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Abstract
Competitive displacement is not only the most extreme outcome of interspecific competition, but also an important strategy 
for invasive species to be successful invaders. Pinewood nematode, Bursaphelenchus xylophilus, the causal agent for pine 
wilt disease and global quarantine pest, usually displaces Bursaphelenchus mucronatus, a native sympatric sibling species, 
during its invasion process. Despite this prevalent outcome, the driving forces behind this displacement remain elusive. Asca-
rosides, an evolutionarily conserved family of nematode pheromones, are versatile in structure and function. We hypothesize 
these nematode pheromones play a role in species displacement. To investigate this hypothesis, we compared the ascarosides 
composition of B. xylophilus and B. mucronatus by LC–MS/MS followed by bioassays to test the responses of two nematodes 
to both crude and synthetic ascarosides. We found that asc-C5 (ascr#9) was the most abundant component and that there 
were no differences in pheromone composition between the two nematode species. B. xylophilus had faster growth rates 
under competition conditions. Furthermore, low concentrations of both crude and synthetic ascarosides [asc-C5, asc-C6 
(ascr#12) and their mixture] enhanced female fecundity and body length growth in B. xylophilus but not in B. mucronatus. 
In contrast, body length of B. mucronatus was suppressed by a crude extract of its own ascarosides as well as by synthetic 
ascarosides (asc-C5, asc-C6 and their mixture). Our results strongly suggest that ascarosides play a role in the competitive 
displacement between two nematode species, which could explain the phenomena observed in B. xylophilus-invaded forests 
where B. mucronatus widely existed prior to B. xylophilus invasion.
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Key message

• The global quarantine pest, Bursaphelenchus xylophilus, 
usually displaces the native nematode Bursaphelenchus 
mucronatus during its invasion process.

• The driving forces behind this competitive displacement 
remain elusive.

• Here, we found that the displacement between the two 
nematode species was facilitated by nematode phero-
mones—ascarosides.

• Ascarosides can increase fecundity and female body 
length of B. xylophilus at low concentrations.

• These findings provide new information and perspectives 
for alleviating the negative effects of biological invasion.
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Introduction

Interspecific competition is a fundamental mechanism 
in structuring species communities (Stewart 1996). Of 
the many possible outcomes resulting from interspecific 
competition, the most severe is competitive displacement 
(Reitz and Trumble 2002). The competitive exclusion 
principle demonstrates that two species occupying the 
same niche cannot coexist in the same location, resulting 
in one species displacing the other species (Ayala 1971). 
Interestingly, competitive displacement is often associ-
ated with biological invasion, and more than 80% of cases 
involve exotic species displacing native species or previ-
ously established exotic species (Reitz and Trumble 2002). 
Nevertheless, the mechanisms of competitive displace-
ment are complex. Reitz and Trumble (2002) summarized 
eight mechanisms of competition causing displacement, 
involving in exploitation and interference competition. 
And these mechanisms might be mediated by many biotic 
and abiotic factors (Gao and Reitz 2017). Usually, com-
petitive displacement is a result of joint action of multiple 
mechanisms. In Kenya, Bactrocera invadens displaced the 
indigenous species Ceratitis cosyra in mango agroecosys-
tems by direct contests for resources among larvae and 
aggressive behaviors of the invader (Ekesi et al. 2009). 
Generally, displacing species are more destructive than 
those that are displaced, especially in biological invasions. 
Displacements often aggravate control measures of exotic 
species and might even destroy the ecological balance and 
reduce local biodiversity. Therefore, an in-depth study 
of the mechanisms of competitive displacement will be 
invaluable toward a better understanding of the displace-
ment process and lead to new methods of mitigating the 
negative impacts of biological invasions. However, most 
research focuses on the winners in the competition. Usu-
ally, the winners can obtain more resources or obstruct the 
displaced species. So what about the losers? Do they con-
tribute to the competitive displacement? Current research 
draws little attention to the underdogs in competitive 
displacement.

It is well known that competitive displacement is more 
likely to occur between species sharing host ranges or 
key resources. However, where there is competition over 
shared resources, there is information exchange, includ-
ing chemical communication, possibly the most ancient 
and widespread form of communication among species 
(Haldane 1955; Günther et  al. 2015; Amo and Bona-
donna 2018). In nature, semiochemicals are chemicals 
that convey messages within or among species and medi-
ate their behaviors (Nordlund and Lewis 1976; Dicke and 
Sabelis 1988; Leroy et al. 2011; Smart et al. 2014; Wyatt 
2014; Evenden and Silk 2016). Because of constraints on 

composition and structure of semiochemicals, different 
species may share similar chemical signals (Berenbaum 
2016), especially those species that occupy the same niche. 
Actually, semiochemicals are important to both inter- and 
intraspecific communication, so research of their impact 
on the specific interspecific interactions involved in “com-
petitive displacement” is very significant.

The displacement of Bursaphelenchus mucronatus by 
Bursaphelenchus xylophilus is an excellent example to 
research the roles that semiochemicals play on competitive 
displacement. B. xylophilus, a global quarantine pest, was 
introduced from North America to Asia and Europe, causing 
severe ecological and economic losses for coniferous forests 
(Zhao et al. 2014; 2016). While B. mucronatus, a native 
sister species of B. xylophilus in China, has little pathogenic-
ity to forests (Mamiya and Enda 1979; Yan et al. 2012; Niu 
et al. 2013; Pereira et al. 2013). These two species are very 
similar in morphological and biological characteristics (De 
Guiran and Bruguier 1989), and occupy the same niche (Niu 
et al. 2013). Interestingly, evidence indicates that B. xylo-
philus can displace B. mucronatus in forests (Kishi 1995). 
As the number of years since initial invasion increases at 
particular sites, the distribution frequency of B. mucronatus 
decreases, whereas that of B. xylophilus increases (Cheng 
et al. 2009). Previous studies demonstrated higher fecun-
dity, higher growth rates, greater load onto vector beetles, 
stronger phenotypic plasticity of reproductive traits and une-
qual interspecific hybridization might help B. xylophilus to 
displace the native nematodes (Jikumaru and Togashi 2004; 
Vincent et al. 2008; Cheng et al. 2009; Niu et al. 2013). Nev-
ertheless, it is still unclear whether or not semiochemicals 
regulate competitive displacement.

Ascarosides are a group of important pheromones in 
nematodes (Jeong et al. 2005; Butcher et al. 2007; 2008; 
Srinivasan et al. 2008; Choe et al. 2012a; b; Kaplan et al. 
2012; Noguez et al. 2012; Ludewig and Schroeder 2013; 
Manosalva et  al 2015). The production of ascarosides 
is conserved in highly diversified nematode groups, but 
substantial differences exist between species (Choe et al. 
2012a; b; Kaplan et al 2012; Noguez et al 2012; Manosalva 
et al 2015). The basic structure of ascaroside pheromones 
comprise the 3, 6-dideoxysugar ascarylose, connected to a 
fatty-acid-like side chain of varying length but might also 
include additional side chains like glucose as well as indole, 
p-hydroxybenzoyl- and (E)-2-methyl-2-butenoyl (Jeong 
et al. 2005; Butcher et al. 2007; 2009; Srinivasan et al. 2008; 
Noguez et al. 2012; Von Reuss et al. 2012). Intriguingly, 
analogs of dideoxysugar ascarylose with different length 
side chains bring functional multiplicity to ascarosides 
(Von Reuss et al. 2012). Several studies reported that asca-
rosides could mediate various nematode behaviors, includ-
ing developmental diapause, sex-specific attraction, repul-
sion, aggregation, olfactory plasticity, foraging suppression, 
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adult hermaphrodites’ reproduction, plant defense, popula-
tion dispersal, infectivity-related behaviors and recognition 
of signals other nematode species (Srinivasan et al. 2008; 
2012; Macosko et al. 2009; Yamada et al. 2010; Braendle 
2012; Choe et al. 2012b; Izrayelit et al. 2012; Kaplan et al. 
2012; Von Reuss et al. 2012; Manosalva et al 2015; Greene 
et al. 2016; Wharam et al. 2017; Hartley et al 2019; Shapiro-
Ilan et al 2019). In B. xylophilus, pheromones enhanced the 
fecundity of invasive (China) strains while they suppressed 
fecundity of native (US) strains in a phenomenon termed 
pheromone-regulative reproductive plasticity (PRRP) (Zhao 
et al. unpublished). In brief, ascarosides are versatile nema-
tode pheromones, affecting both the structure and function 
of nematodes.

In this study, we investigated the roles ascarosides play in 
the displacement of B. mucronatus by B. xylophilus. Specifi-
cally, we investigated the influence of crude and synthetic 
ascarosides on two nematodes in relation to egg hatch, repro-
duction, sex ratio, body length of female progeny, and nema-
tode life span under starvation. Our results shed light on the 
fact that ascarosides are helpful to promote the displacement 
of both species. This study provides new clues for inter-
preting chemical ecology-based mechanisms of competitive 
displacement between two nematode species.

Materials and methods

Nematodes cultures and species identification

B. xylophilus and B. mucronatus were obtained from 
Shaanxi and Zhejiang, respectively, in China, and reared in 
the laboratory for several generations before experiments. 
Propagate stage nematodes were cultured with the fungus 
Botrytis cinerea on potato dextrose agar (PDA) plates or 
barley medium at 25 °C in the dark.

To differentiate the two nematode species, morphologi-
cal and molecular methods were used. The females of each 
species are easily distinguished by their tails (Fig. S1). B. 
mucronatus has a distinct mucro (short, sharp point) at the 
tail terminus (Mamiya and Enda 1979; Nickle et al. 1981), 
whereas B. xylophilus has a rounded terminus (Nickle et al. 
1981). However, it is difficult to differentiate males and 
juveniles of the two species. Thus, we adopted a molecular 
method, based on ITS1-PCR, according to established proto-
cols (Zhao et al. 2005; Wang et al. 2011). By sequence anal-
ysis, the band pattern of B. xylophilus had sizes of 329 bp, 
while the pattern of B. mucronatus was characterized by 
sizes of 206 bp (Fig. S1).

In order to simplify the experiments testing competition, 
we used only morphological methods to identify females 
from both populations and used the number of females 

in the population to represent the dynamic change of the 
population.

Competitive tests in vitro

The two species were cultured as a mixture according to 
previously established protocol (Cheng et al. 2009). We 
selected 24 adults of B. mucronatus (female/male = 3:1) 
and 12 adults of B. xylophilus (female/male = 3:1), mixed 
together to imitate the initial phase of interspecific interac-
tions, and cultured them on a PDA plate with B. cinerea at 
25 °C for five days (n = 5 replicates). Five days later, we 
counted the number of females of each species. All nema-
todes were collected from five plates and suspended in 10 ml 
of disinfected distilled water (DDW). A 30 μl nematode sus-
pension was transferred to a new fungus medium after full 
mixing (inoculated five plates) for continuous cultivation. 
Five days later, the above process was repeated three times in 
succession. Similarly, the number of females of each species 
was counted at each stage during the process of successive 
cultivation.

To compare the differences between the two species 
under competitive and non-competitive conditions, we cul-
tured each species alone (24 adults of each species, female/
male = 3:1) and together (12 adults of each species, female/
male = 3:1) at 25  °C. Each treatment was repeated five 
times. Ten days later, the population of nematodes was high 
in media, and the number of females of each species were 
collected.

Ascarosides

We generated crude ascaroside extracts by cultivating 
the two species separately in barley media at 25 °C until 
propagative nematodes migrated to the wall of the bottle 
1 cm away from the culture medium (high population), and 
extracting the whole medium (including nematodes and 
medium) with 30 ml high-performance liquid chromatog-
raphy-grade ethanol for 30 min. Samples with only the B. 
cinerea were used as negative controls. The ethanol extracts 
were filtered through filter paper and dried by rotational 
vacuum concentrator (Martin Christ Gefriertrocknungsan-
lagen GmbH, Germany). Next, the dried extract residue 
was dissolved in 1 ml DDW, filtered through syringe filter, 
and stored at − 20 °C until further experimentation. (These 
crude ascaroside extracts were used as stock solution for 
the following bioassays.) One hundred fifty microliter of 
the sample was transferred to a target vial for liquid chro-
matography–mass/mass spectrometry (LC–MS/MS) analy-
sis. Chemical analyses were performed according to estab-
lished protocols (Zhao et al. 2016). These experiments were 
repeated at least three times.
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Synthetic ascarosides were provided by Rebecca A. 
Butcher’s Lab.

Assaying with crude ascaroside extracts

Adult nematodes were collected from synchronized cultures 
three days after hatching. Females and males were separated 
and cultured for one day (until females stopped spawning). 
We performed all bioassays with crude ascaroside extracts 
diluted with DDW to different concentrations of working 
solution (dilution ratio: stock solution,  103-,  106-,  109-, 
 1012-fold dilution). Water served as controls. Cultures were 
incubated at 25 °C for all experiments.

Experiment 1. Egg hatching ratio

The juveniles  (L2) of both species were cultured on a fun-
gus medium for three days. Next, nematodes were placed in 
phosphate-buffered saline with tween-20 (PBST) for 12 h to 
obtain eggs. Eggs (about 100 eggs per well) were transferred 
to a 96-well plate which contained 150 μl of pheromone 
solution. Each concentration was repeated five times. The 
number of hatched nematodes was counted after 12 h.

Experiment 2. Reproduction

Twelve individuals of each species (female/male = 3:1) were 
incubated in a PCR tube with 150 μl of pheromone solution. 
Nematodes were cultured for three days, and the number of 
offspring was tallied. Each treatment was repeated ten times.

Experiment 3. Life span

Three milliliter of pheromone solution or water was used 
for forty adult nematodes (female/male = 3:1). Each treat-
ment was repeated three times, and the number of surviving 
nematodes was recorded every five days. Pheromone and 
water solutions were changed every 15 days. When the bod-
ies of nematodes stayed motionless, even after blowing with 
a pipette, the nematodes were deemed to be dead.

Experiment 4. Sex ratio and body length

We added 150 μl of pheromone solution or water to fun-
gus media and coated them evenly. Eighteen females and 
six males were transferred to different treatment plates and 
were incubated for five days. Then we counted the number 
of females and males and calculated the sex ratio. Each treat-
ment was repeated five times. The replicates of each con-
centration were pooled, and about 100 female adults were 
randomly selected and killed by exposing them to 85 °C for 
20 min. The females were photographed, and body length 
was measured using Olympus DP2-BSW software.

Assaying with synthetic ascarosides

To better understand how individual ascarosides may affect 
the competitive displacement event, we conducted reproduc-
tion assays with synthetic asc-C5 (ascr#9), asc-C6 (ascr#12), 
asc-ΔC6, asc-C7 (ascr#1), and asc-C9 (ascr#10). Also, we 
measured body length with asc-C5 and asc-C6. To better 
simulate natural conditions, we mixed asc-C5 and asc-
C6 according to the proportion of crude ascarosides in B. 
mucronatus (asc-C5/asc-C6 = 60:1, named Bm-type ascaro-
sides) and B. xylophilus (asc-C5/asc-C6 = 16:1, named Bx-
type ascarosides) at an initial concentration of 3 μM, then 
investigated the effects of mixed ascarosides on fecundity 
and body length for both species. The initial concentration 
of synthetic ascarosides used for experiments was based on 
the concentrations detected in crude extracts and the concen-
trations of ascarosides found in natural pupal chambers of 
beetles (Zhao et al. 2016). The assays were repeated a sec-
ond time with synthetic ascaroside blends diluted to 3 μM, 
3 nM, 3 pM, 3 fM, and 3 aM, respectively.

Statistical analysis

Bonferroni-adjusted t test was used for population dynamics 
of both nematode species under different conditions. One-
way ANOVA with Tukey’s multiple comparison test was 
used for analysis of egg hatching, reproduction, sex ratio and 
body length data. Log-rank (Mantel-Cox) test was used for 
the life span data. Two-way ANOVA was used for analysis 
of bioassay data with the mixture of synthetic ascarosides. 
Independent sample t test was used for all other assays. 
GraphPad Prism 5 (GraphPad Software Inc., San Diego, 
CA, USA) and IBM SPSS 18.0 software (SPSS, Inc., Chi-
cago, IL, USA) were used for statistical analyses. A value 
of p < 0.05 was considered statistically different. Standard 
errors (± SE) were reported for all means.

Results

Competitive displacement of B. xylophilus and B. 
mucronatus in laboratory

To verify the phenomenon of competitive displacement, 
we cultured the two nematode species together. Results 
showed that the numbers of B. xylophilus increased over 
time, whereas that of B. mucronatus decreased (Fig. 1). 
After 10 days of culture, there were more female B. xylo-
philus than female B. mucronatus; after 25 days, the mean 
number of female B. mucronatus was less than 50 while 
the mean number of female B. xylophilus was more than 



1063Journal of Pest Science (2020) 93:1059–1071 

1 3

1,500 (Fig. 1a). These results indicate that B. mucronatus 
can indeed be displaced by B. xylophilus under laboratory 
conditions.

Based on the results in the above experiment, we per-
formed a more detailed study of the population dynamics 
of both species under competitive and non-competitive 
conditions. We found that after ten days, the number of 
female B. xylophilus was significantly higher than that 
of B. mucronatus in either conditions (non-competitive: 
t = 4.55, p < 0.007; competitive: t = 9.67, p < 0.001; Bonfer-
roni correction: α = 0.05/6 = 0.0083). Moreover, the num-
ber of female B. xylophilus under competitive conditions 
(39,633.80 ± 4079.30) was notably higher than those under 
non-competitive conditions (16,250.40 ± 2552.92) (t = 4.86, 
p < 0.002), while that of female B. mucronatus under com-
petitive conditions (202.20 ± 47.62) was lower than those 
under non-competitive conditions (4094.80 ± 795.82) 
(t = 4.88, p < 0.002) (Fig. 1b). The results indicated that 
competition was helpful to the growth of B. xylophilus, but 
adverse to B. mucronatus.

Bioassays of crude ascaroside extracts to B. 
xylophilus and B. mucronatus

To determine the effects of crude ascaroside extracts on 
competitive displacement of B. xylophilus and B. mucro-
natus, we compared fecundity, hatching success, life span 
under starvation in DDW, and offspring sex ratio and the 
body length of female progeny in fungus PDA media under 
crude extract treatment between the two species. The results 
showed that ascarosides affected the fecundity (Fig. 2a) and 
female body length (Fig. 2c) of both nematode species, but 
had no significant effects of egg hatch (Fig. 2d, Table S1), 

life span under starvation (Fig. 2b, Table S2) and offspring 
sex ratio (Fig. 2e, Table S3).

In high concentrations, crude ascarosides of either spe-
cies inhibited egg production in both B. xylophilus (Bm ascr: 
F5,46 = 96.24, p < 0.0001, Bx ascr: F5,50 = 57.75, p < 0.0001) 
and B. mucronatus (Bm ascr: F5,54 = 9.55, p < 0.0001, Bx 
ascr: F5,54 = 19.33, p < 0.0001); however, low concentrations 
of ascarosides positively affected fecundity of B. xylophilus 
but had no effect on fecundity of B. mucronatus (Fig. 2a). 
Conclusively, the fecundity of B. xylophilus was significantly 
increased by ascarosides of B. mucronatus at both  1012-fold 
and  109-fold dilution, whereas it was increased only by 
 109-fold dilution of its own ascarosides. Similarly, body 
length of female B. xylophilus was increased in  1012-fold 
and the  109-fold dilution of B. mucronatus ascarosides 
(F2,293 = 28.97, p < 0.0001), and only in  109-fold dilution 
of its own ascarosides (F2,297 = 16.97, p < 0.0001) (Fig. 2c). 
Conversely, body length of B. mucronatus was suppressed 
by  1012-fold and  109-fold dilutions of its own ascarosides 
(F2,297 = 44.25, p < 0.0001) and was unaffected by ascaro-
sides of B. xylophilus at any dilutions (F2,279 = 2.11, p = 0.12) 
(Fig. 2c).

Moreover, by comparing B. xylophilus and B. mucro-
natus, we found that there were marked differences on 
hatching success, life span under starvation and offspring 
sex ratio between both species (Fig. 3), although the crude 
ascaroside extracts had no obvious effects on any of these 
variables (Fig. 2b, d, e). Success of egg hatch was sig-
nificantly higher for B. xylophilus (61.08 ± 1.98%) than 
for B. mucronatus (17.33 ± 1.36%) (t = 18.01, p < 0.0001) 
(Fig. 3a). The sex ratio of offspring (females/males) was 
also more female-based in B. xylophilus (2.62 ± 0.10) than 
in B. mucronatus (1.48 ± 0.04) (t = 10.09, p < 0.0001) 
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Fig. 1  Population dynamics of B. xylophilus (Bx) and B. mucrona-
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(Fig. 3b). Under conditions of starvation, B. xylophilus 
(average longevity: 42.5 days) had a longer life than B. 
mucronatus (average longevity: 30 days) (Log-rank (Man-
tel-Cox) test: χ2 = 9.72, p = 0.0018) (Fig. 3c). In addition, 
the fecundity of both species had a distinctly different 
baseline. The number of eggs laid by B. xylophilus was 
much higher than B. mucronatus (t = 4.12, p = 0.0001) 
(Fig. 3d).

In brief, our evidence suggests crude ascaroside extracts 
may promote the displacement of B. mucronatus by B. 
xylophilus through regulating fecundity and female body 
length of both species. In addition, other characteristics of 
B. xylophilus, were higher fecundity, higher egg hatchability, 
longer life span under starvation and skewed sex ratios favor 
B. xylophilus females, further enhancing the displacement 
between the two nematode species.

Fig. 2  Effects of dilutions of 
crude ascaroside extracts from 
Bm and Bx on fecundity (a), 
life span under starvation (b), 
female body length (c), hatch-
ability (d) and sex ratio (e) of 
each nematode species. One-
way ANOVA with Tukey’s mul-
tiple comparison test for (a), (c), 
(d) and (e), and means with dif-
ferent letters were significantly 
different; log-rank (Mantel-Cox) 
test for (b); p < 0.05. F means 
female, M means male. Bm ascr 
means crude ascaroside extracts 
from Bm, Bx ascr means crude 
ascaroside extracts from Bx. CG 
means control group (rearing 
the nematodes with DDW only), 
and SS means stock solution of 
crude ascaroside extracts Dilution Ratio 
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Analysis of crude ascaroside extracts and bioassays 
of synthetic ascarosides to B. xylophilus and B. 
mucronatus

To ascertain exactly which ascaroside is involved in compet-
itive displacement, we measured the amount of crude asca-
roside extracts produced by both nematodes using LC–MS/
MS. Five major ascarosides were produced by both spe-
cies including asc-C5 (m/z = 247.26; mean concentrations: 
Bx, 3.059 μM; Bm, 4.876 μM), asc-C6 (m/z = 261.29; Bx, 
0.192 μM; Bm, 0.081 μM), asc-ΔC6 (m/z = 259.27; Bx, 
0.025  μM; Bm, 0.045  μM), asc-C7 (m/z = 275.32; Bx, 
0.062 μM; Bm, 0.071 μM) and asc-C9 (m/z = 303.37; Bx, 
0.063 μM; Bm, 0.142 μM), with asc-C5 detected in the high-
est concentrations (Fig. 4). No ascarosides were detected in 
the barley medium inoculated with only B. cinerea.

Of the five synthetic ascarosides tested in bioassays, 
fecundity of B. xylophilus was significantly and positively 
affected by low concentrations of asc-C5 (F5,46 = 3.01, 
p < 0.05) and asc-C6 (F5,44 = 7.44, p < 0.0001), whereas 
fecundity of B. mucronatus was not significantly affected 
by any concentration of asc-C5 (F5,48 = 1.96, p = 0.10) or 
asc-C6 (F5,51 = 1.62, p = 0.17) (Fig. 5a). None of the other 
synthetic ascarosides affected fecundity of either nematode 
species (Fig. S2, Table S4). Effects of synthetic ascarosides 

on body length of females differed depending on the species. 
Female B. xylophilus were significantly longer when reared 
on fungal media with asc-C5 (F5,429 = 4.21, p = 0.001) or 
asc-C6 (F5,415 = 2.93, p < 0.05), whereas those of B. mucro-
natus were significantly shorter (asc-C5: F5,440 = 7.15, 
p < 0.0001; asc-C6: F5,598 = 15.49, p < 0.0001).

Previous studies have shown that groups of compounds 
with similar structures, like ascarosides, often act syn-
ergistically (Butcher et al. 2008; Srinivasan et al. 2008; 
Ludewig and Schroeder 2013). In nature, ascarosides 
exist in a mixture; thus, we mixed asc-C5 and asc-C6 
according to different ratios as determined by LC–MS/
MS analyses in both nematodes. At high concentrations, 
the synthetic blends of Bm-type and Bx-type ascarosides 
suppressed fecundity of both B. xylophilus (Bm-type: 
F3,28 = 16.22, p < 0.0001; Bx-type: F3,32 = 4.30, p < 0.05) 
and B. mucronatus (Bm-type: F3,31 = 13.43, p < 0.0001; 
Bx-type: F3,28 = 4.82, p < 0.01); at lower concentrations, 
however, both Bm-type and Bx-type ascarosides increased 
fecundity of B. xylophilus and had no effect on fecundity 
of B. mucronatus (Fig. 6a). Female body length was sig-
nificantly affected by concentration of ascarosides of 
both types in both B. xylophilus (Bm-type: F2,282 = 9.11, 
p = 0.0001; Bx-type: F2,278 = 4.28, p < 0.05) and B. mucro-
natus (Bm-type: F2,278 = 19.25, p < 0.0001; Bx-type: 

Fig. 3  Comparison of hatch-
ability (a), sex ratio (b), life 
span (c) and fecundity (d) 
between the two nematode 
species. Independent sample 
t test for Fig. 3a, 3b and 3d, 
***p < 0.001; log-rank (Mantel-
Cox) test for (c), p < 0.05. F 
means female, M means male
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F2,246 = 5.59, p < 0.01) (Fig. 6b). However, as with fecun-
dity, there were positive effects of low concentrations of 
either type of ascarosides on length of female B. xylophilus 
and negative effects of ascarosides on length of female B. 
mucronatus (Fig. 6b). These results were consistent with 
those of crude ascroside extracts. Meanwhile, based on the 
results of LC–MS/MS (Fig. 4c), the activity concentra-
tions of crude ascaroside extracts were basically the same 
as that of the two synthetic ascaroside mixture  (1012-fold 
dilution corresponds to aM,  109-fold dilution corresponds 
to fM, stock solution corresponds to μM), indicating that 
asc-C5 and asc-C6 play a positive role in the process of 
competitive displacement between the two nematode 

species rather than other ascarosides (asc-ΔC6, asc-C7 
or asc-C9).

To further unravel the story of competitive displacement 
between two nematode species driven by ascarosides, the 
mean number of eggs, shown in Fig. 6a, was analyzed by 
a two-way ANOVA (after normalization processing) for 
ascarosides sources (Bm-type and Bx-type) and concen-
trations (low concentrations: control group, aM and fM) 
in different species, respectively. For B. mucronatus, asca-
rosides source (F1,40 = 0.03, p = 0.86) and concentrations 
(F2,40 = 2.29, p = 0.12) had no significant effects on their 
fecundity. Interaction effects between these two factors 
were not obvious (F2,40 = 0.26, p = 0.77). However, for B. 

Fig. 4  Ascarosides detected 
using LC–MS/MS in extracts 
of both nematode species: a 
the elution profiles of ascaro-
sides extracted from Bm and 
Bx; b the elution profiles of 
synthetic standards (asc-C5, 
asc-C6, asc-ΔC6, asc-C7 and 
asc-C9) and negative control 
(NC, barley medium with B. 
cinerea); c mean concentrations 
of ascarosides extracted from 
Bm and Bx
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xylophilus, there were main effects for both factors: asca-
rosides source (F1,39 = 6.54, p < 0.05) and concentrations 
(F2,39 = 11.96, p < 0.0001), but no interactions between them 
(F2,39 = 2.08, p = 0.14). Interestingly, Bm-type ascarosides 
had a far greater effect on fecundity of B. xylophilus than 
Bx-type ascarosides (p < 0.05).

Similarly, the same analysis of female body length (data 
in Fig. 6b) indicated that concentrations of ascarosides 
(control group, aM and fM) had a significant main effect 

on female body length of B. xylophilus (F2,560 = 11.94, 
p < 0.0001), but the effect of ascaroside source was not 
prominent (F1,560 = 1.49, p = 0.22). And there were no inter-
actions between two factors (F2,560 = 1.05, p = 0.35). For B. 
mucronatus, there were main effects for two factors (asca-
rosides sources: F1,524 = 21.22, p < 0.0001; concentrations: 
F2,524 = 18.68, p < 0.0001) and conspicuous interactions 
between them (F2,524 = 5.72, p < 0.01). Comparing different 
ascarosides sources (Bm-type or Bx-type), the inhibition 
effects of Bx-type ascarosides on B. mucronatus female body 
length were stronger than Bm-type ascarosides (p < 0.0001).

Discussion

Overall, the major finding of our study is that ascarosides 
may facilitate the competitive displacement between B. 
xylophilus and B. mucronatus. Both species can sense each 
other’s ascarosides, yet they have starkly different responses. 
In this study, we extracted physiologically relevant amounts 
of crude ascarosides from high populations of nematodes 
in barley media (Fig. 4c), which were similar to ascaroside 
concentrations present in PDA media produced from high 
populations of nematodes in the competitive test (non-com-
petitive conditions, Fig. 1b). Since both these nematode 
populations were high on the two different media, we can 
confirm the concentrations of the corresponding ascarosides 
present (Fig. 1b) were likely physiologically relevant. The 
bioassays showed that the ascarosides from B. xylophilus act 
as allomone (emitter benefits and receiver is disadvantaged 
or unaffected) accelerating its own fecundity and female 
body length but inhibiting female body length of B. mucro-
natus. At the same time, the ascarosides from B. mucronatus 
act as kairomone (emitter is disadvantaged, receiver ben-
efits) by suppressing its own female body length but enhanc-
ing the fecundity and female body length of its competitor 
B. xylophilus. Moreover, B. mucronatus ascarosides make a 
greater contribution to the fecundity of B. xylophilus than 
those produced by B. xylophilus, while B. xylophilus asca-
rosides make a stronger inhibition to the female body length 
of B. mucronatus than those produced by B. mucronatus. In 
fact, across the animal kingdom, higher fecundity is usually 
linked with large body size. Larger females would produce 
more and larger offspring with superior qualities (Blueweiss 
et al. 1978; Parker and Begon 1986; Conover 1988; Kajita 
and Evans 2010; Sato and Suzuki 2010); therefore, effects 
of ascarosides on body length of female nematodes explain 
a positive feedback loop for B. xylophilus with negative 
consequences for B. mucronatus. When a small population 
of B. xylophilus invades a host containing B. mucronatus, 
B. xylophilus can sense ascarosides of both species in the 
environment, realizing signal amplification. In other words, 
the presence of B. mucronatus enables the total ascarosides 
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in the environment to reach the threshold concentration that 
favors B. xylophilus reproduction and development more 
easily, tipping the scales in its favor, thus enabling it to build 
up its population faster and then achieve displacement of 
B. mucronatus, a phenomena observed in several decades 
of field studies (Kishi 1995; Penas et al. 2004; Cheng et al. 
2009).

Competitive displacement occurs as a result of the effects 
from multiple mechanisms acting together (Reitz and 
Trumble 2002; Gao and Reitz 2017). In B. xylophilus and 
B. mucronatus system, our research also suggests that four 
mechanisms may act on displacement of B. mucronatus by 
B. xylophilus: higher fecundity, higher successful egg hatch, 
longer life span under starvation and skewed sex ratio of 
female progeny (Fig. 3). Collectively, ascarosides and these 
four traits give the B. xylophilus the edge in competition. 
These results provide partial support to previous studies 
which suggested that phenotypic plasticity in reproduc-
tive traits of B. xylophilus, based on phenotypic trade-off 
between egg number and egg size, shorter hatching time and 
more offspring, might contribute to competitive displace-
ment between these two species (Niu et al. 2013).

Another interesting result suggests the function of asca-
rosides may be much wider than previously thought. Asca-
rosides exist extensively in Nematoda and have a variety 
of functions (Srinivasan et al. 2008; 2012; Macosko et al. 
2009; Yamada et al. 2010; Braendle 2012; Choe et al. 2012b; 

Izrayelit et al. 2012; Kaplan et al. 2012; Von Reuss et al. 
2012; Ludewig and Schroeder 2013; Manosalva et al 2015; 
Greene et al. 2016; Wharam et al. 2017; Hartley et al 2019; 
Shapiro-Ilan et al 2019). According to our study, ascarosides 
can facilitate nematode oviposition under competition for 
resources. Crude and synthetic ascarosides could facilitate 
egg laying of B. xylophilus under low concentrations, while 
the promoting effects of acarosides are not obvious or even 
have an inhibitory effect under high concentrations. These 
results suggest that ascarosides are concentration-depend-
ent pheromones. Similarly, previous studies showed that C. 
elegans’ pheromones could accelerate adult hermaphrodites’ 
reproduction (Wharam et al. 2017). Fecundity of C. elegans 
treated with 400  nM ascr#2 (C6) and ascr#3 (C9) was 
slightly higher than controls (Ludewig et al. 2013). Here, our 
results showed that asc-C5 and asc-C6 could facilitate ovipo-
sition of B. xylophilus at low concentrations (Fig. 5). Nota-
bly, another function of ascarosides is regulating the body 
length of nematodes, which is apparent in our results. Asca-
rosides could increase the female body length of B. xylophi-
lus but decrease that of B. mucronatus (Figs. 2, 5, 6). Our 
results also suggest that different ascaroside types and differ-
ent dosages can induce different responses between species. 
In fact, the two nematode species had different responses 
to the same concentration of ascarosides. For instance, egg 
laying of B. xylophilus increased under 3 aM and 3 fM of 
asc-C6, but B. mucronatus had no obvious changes at the 

Fig. 6  Effects of different 
sources of ascarosides on 
fecundity (a) and female body 
length (b) of the two nematode 
species. Bm-type ascr means 
the ratio of asc-C5 and asc-C6 
is 60:1, Bx-type ascr means 
the ratio of asc-C5 and asc-C6 
is 16:1. Means with different 
letters were significantly dif-
ferent. One-way ANOVA with 
Tukey’s multiple comparison 
test, p < 0.05. CG means control 
group (rearing the nematodes 
with DDW only)
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same concentrations (Fig. 5). Hence, we propose a hypoth-
esis that the underlying internal mechanism of competitive 
displacement between B. xylophilus and B. mucronatus may 
be due to differences in signal sensing and response systems 
of two nematodes to ascarosides. This question will be an 
important topic for future research.

In general, we have demonstrated that competitive dis-
placement is not only the story of the victors, but that the 
displaced species may also contribute to the displacement 
event, albeit at their own demise. Chemical communication 
is an important means of information transmission within 
and among species. Our studies illustrate that semiochemi-
cals play an important role in the competitive displace-
ment between invasive and indigenous species. In the B. 
xylophilus—B. mucronatus system, ascarosides from B. 
mucronatus can kairomonally promote its own competitive 
displacement by triggering increased fecundity and female 
body length development of rival B. xylophilus. Further-
more, our research helps to explain the mechanism of com-
petitive displacement from the perspective of the species 
that is replaced, providing potentially new information and 
perspectives for alleviating the negative effects of biologi-
cal invasion.
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