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L E T T E R  T O  T H E  E D I T O R

Enhancing targeted transgene knock- in by donor recruitment

Dear Editor,
With the development of clustered regularly interspaced short 
palindromic	 repeats	 (CRISPR)/Cas91- based gene editing technol-
ogy, obtaining gene- knockout cells or animal models has become 
increasingly	 convenient.	 However,	 other	 genomic	 DNA	manipula-
tions, including targeted transgene integration or replacement, re-
main challenging, especially for the treatment of diseases with gene 
therapy.

Targeted transgenes knock- in are achieved using strategies based 
on	 intrinsic	DNA	 repair	mechanisms	 such	as	homologous-	directed	
recombination (HDR)2	 and	 non-	homologous	 end	 joining	 (NHEJ).3 
Marked efforts have been made to improve the efficacies of these 
knock-	in	strategies.	Homology-	mediated	end	joining	(HMEJ)4 is re-
ported to increase the efficiency of targeted integration by adding a 
pair	of	CRISPR/Cas9	targeting	sequences	flanking	the	homologous	
arms of the HDR donor. Homology- independent targeted integra-
tion (HITI)5	elevates	the	frequencies	of	intended	transgene	insertion	
(but not reverse integration) by elaborate arrangement of the orien-
tations	of	the	protospacers	in	the	NHEJ	donor.

Another	 technical	 route	 to	 enhance	 the	 efficiency	 of	 targeted	
transgene integration is to recruit donor vectors to the targeted 
genomic	site.	Some	proteins	fused	to	Cas9	can	enrich	the	specific	
modified	 single-	stranded	 oligodeoxynucleotide	 (ssODN)	 at	 the	
double- stranded break (DSB) site to increase the targeted integra-
tion efficiency.6- 8 However, such systems with chemically modi-
fied donor might be unsuitable for delivery in the form of clinically 
approved viruses such as recombinant adeno- associated viruses 
(rAAVs),	 which	 drastically	 restrain	 the	 application	 of	 these	 vec-
tors in gene therapies. Here, we present a strategy for enhanced 
HMEJ	 (enHMEJ)	 and	 enhanced	HITI	 (enHITI)	 by	 fusing	Cas9	with	
a	specific	DNA-	binding	protein,	integrase	p32,	from	the	human	im-
munodeficiency	virus	 type	1	 (HIV-	1),	 to	 recruit	donors	harbouring	
long terminal repeats (LTRs) to the DSB site to increase the targeted 
integration efficiency in vivo. Following transfection of the plasmid 
compounds	 pX330-	p32-	Cas9-	CMV-	mRuby2,	 pPNT6-	LTR-	GOI	 and	
pUC19-	U6-	sgRNA	 into	 cells,	 the	 conjugated	 protein	 p32-	Cas9	 is	
produced	 from	 the	 vector	 pX330-	p32-	Cas9-	CMV-	mRuby2	 while	
single	guide	RNA	(sgRNA)	is	produced	from	the	vector	pUC19-	U6-	
sgRNA.	The	LTR-	flanked	transgene	is	excised	from	the	donor	vector	
by	the	functional	p32-	Cas9/sgRNA	complex	and	is	then	recruited	to	

the genomic cleavage site mediated by the interaction between LTR 
and	the	p32	DNA-	binding	domain	(Figure	1A	and	S1).

Initially,	 we	 determined	 whether	 the	 p32-	Cas9	 hybrid	 protein	
could	bind	the	LTR	in	cells.	The	results	of	ChIP-	qPCR	show	that	there	
was	 a	 strong	 interaction	 between	 p32-	Cas9	 and	 LTR	 (Figure	 S2).	
Then to evaluate the contribution of p32/LTRs to the efficiency of 
HMEJ-	based	targeted	integration,	a	293T-	enhanced	green	fluores-
cent	inhibited	protein	(EGIP)	cell	line	was	constructed	with	a	13-	bp	
deletion	 in	 the	 EGFP	 coding	 region	 driven	 by	 a	 single	 allelic	 CAG	
promoter	at	the	AAVS1	locus	(Figure	S3).	When	the	deletion	is	cor-
rectly	 repaired,	 the	 293T-	EGIP	 cells	will	 express	 functional	 EGFP.	
Thus, the absolute efficiency of gene editing could be assessed by 
fluorescence-	activated	cell	sorting	(FACS)	(Figure	1B).

We	 found	 that	 the	 knock-	in	 efficiency	 of	 enHMEJ	 (p32/
LTR) was 8.61% ±	 0.29%,	which	was	 significantly	 higher	 than	 the	
knock-	in	 efficiency	of	 canonical	HMEJ	 (5.19%	± 0.06%) and HDR 
(2.16% ± 0.08%). These results indicated that there was a 1.5- fold 
and	fourfold	increase	in	targeted	integration	efficiency	for	enHMEJ	
(p32/LTR)	compared	with	HMEJ	and	HDR	respectively	(Figure	1C,D).	
Genotyping	 analysis	 of	 specific	missed	 fragments	 and	 sequencing	
indicated precise gene editing (Figure 1E,F).

For in vivo gene integration, any unintended gene expression 
introduced in the cis- element could be dangerous. The primary se-
quence	of	the	LTRs	we	used	exhibited	promoter	activity	in	293T	cells	
(Figure	1G).	To	eliminate	this	risk,	the	key	21-	bp-	terminal	region	of	
the LTR, which is responsible for binding to integrase, was retained 
by removing the U3 enhancer and R promoter region.9 The result-
ing engineered 21- mer LTR (21 m) did not exhibit promoter activity 
(Figure	1G).	On	the	other	hand,	the	HIV	integrase	p32	contains	an	N-	
terminal	domain	(NTD),	catalytic	core	domain	(CCD)	and	C-	terminal	
domain	 (CTD).	The	NTD	domain	 is	 the	Zn+ binding domain, which 
is	relative	to	3′-	processing	and	strand	transfer	reactions.	The	CCD	
domain	was	reported	to	contain	a	specific	DNA-	binding	site,	and	the	
CTD	domain	contains	a	non-	specific	DNA-	binding	site.9 To address 
safety	concerns,	we	removed	the	NTD	domain	and	reassembled	the	
CCD and CTD domains to obtain recombinant protein p32 variant 1 
(p32v1) and variant 2 (p32v2; Figure 1H).

To investigate whether these engineered elements could increase 
the knock- in efficiency, the construct combinations were transfected 
into	 the	 293T-	EGIP	 cell	 line.	 Notably,	 p32v2-	Cas9	 exhibited	 the	
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highest knock- in efficiency with the 21 m- modified donor (Figure 1I 
and	S4A).	As	p32	functions	as	a	dimer,	we	conjectured	that	further	
duplication of p32v2 would enhance the knock- in efficiency, and 
congruent with this hypothesis, the engineered p32v2 plus (p32v2p) 
significantly increased the knock- in efficiency from 12.13% ± 0.34% 

to 15.6% ±	0.7%	(Figure	1J	and	S4B).	Compared	with	the	canonical	
HMEJ,	the	enHMEJ	(p32v2p/21	m)	system	exhibited	a	threefold	in-
crease in gene knock- in efficiency.

To verify whether the optimized system could increase the 
efficiency of site- specific gene integration at endogenous sites, 
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an	IRES-	EGFP	reporter	gene	was	constructed	to	target	the	3′	un-
translated region (UTR) of ACTB and GAPDH	in	293T	cells	and	Actb 
in	mouse	Hepa1-	6	cells	(Figure	1K	and	S5A).	Also,	a	T2A-	GFP	re-
porter gene was integrated with the final codon of Sox2 and Nanog 
in	mouse	embryonic	stem	cells	(Figure	S6A).	Seven	days	after	the	
transfection,	enHMEJ	(p32v2p/21	m)	exhibited	the	same	twofold	
to	threefold	increase	in	knock-	in	efficiency	compared	with	HMEJ	
(Figure 1L, S5B and S6B,C). PCR amplification for the integration 
at	 the	 5′	 and	 3′	 junctions	 of	 these	 targeting	 sites	 revealed	 that	
the	 integration	 based	 on	 enHMEJ	 (p32v2p/21	 m)	 was	 accurate	
(Figures S5C,D and S6D,E).

HITI is another site- specific and homologous arm- independent 
targeted integration method. We therefore tested whether our 
p32v2p/21 m system could enhance HITI efficiency in targeted in-
tegration.	The	21	m-	modified	IRES-	EGFP	gene	reporter	donor	was	
constructed for ACTB and GAPDH	in	293T	cells,	and	Actb in mouse 
Hepa1-	6	cells	 (Figure	1M	and	S7A).	Seven	days	after	 transfection,	
p32v2p increased the targeted integration efficiency based on HITI 
by	 twofold	 to	 threefold	 (Figure	 1N	 and	 S7B).	Genotyping	 and	 se-
quencing	 analyses	 showed	 correct	 integration	 of	 exogenous	 gene	
fragments (Figure S7C,D).

In conclusion, we developed a simple system to increase the effi-
ciency of gene integration without the need for any ex vivo chemical 
modification. Importantly, we simplified and optimized our system to 
erase the potential off- target risks caused by the promoter activity 
of	the	LTR	and	catalytic	activity	of	the	integrase	p32.	Gene-	targeted	
cell lines and animal models will be generated more efficiently with 
the system. Moreover, the high- efficiency integration in vivo indi-
cates a greater curative effect and lower virus injection dose for 
gene therapy, which is significant for patients so that they receive a 
safe treatment and regain their health.10 Thus, the system has con-
siderable potential for gene therapy applications.
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F I G U R E  1 Increasing	targeted	integration	efficiency	by	donor	recruitment.	(A)	Schematic	of	the	enhanced	targeted	integration	system.	
The	p32-	Cas9/sgRNA	complex	double-	cleaves	the	donor	vector	pPNT6-	LTR-	GOI	to	generate	the	LTR-	GOI-	LTR	fragment,	and	p32	protein	
would	bind	to	the	LTR-	GOI-	LTR	fragment.	The	genome	is	then	cleaved	by	p32-	Cas9/sgRNA,	and	the	LTR-	GOI-	LTR	fragment	is	recruited	to	
the	double-	stranded	break	(DSB)	site	in	the	genome.	Pink	oval	indicates	integrase	p32	of	HIV-	1,	red	box	represents	the	left	homologous	arm	
(HAL),	blue	box	represents	the	right	homologous	arm	(HAR),	green	box	represents	the	gene	of	interest	(GOI),	and	yellow	box	represents	LTR.	
(B)	Schematic	of	the	traffic	reporter	cell	line	repaired	by	the	truncated	EGFP	donor	based	on	HDR,	HMEJ	and	enHMEJ.	KI-	F/R,	knock-	in	
specific	primers.	(C)	Representative	FACS	analysis	results	of	the	frequencies	of	EGFP+	cell	populations.	NC,	negative	control.	(D)	Statistics	
of the relative knock- in efficiency shown in (B). Bars represent the mean + SD of three samples. ***p < 0.001 (unpaired Student's t test). (E) 
Genotyping	analysis	of	the	targeted	mixed	cells	aimed	at	the	deleted	region.	(F)	Sequencing	analysis	of	the	targeted	mixed	cells.	Red	text	
indicates	the	repaired	sequence.	(G)	Promoter	activity	test	of	LTR	and	21	m	LTR	(21	m).	Scale	bar,	100	µm. (H) Schematic of the domains 
of	p32	and	its	variants.	(I	and	J)	Statistics	of	the	targeted	integration	efficiency	based	on	different	combinations	between	endonuclease	
and modified donor. ***p < 0.001, *p < 0.05, ns, not significant (unpaired Student's t test). (K) Schematic of targeted integration based on 
enHMEJ	at	the	ACTB	locus.	Red	and	blue	lines	represent	HAL	and	HAR	respectively.	(L)	Targeted	integration	efficiency	based	on	HMEJ	and	
enHMEJ	(p32v2p/21	m).	(M)	Schematic	of	targeted	integration	based	on	enHITI	at	the	ACTB	locus.	(N)	Targeted	integration	efficiency	based	
on HITI and enHITI (p32v2p/21 m)
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