown in Figure 6B. (F) A pie chart depicting the distribution patterns of the GFP-positive cells

in the blastocyst. mbs4, labeling at the four-cell stage; mbs8, labeling at the eight-cell stage.

start to establish at the four-cell stage. Some blastomeres develop into
fetus and some blastomeres prior to develop into placenta. However,
the cell fate of all the blastomeres is not determined at this stage,
and approximately 50% of them displayed unbiased developmental
potential.

To determine whether the contribution of the progeny labeled at
the four-cell stage toward different trophoblast cell types varies, we
examined the sections of E12.5 GFP-positive placenta to determine
the distribution of labeled progeny in the different trophoblast
layers, including syncytiotrophoblast, trophoblast giant cells, and
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spongiotrophoblast (Supplementary Figure S1). However, we did
not find a clearly skewed distribution of the labeled progeny to
individual placental trophoblast layers. This indicates that the four-
cell blastomeres show no clear developmental predisposition to
follow individual placental trophoblast cell fates.

The majority of blastomeres at the eight-cell stage

displayed bias in developmental potential

The developmental potential of single blastomeres at the eight-
cell stage was also examined by Cre mRNA injection. A total of
17 morphologically normal fetuses and placentas were obtained at
E12.5. Consistent with the embryos at the four-cell stage, three types
of GFP-positive cells were observed at this stage (Figure 5). However,
the ratio of embryos with fetus and placenta double-positive signal
was significantly reduced compared to that at the four-cell stage.
Most of them were either fetus positive or placenta positive. As
shown in Figure 5K, GFP-positive cells were also observed in fetal
blood vessels of the placenta in three embryos. In addition, the
labeled progeny was observed in all trophoblast layers (Supplemen-
tary Figure S2). These results suggest that the cell fate of most
blastomeres has been determined at the eight-cell stage, the eight-cell
blastomeres show no clear bias of developmental potential toward
individual trophoblast cell types.

Analysis of the four- and eight-cell blastomeres on

developmental potential with single-cell RNA-seq

We observed three distribution patterns of the labeled cells in the
mouse placenta and fetus at E12.5 when the Cre injection was
performed at the four- or eight-cell stage (Figure 6A). Comparison
of the data from the Cre injection at the four- and eight-cell stage
indicated that the eight-cell blastomeres showed a greater tendency
(χ2 P < 0.05) to contribute to either the embryonic part or abem-
bryonic part.

To validate the expression patterns of some key genes that are
implicated in TE vs. ICM lineage bias, we isolated labeled cells at
the blastocyst stage and performed at least candidate-based gene
expression analyses. A total of 597 single cells were collected from 51
blastocysts. After filtering out the low-quality cells (see Materials and
methods), 525 cells were selected for further analysis (Supplementary
Table S2 and Supplementary Figure S4). We first identified ICM
and TE populations with unsupervised clustering (Figure 6B). As
presented in Figure 6C, the transcriptomes of individual cells in the
ICM and TE populations were significantly different. TE marker
genes (caudal-type homeobox transcription factor-2, Cdx2; Gata
binding protein-3, Gata3) and the ICM marker gene (octamer-
binding transcription factor-4, Oct4) were highly expressed in TE
and ICM populations, respectively (Figure 6D). We filtered EGFP-
positive cells by the scaled value of the EGFP gene, which was more
than 2. A total of 116 EGFP-positive cells from 44 blastocysts were
obtained (Figure 6E), of which 34 blastocysts (mbs4, n = 24; mbs8,
n = 10) with EGFP-positive cells (n > 1) were further analyzed
(Supplementary Table S2). Expression analysis of candidate-based
genes that are implicated in TE vs. ICM lineage bias indicated that
both the four- and eight-cell blastomeres displayed three cell fate
potentials (Figure 6F), which is consistent with our results of lineage
tracing study in vivo.

Discussion

The cell fate of different blastomeres is established during cleavage
after fertilization. However, the timing and exact regulatory mecha-

nism of cell-fate determination in mammalians is still unclear because
of the inherent developmental flexibility of the embryo. The cell-fate
determination of blastomeres has been investigated previously using
Cre-LoxP recombination technology [27]. In that study, a single
blastomere was labeled at different embryonic stages with injection
with Cre plasmid and distribution of progeny of blastomere at E8.5.
They found that when the single blastomere was labeled at the four-
cell stage, three types of distribution patterns were noted. By contrast,
when the single blastomere was labeled at two-cell stage, the progeny
of labeled blastomeres was ubiquitously contributed to both TE and
ICM derivatives. This study raised a possibility that blastomeres
exhibit three different cell fates at the four-cell stage. Interestingly, a
recent report demonstrated that the blastomeres at the four-cell stage
displayed two types of developmental potential [16]. The blastomere
with lower levels of Sox21 contributed mostly to the TE lineage,
whereas the rest of the blastomeres contributed to both TE and ICM.
In accordance with the results of Fujimori et al. [27], the results
of our study also showed that the two-cell blastomeres displayed
unsupervised potential to both the ICM and TE derivatives, and the
first cell fate choice of early blastomeres, toward ICM or trophoblast
fate, has become determined at the four-cell stage. In consistent with
the results in vivo, with single-cell RNA-seq on sorted GFP-positive
cells from the blastocysts, expression analysis of genes implicated
in TE vs. ICM lineage bias indicated that both the four- and eight-
cell blastomeres displayed three cell-fate potentials. Based on the
quantitative results at the four-cell stage, we speculate that the cell
fate of two blastomeres was already established at this stage. One
blastomere contributes to placenta, which is consistent with previous
studies [16, 23, 27], whereas another blastomere contributes to the
ICM derivatives. We also found that the number of blastomeres with
developmental bias was significantly increased at the eight-cell stage
compared to that of the four-cell stage. However, a small portion of
blastomeres still contributed to both placenta and fetus. These results
suggest that not all the blastomeres were cell fate determined at the
eight-cell stage.

Taken together, our study demonstrated that the developmental
bias of single blastomeres has been established at the four-
cell stage and that blastomere with developmental potential
to both TE and ICM derivatives were detected at this stage.
The developmental bias was significantly increased at the eight-
cell stage, but the cell fate of a small portion of undetermined
blastomere also exist at this stage. The results of this study
provide valuable information for better understanding of the
spatiotemporal pattern of cell-fate determination during embryonic
development.

Supplementary data

Supplementary data are available at BIOLRE online.
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