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Kin selection means that individuals can increase their own inclusive fitness through displaying more
altruistically toward their relatives. So, Hamilton’s rule says kin selection will work if the coefficient of
relatedness exceeds the cost-to-benefit ratio of the altruistic act. However, some studies have shown that
the kin competition due to the altruism among relatives can reduce, and even totally negate, the kin-
selected benefits of altruism toward relatives. In order to understand how the evolution of cooperation
is influenced by both kin selection and kin competition under a general theoretical framework, we here
consider the evolutionary dynamics of cooperation in a finite kin population, where kin competition is
incorporated into a simple Prisoner’s Dilemma game between relatives. Differently from the previous
studies, we emphasize that the difference between the effects of mutually and unilaterally altruistic acts
on kin competition may play an important role for the evolution of cooperation. The main results not only
show the conditions that Hamilton’s rule still works under the kin competition but also reveal the evo-
lutionary biological mechanism driving the evolution of cooperation in a finite kin population.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

As pointed out by Nowak, cooperation means that selfish repli-
cators forgo some of their reproductive potential to help one
another, but natural selection implies competition and therefore
opposes cooperation unless a specific mechanism is at work
(Nowak, 2006a,b; Tanimoto, 2021). Moreover, in order to show a
general theoretical framework, Nowak also summarized the five
rules for the evolution of cooperation, which are kin selection,
direct reciprocity, indirect reciprocity, network reciprocity and
group selection, respectively (Nowak, 2006b). Kin selection theory
developed by Hamilton (Hamilton, 1964a,b; Maynard Smith, 1982)
is one of the most important theoretical mechanisms for driving
the evolution of cooperation behavior (Maynard Smith, 1982;
Nowak, 2006a). This theory says that: individuals are predicted
to behave more altruistically and less competitively toward their
relatives, because they share a relatively high proportion of their
genes; and, consequently, by helping a relative to reproduce, an
individual passes its gene to the next generation (Hamilton,
1964a,b; Maynard Smith, 1982). In order to show this succinctly,
based on the Prisoner’s Dilemma (PD) game (i.e., a cooperator is
someone who pays a cost, c, for another individual to receive a ben-
efit, b, and a defector has no cost and does not deal out benefits)
(Maynard Smith, 1982; Nowak, 2006a) and the concept of Hamil-
ton’s inclusive fitness (Hamilton, 1964a,b), the inclusive payoff
matrix for the pairwise interactions between relatives can be given

by ð1þ rÞðb� cÞ rb� c
b� rc 0

� �
, where (i) for simplicity and without

loss of generality, it is assumed that the coefficient of relatedness
between all relatives is the same, denoted by r; and (ii) the entry
ð1þ rÞðb� cÞ (or rb� c) is the inclusive payoff of an individual dis-
playing cooperation (C) against an individual displaying C (or
defection (D)), and b� rc (or 0) is the inclusive payoff of an individ-
ual displaying D against an individual displaying C (or D) (Maynard
Smith, 1982; Nowak, 2006a). Therefore, cooperation will be
favored by natural selection if rb� c > 0 (where the term rb� c
can be used as a measure of kin selection advantage), or the coef-
ficient of relatedness must exceed the cost-to-benefit ratio of the
altruistic act: r > c=b (Nowak, 2006a). This is called the Hamilton’s
rule, and it provides a fundamental logic for explaining the con-
flicts of interest between relatives. Of course, we also note that
some studies considered the limitations of the concept of inclusive
fitness (Nowak et al., 2010; Allen et al., 2013).

Although Hamilton’s rule (or kin selection theory) has been suc-
cessfully used to explain why relatives more tend to cooperate with
each other (Nowak, 2006a), the kin competition (i.e., competition
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between relatives) caused by the altruistic action among relatives
and its effect on kin selection have also been investigated by many
studies (Frank, 1998; Grafen, 1984; Hamilton, 1964a, 1972; Platt
and Bever, 2009; Queller, 1992, 1994, Taylor, 1992a,b; West et al.,
2002). The basic idea behind these studies is that kin competition
can reduce, and even totally negate, the kin-selected benefits of
altruism toward relatives (Grafen, 1984; West et al., 2002). For
example, Hamilton pointed out that limited dispersal of individuals
from the natal group (population viscosity) would increase the
relatedness between interacting individuals, and so would be an
important factor favoring altruism (Hamilton, 1964a, 1971, 1972,
1975). However, limited dispersal of individuals may also increase
relatedness between potential competitors, which opposes altruism
(Hamilton, 1971, 1975; Platt and Bever, 2009). Thus, a fundamental
question is, what is the net effect of these two opposing forces?
(West et al., 2002). Some studies have shown that a lower level of
dispersal can favor altruism, but, at the same time, this effect can
also be cancelled by the increased kin competition (Queller, 1992;
Taylor, 1992a).

In 1980s, Grafen first incorporated the effect of kin competition
on kin selection into Hamilton’s rule, and he developed a concise
theoretical and logical framework as an extension ofHamilton’s rule
(Grafen, 1984). Grafen’smodel includes all individualswhosefitness
is affected by an altruistic act, which is given by rxyb� c � rxed > 0
(for convenience, we call it Grafen’s inequality), where rxy is the
altruist’s relatedness to the beneficiary of its altruism (i.e., r in stan-
dard Hamilton’s rule), rxe is the altruist’s relatedness to the individ-
ualswho suffer the increased competition from the beneficiary (and
possibly reduced competition from the altruist), and d is the general
decrement in fitness associated with the altruistic act (Grafen,
1984). Thebasic ideabehindGrafen’s inequality is that as the altruist
becomesmore related to the competitors of thebeneficiary (increas-
ing rxe) and/or the altruistic act increases the general level of compe-
tition (increasing d), the kin selection advantage in being altruistic is
reduced (Grafen, 1984; Queller, 1994; West et al., 2002). Moreover,
Queller pointed out that Hamilton’s rule is equivalent to Grafen’s
inequality, as long as relatedness is measured at the correct scale
(Queller, 1994; West et al., 2002). In fact, in order to incorporate
competition between relatives into empirical studies of kin selec-
tion, some methodologies and ecological factors influencing kin
selection and kin competition have also been considered by many
studies (West et al., 2002; Platt and Bever, 2009). For example, Tay-
lor presented a simple patch-structured model of the evolution of
cooperation wherein cooperation increases the competition for
space experienced by the progeny of a cooperator (Platt and Bever,
2009; Taylor, 1992b; West et al., 2002), etc.

However, as a basic theoretical framework, we are more inter-
ested in: (i) whether Grafen’s basic idea can be illustrated using
PD game between relatives; (ii) whether Grafen’s inequality could
be considered to be a sufficient and necessary condition for the
evolution of cooperation in a kin population; and (iii) what the evo-
lutionary biological mechanism driving the evolution of coopera-
tion is under the kin selection and kin competition. When we put
Grafen’s inequality in the framework of PD game between relatives
(where, for simplicity and without loss of generality, we still
assume that the coefficient of relatedness between all relatives is
the same, denoted by r), we can see that Grafen’s inequality is only
associated with an interaction between a cooperator and a defector
(i.e., the term rb� c � rd in Grafen’s inequality is the inclusive pay-
off of an individual displaying C against an individual displaying D),
and this also implies that the inclusive payoff of an individual dis-
playing D should be b� rc � rd when it plays against an individual
displaying C. However, Grafen’s inequality doesn’t directly indicate
(or define) how the interaction between a pair of cooperators will
affect the competition between relatives.
2

Notice that an interaction between a pair of cooperators con-
tains two altruistic acts. Thus, similar to the basic idea behind Gra-

fen’s inequality (Grafen, 1984), we can use ed to denote the general
decrement in fitness (or payoff) associated with an interaction

between a pair of cooperators, where ed should be reasonably

defined to be in the interval d 6 ed 6 2d since, in general, the effect
of a mutually altruistic act on kin competition should be larger
than the effect of an unilaterally altruistic act, but should be less
than the sum of the effects of two independent unilateral altruistic
acts. For example, mutually altruistic acts may be more conducive
to increasing carrying capacity (Platt and Bever, 2009). This implies
that the effect of a mutually altruistic act on kin competition
should not be regarded as a simple addition of the effects of two
unilaterally altruistic acts. Based on this definition, the inclusive
payoff of an individual displaying C can be given by

ð1þ rÞðb� cÞ � red when it plays against an individual displaying
C. All of these assumptions and definitions based on PD game
between relatives lead to a natural question: if the standard Hamil-
ton’s rule holds (i.e., r > c=b), how does kin competition that is
associated with both interactions between a pair of cooperators
and between a cooperator and a defector influence the evolution-
ary dynamics of cooperation behavior in a kin population?

In this study, based on PD game between relatives with kin
competition, we will show that for the evolution of cooperation
in a finite kin population, Grafen’s inequality should be only a suf-
ficient condition but not a necessary condition, or kin selection
advantage could still work even if Grafen’s inequality does not
hold. We will also show that under kin selection and kin competi-
tion, what mechanism drives the evolution of cooperation in a
finite kin population.
2. A PD game between relatives with kin competition

As shown in the Introduction, when we incorporate the effect of
kin competition into a PD game between relatives, the inclusive
payoff matrix can be given by

ð1þ rÞðb� cÞ � red rb� c � rd

b� rc � rd 0

 !
; ð1Þ

where the entry ð1þ rÞðb� cÞ � red (or rb� c � rd) is the inclusive
payoff of an individual displaying C against an individual displaying
C (or D), and b� rc � rd (or 0) the inclusive payoff of an individual
displaying D against an individual displaying C (or D). For this inclu-
sive payoff matrix, we assume that: (i) the coefficient of relatedness
between all individuals is the same, denoted by r (Maynard Smith,
1982; Nowak, 2006a); (ii) the standard Hamilton’s rule always

holds (i.e., rb� c > 0); (iii) both parameters d and ed are positive

and d 6 ed 6 2d; and (iv) the occurrence of pairwise interactions is
random. We note that some studies have proposed the concept of
universal dilemma strength in symmetric two-phenotype reciprocal
games and proved that this concept can be successfully applied to
the classification of payoff matrix structures (Wang et al., 2015;
Ito and Tanimoto, 2018; Arefin et al., 2020). However, we here
mainly focus our attention on the effect of kin competition on the
evolution of cooperation in a PD game.

For the evolutionary dynamics of cooperation based on the
inclusive payoff matrix in Eq. (1), three possible cases are needed
to be considered. First, if Grafen’s inequality holds (i.e.,

rb� c � rd > 0), then we must have ð1þ rÞðb� cÞ � red� �
�

b� rc � rdð Þ ¼ rb� c � rðed � dÞ > 0 since d 6 ed 6 2d. This implies
that strategy C is always favored by natural selection if Grafen’s
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inequality holds. Second, if rb� c � rd < 0 (i.e., Grafen’s inequality

doesn’t hold) and rb� c � rðed � dÞ < 0, then strategy C can never
be favored by natural selection. This implies that the kin selection
advantage is totally negated by the effect of kin competition.
Therefore, it is easy to see that only strategy C is an evolutionarily
stable strategy (ESS) (Maynard Smith, 1982; Nowak, 2006a) if and
only if Grafen’s inequality holds; and only strategy D is an ESS if

and only if rb� c � rðed � dÞ < 0. Finally, for the situation with

rb� c � rd < 0 but rb� c � rðed � dÞ > 0 (i.e.,

rðed � dÞ < rb� c < rd), if we use x to denote the frequency of strat-
egy C in the population, then there must exist a

x� ¼ rd� ðrb� cÞ
rð2d� edÞ 2 ð0;1Þ ð2Þ

such that the expected inclusive payoff of strategy C, denoted by pC ,
is larger (or less) than the expected inclusive payoff of strategy D,
denoted by pD, if x > x� (or x < x�), where pC and pD are given by

pC ¼ x ð1þ rÞðb� cÞ � red� �
þ ð1� xÞðrb� c � rdÞ;

pD ¼ xðb� rc � rdÞ;
ð3Þ

respectively. Therefore, according to the standard definition of ESS
(Maynard Smith, 1982), strategies C and D are both ESSs if

rðed � dÞ < rb� c < rd. This shows clearly that strategy C could be
also an ESS even if Grafen’s inequality doesn’t hold.

However, for more real systems, we are more interested in that

for the situation with rðed � dÞ < rb� c < rd, whether strategy C
could be still favored by natural selection in a finite kin population
when the initial frequency of C is far less than x�, or whether
Hamilton’s rule (i.e. rb� c > 0) is still sufficient for strategy C to
be favored in a finite kin population even if Grafen’s inequality
doesn’t hold. Furthermore, if the answer is yes, what mechanism
drives the evolution of cooperation behavior in a finite kin
population?

3. Stochastic evolutionary dynamics of cooperation in a finite
kin population

Consider a finite kin population with fixed size N and assume
that the selection is weak (Nowak et al., 2004, 2006a). Without loss
of generality, the inclusive fitness of C-strategist, denoted by f C ,
can be defined as f C ¼ ð1�wÞ þwpC , where the parameter w rep-
resents the selection intensity with w 2 ½0;1� (Nowak, 2006a). Sim-
ilarly, the inclusive fitness of D-strategist, denoted by f D, is given
by f D ¼ ð1�wÞ þwpD.

Based on the diffusion approximation of the Moran process
(Traulsen et al., 2006a,b; Yu et al., 2017; Zheng et al., 2011), we
define that, at each time step with length 1=N, the transition prob-
ability that the system state (i.e., the frequency of C in the popula-
tion) changes from x to xþ 1=N, denoted by wþ, is
wþðxÞ ¼ xð1� xÞf CðxÞ=ðxfCðxÞ þ ð1� xÞf DðxÞÞ, and, similarly, the
transition probability that the system state changes from x to
x� 1=N, denoted by w�, is
w�ðxÞ ¼ xð1� xÞf DðxÞ= xfCðxÞ þ ð1� xÞf DðxÞð Þ. Let /ðx; tÞ denote the
probability density distribution that the frequency of C equals
exactly x at time t. Then, the diffusion approximation of /ðx; tÞ,
or the Fokker–Planck equation of /ðx; tÞ, is given by

@/ðx; tÞ
@t

¼ � @

@x
Bð1ÞðxÞ/ðx; tÞ
h i

þ @2

@x2
Bð2ÞðxÞ/ðx; tÞ
h i

;

where Bð1ÞðxÞ ¼ wþðxÞ � w�ðxÞ and Bð2ÞðxÞ ¼ ðwþðxÞ þ w�ðxÞÞ=2N
(Traulsen et al., 2006a,b; Yu et al., 2017; Zheng et al., 2011) (the
3

mathematical derivation is shown in Appendix). Here, Bð1ÞðxÞ is
called the drift term (that is due to fitness difference) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bð2ÞðxÞ

q
the diffusion term (Traulsen et al., 2006a,b; Yu et al.,

2017; Zheng et al., 2011). From the transition probabilities wþðxÞ
and w�ðxÞ, we can see also that both x ¼ 0 and x ¼ 1 are absorbing
boundaries (Zheng et al., 2011; Yu et al., 2017).

Moreover, if the initial frequency of strategy C at time t ¼ 0,
denoted by p, is considered, then the probability density distribu-
tion /ðx; tÞ should be rewritten as /ðx; p; tÞ, i.e., the probability den-
sity distribution that the frequency of strategy C equals x at time t
if its initial frequency is p. If we regard x as fixed and consider p as a
random variable, then the backward Kolmogorov equation of
/ðx; p; tÞ is given by

@/ðx; p; tÞ
@t

¼ Bð1ÞðpÞ @/ðx;p; tÞ
@p

þ Bð2ÞðpÞ @
2/ðx;p; tÞ

@p2 ð5Þ

(Traulsen et al., 2006a,b; Yu et al., 2017; Zheng et al., 2011) (the
mathematical derivation is shown in Appendix).

The above Fokker-Planck equation Eq. (4) and backward Kol-
mogorov equation Eq. (5) provide a basic framework for under-
standing the effect of kin competition on kin selection advantage
(or on evolutionary dynamics of strategy C) in a finite kin
population.

3.1. Fixation probability of strategy C

We now consider the fixation probability of strategy C under

the condition rðed � dÞ < rb� c < rd. Let uðp; tÞ denote the probabil-
ity that strategy C is fixed at time t if its initial frequency is p (i.e.,
the fixation probability of strategy C at time twith initial frequency
p). Similar to Eq. (5), the diffusion approximation of uðp; tÞ can also
be given by

@uðp; tÞ
@t

¼ Bð1ÞðpÞ @uðp; tÞ
@p

þ Bð2ÞðpÞ @
2uðp; tÞ
@p2 ð6Þ

with the boundary conditions uð0; tÞ ¼ 0 and uð1; tÞ ¼ 1 (Ewens,
2004). The ultimate probability uðpÞ of fixation of strategy C is
defined by uðpÞ ¼ lim

t!1
uðp; tÞ. Since x ¼ 1 is an absorbing boundary

of Eq. (4), the limit uðpÞ exists and it is the stationary solution of

Eq. (6), i.e., uðpÞ satisfies Bð1ÞðpÞ duðpÞ=dpð Þþ Bð2ÞðpÞ d2uðpÞ=dp2
� �

¼ 0.

From some previous studies about the stochastic evolutionary
game dynamics in a finite population (Traulsen et al., 2006a,b;
Yu et al., 2017; Zheng et al., 2011), for Nw � 1 (i.e., the selection
is weak), the fixation probability uðpÞ can be given by

uðpÞ ¼ pþ pð1� pÞNw
2

� rd� ðrb� cÞð Þ þ 1þ p
3

rð2d� edÞ� �
ð7Þ

(the mathematical derivation is shown in Appendix). In general, for
a given initial frequency of strategy C, p, cooperation is considered
to be favored by natural selection if the fixation probability of strat-
egy C is larger than its initial frequency, i.e., uðpÞ > p (Nowak,

2006a). Thus, Eq. (7) implies that for rðed � dÞ < rb� c < rd and
Nw � 1, the fixation probability of strategy C is larger than its initial
frequency p if x� < ð1þ pÞ=3, or if kin selection advantage satisfies

rb� c > r ð1� 2pÞdþ ð1þ pÞedh i
=3. Specifically, for p ¼ 1=N with

large N, we can see that uð1=NÞ > 1=N if x� < 1=3 (this is also called
the one-third law by Nowak et al. (2004, 2006a)), or if kin selection
advantage satisfies

rb� c >
r ed þ d
� �

3
ð8Þ
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with ed < 2d. This result shows clearly that if the above inequality
holds, then kin selection advantage could not be totally negated
by kin competition even if Grafen’s inequality doesn’t hold.

On the other hand, let u0ð1� pÞ denote the probability that
strategy D is fixed at time t if its initial frequency is 1� p. Then,
similar to the analysis of uðpÞ;u0ð1� pÞ can be expressed as

u0ð1�pÞ¼ ð1�pÞþpð1�pÞNw
2

� rð2d� edÞ� rdþðrb�cÞ
� �

þ2�p
3

rð2d� edÞ� �
;

ð9Þ

and we must have uðpÞ þ u0ð1� pÞ ¼ 1.

3.2. Mechanism driving cooperation to be favored by natural selection

For the fixation probability of strategy C with uð1=NÞ > 1=N, a
further question is what force drives strategy C being favored by
natural selection in a finite kin population. In order to answer this
question, we consider first the concept of mean effective fixation
time (Ewens, 2004; Zheng et al., 2011), and, then, consider the
average inclusive fitness about the mean effective fixation time
(Ewens, 2004; Zheng et al., 2011).

3.2.1. Mean effective fixation time
Let #ðt; pÞ denote the probability density function of the time t

until one of the boundaries (i.e., x ¼ 0 or x ¼ 1) is reached given
the initial frequency p. Similar to Eq. (5), the diffusion approxima-
tion of #ðt; pÞ also satisfies the backward equation

@#ðt;pÞ
@t

¼ Bð1ÞðpÞ @#ðt;pÞ
@p

þ Bð2ÞðpÞ @
2#ðt; pÞ
@p2 ð10Þ

with boundary conditions #ðt;0Þ ¼ #ðt;1Þ ¼ 0 (Ewens, 2004).
Since the mean fixation time, defined as �tðpÞ ¼ R1

0 t#ðt; pÞdt, is
finite, we have that t#ðt; pÞ ! 0 as t ! 1. Thus,

�1 ¼ � R1
0 #ðt;pÞdt

¼ � t#ðt; pÞ½ �10 þ R1
0 t @#ðt;pÞ

@t dt

¼ 0þ R1
0 t Bð1ÞðpÞ @#ðt;pÞ

@p þ Bð2ÞðpÞ @2#ðt;pÞ
@p2

h i
dt

)
�1 ¼ Bð1ÞðpÞ d�tðpÞ

dp þ Bð2ÞðpÞ d2�tðpÞ
dp2

ð11Þ

with boundary condition �tð0Þ ¼ �tð1Þ ¼ 0. Following Ewens (Ewens,
2004; Zheng et al., 2011), the solution of this equation, �tðpÞ, can
be expressed as

�tðpÞ ¼
Z 1

0
tðx;pÞdx; ð12Þ

where

tðx; pÞ ¼ u0ð1� pÞ
Bð2ÞðxÞHðxÞ

Z x

0
HðsÞds ð13Þ

with HðxÞ � exp � R x
0 B

ð1ÞðzÞ=Bð2ÞðzÞdz
h i

for 0 6 x 6 p and

tðx; pÞ ¼ uðpÞ
Bð2ÞðxÞHðxÞ

Z 1

x
HðsÞds ð14Þ

for p 6 x 6 1. Notice that HðxÞ � 1; Bð2ÞðxÞ � xð1� xÞ=2N;
u0ð1� pÞ � 1� p and uðpÞ � p if Nw � 1. Thus, under the weak
selection, the mean fixation time �tðpÞ can be approximated as

�tðpÞ ¼ R p
0 tðx; pÞdxþ R 1

p tðx;pÞdx
� �2N ð1� pÞ lnð1� pÞ þ p lnðpÞ½ �:

ð15Þ
4

Here, the integral
R x2
x1

tðx; pÞdx represents the mean time that the

frequency of C, x, spends in the interval ðx1; x2Þ before absorption.
Moreover,

R x2
x1

wþðxÞtðx; pÞdx represents the mean time that the sys-

tem state jumps from x to xþ 1=N when x is in the interval ðx1; x2Þ,
and, similarly,

R x2
x1

w�ðxÞtðx; pÞdx represents the mean time that the

system state jumps from x to x� 1=N when x is in the interval
ðx1; x2Þ. Notice that

R x2
x1

wþðxÞtðx; pÞdxþ R x2
x1

w�ðxÞtðx; pÞdx <R x2
x1

tðx; pÞdx since the system state doesn’t always jump from x to

x� 1=N. Thus, we can call
R x2
x1

wþðxÞ þ w�ðxÞ	 

tðx; pÞdx the mean

effective time that x spends in the interval ðx1; x2Þ (Ewens, 2004;
Zheng et al., 2011).

Let �sðpÞ denote the mean effective fixation time until one or the
other absorbing boundary is reached when the initial frequency of
C is p. Then, for Nw � 1, we have

�sðpÞ¼ R 1
0 wþðxÞþw�ðxÞ	 


tðx;pÞdx
¼ R p

0 wþðxÞþw�ðxÞ	 

tðx;pÞdxþR 1

p wþðxÞþw�ðxÞ	 

tðx;pÞdx

¼ 2Nu0ð1�pÞR p
0 xdxþ2NuðpÞR 1

p ð1�xÞdx
¼ N p2þuðpÞ�2puðpÞ� �

:

ð16Þ
3.2.2. Average inclusive fitness about the mean effective fixation time
Based on the concept of the mean effective fixation time

�sðpÞ ¼ R 1
0 wþðxÞ þ w�ðxÞ	 


tðx; pÞdx, the total inclusive fitness of

strategy C about �sðpÞ is
R 1
0 f CðxÞðwþðxÞ þ w�ðxÞÞtðx; pÞdx, then, the

average inclusive fitness of strategy C about �sðpÞ can be defined

as �f C;�sðpÞ ¼ �sðpÞ�1 R 1
0 f CðxÞðwþðxÞ þ w�ðxÞÞtðx; pÞdx which means the

average inclusive fitness of strategy C in the effective fixation pro-
cess. And, similarly, the average inclusive fitness of strategy D

about �sðpÞ is �f D;�sðpÞ ¼ �sðpÞ�1 R 1
0 f DðxÞðwþðxÞ þ w�ðxÞÞtðx; pÞdx. So, for

Nw � 1;�f C;�sðpÞ can be given by

�f C;�sðpÞ ¼ 1
�sðpÞ

R p
0 f CðxÞ wþðxÞ þ w�ðxÞ	 


tðx;pÞdx�
þ R 1

p f CðxÞ wþðxÞ þ w�ðxÞ	 

tðx;pÞdx

i
¼ 2N

�sðpÞ u0ð1� pÞ R p
0 xfCðxÞdxþ uðpÞ R 1

p ð1� xÞf CðxÞdx
h i

¼ ð1�wÞ þw rb� c � rdð Þ
þ w

3 ð1þ rÞðb� cÞ � red � rb� c � rdð Þ
� �

	 2p3þuðpÞð1�3p2Þ
p2þuðpÞð1�2pÞ

¼ ð1�wÞ þw rb� c � rdð Þ
þ w

3 b� rc þ rd� red� �
	 2p3þuðpÞð1�3p2Þ

p2þuðpÞð1�2pÞ ;

ð17Þ

and, similarly, �f D;�sðpÞ is given by

�f D;�sðpÞ ¼ 2N
�sðpÞ u0ð1� pÞ R p

0 xfDðxÞdxþ uðpÞ R 1
p ð1� xÞf DðxÞdx

h i
¼ ð1�wÞ þ w

3 b� rc � rdð Þ 	 2p3þuðpÞð1�3p2Þ
p2þuðpÞð1�2pÞ :

ð18Þ

This implies that the difference between �f C;�sðpÞ and �f D;�sðpÞ,

denoted by D�f �sðpÞ ¼ �f C;�sðpÞ � �f D;�sðpÞ, can be expressed as

D�f �sðpÞ ¼ w rb� c � rdð Þ þwrð2d� edÞ
3

	 2p
3 þ uðpÞð1� 3p2Þ

p2 þ uðpÞð1� 2pÞ : ð19Þ

For p ¼ 1=N with large N, we have the approximation

D�f �sð1=NÞ � w rb� c � rðed þ dÞ
3

 !
; ð20Þ
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i.e., �f C;�sð1=NÞ > �f D;�sð1=NÞ if rb� c > r ed þ d
� �

=3. This result is exactly the

same as the condition that leads to the fixation probability of strat-
egy C, uð1=NÞ, being larger than 1=N (see the inequality in Eq. (8)).

Therefore, for the mechanism driving cooperation to be favored
by natural selection, Eq. (20) not only shows clearly the connection
between the terms D�f �sð1=NÞ; rb� c (kin selection advantage) and

rðed þ dÞ=3 (effect of kin competition on kin selection) but also dee-
ply reveals the force driving the fixation probability of strategy C to
be larger than its initial frequency. Specifically, for Nw � 1 and

rðed � dÞ < rb� c < rd, if rb� c > rðed þ dÞ=3, then �f C;�sð1=NÞ > �f D;�sð1=NÞ
leads to uð1=NÞ > 1=N, i.e., the fundamental evolutionary biology
mechanism behind uð1=NÞ > 1=N is �f C;�sð1=NÞ > �f D;�sð1=NÞ.

4. Discussion

In this study, based on the standard PD game between relatives
(Maynard Smith, 1982; Nowak, 2006a), the effects of both kin
selection and kin competition on the stochastic evolutionary
dynamics of cooperation in a finite kin population are investigated.
Following Grafen’s basic idea for the effect of kin competition on
Hamilton’s rule (Grafen, 1984), we incorporate the kin competition
into a PD game between relatives. However, differently from Gra-
fen’s inequality, we here emphasize the difference between the
effects of mutually and of unilaterally altruistic acts on kin compe-
tition (i.e., the difference between the effect of an interaction
between pair cooperators and the effect of an interaction between
a cooperator and a defector). On the other hand, similar to Nowak
(2006a), we also assume that the coefficient of relatedness
between all individuals is the same. Although this assumption is
not true, it should be considered to be a reasonable simplification
for revealing how kin competition influences the evolution of
cooperation. Finally, in this study we always assume that the stan-
dard Hamilton’s rule holds.

For the main results of this paper, we first show that based on
the inclusive payoff matrix in Eq. (1) and the standard definition
of ESS (Maynard Smith, 1982), the strategy C is the unique ESS if
Grafen’s inequality holds (i.e., rb� c � rd > 0); only strategy D is

an ESS if rb� c � rðed � dÞ < 0; and strategies C and D are both ESSs

if rðed � dÞ < rb� c < rd. So, strategy C could be also an ESS even if
Grafen’s inequality doesn’t hold. Secondly, in order to reveal the
evolutionary dynamics of cooperation in a finite kin population
with fixed size N, we show that for the situation with large N
and weak selection, if the inclusive payoff matrix in Eq. (1) satisfies

condition rðed � dÞ < rb� c < rd, then, when the initial frequency of
strategy C is 1=N, the fixation probability of strategy C is larger

than 1=N if and only if rb� c > rðed þ dÞ=3. This result not only
exactly matches Nowak et al.’s one-third law (Nowak et al., 2004,
2006a) but also shows clearly that strategy C still could be favored
by natural selection even if Grafen’s inequality doesn’t hold.
Finally, based on the concept of mean effective fixation time, we
show that the evolutionary biological mechanism driving coopera-
tion to be favored by natural selection in a finite kin population is
that the average inclusive fitness of strategy C about the mean
effective fixation time is larger than the average inclusive fitness
of strategy D about the mean effective fixation time. All these
results clearly indicate that, even in the simplest case, Grafen’s
inequality should be only a sufficient condition, not a necessary
condition, for the evolution of cooperative behavior in a kin
population.

Finally, we would like to say that although the study of this
paper is only based on a simple theoretical model, it provides a
5

possible explanation for understanding how the kin competitions
caused by unilateral altruistic acts and by mutual altruistic acts
work together in the evolution of cooperation.
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Appendix 1. Derivation of Eq. (4)

The master equation of /ðx; tÞ with time step length 1=N is

/ðx; t þ 1=NÞ � /ðx; tÞ ¼ /ðx� 1=N; tÞwþðx� 1=NÞ
þ/ðxþ 1=N; tÞw�ðxþ 1=NÞ
�/ðx; tÞw�ðxÞ � /ðx; tÞwþðxÞ:

ðA1Þ

For large N;/ðx; t þ 1=NÞ;/ðx� 1=N; tÞ and w�ðx
 1=NÞ have the
Taylor series expansions at x and t, which are

/ðx; t þ 1=NÞ � /ðx; tÞ þ @
@t/ðx; tÞ 1

N ;

/ðx� 1=N; tÞ � /ðx; tÞ � @
@x/ðx; tÞ 1

N þ @2

@x2 /ðx; tÞ 1
2N2 ;

w�ðx
 1=NÞ � w�ðxÞ 
 @
@xw

�ðxÞ 1
N þ @2

@x2 w
�ðxÞ 1

2N2 :

ðA2Þ

Notice that

/ðx; t þ 1=NÞ � /ðx; tÞ � @

@t
/ðx; tÞ 1

N
; ðA3Þ

/ðx� 1=N; tÞwþðx� 1=NÞ
� /ðx; tÞwþðxÞ þ /ðx; tÞ � @

@xw
þðxÞ 1

N þ @2

@x2 w
þðxÞ 1

2N2

h i
�wþðxÞ @

@x/ðx; tÞ 1
N þ @

@x/ðx; tÞ
� �

@
@xw

þðxÞ� �
1
N2

þwþðxÞ @2

@x2 /ðx; tÞ 1
2N2 ;

ðA4Þ

and

/ðxþ 1=N; tÞw�ðxþ 1=NÞ
� /ðx; tÞw�ðxÞ þ /ðx; tÞ @

@xw
�ðxÞ 1

N þ @2

@x2 w
�ðxÞ 1

2N2

h i
þw�ðxÞ @

@x/ðx; tÞ 1
N þ @

@x/ðx; tÞ
� �

@
@xw

�ðxÞ� �
1
N2

þw�ðxÞ @2

@x2 /ðx; tÞ 1
2N2 :

ðA5Þ
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Then the right hand of Eq. (A1),

/ðx�1=N;tÞwþðx�1=NÞþ/ðxþ1=N;tÞw�ðxþ1=NÞ
�/ðx;tÞw�ðxÞ�/ðx;tÞwþðxÞ

� /ðx;tÞwþðxÞþ/ðx;tÞ � @
@xw

þðxÞ 1
Nþ @2

@x2w
þðxÞ 1

2N2

h i
�wþðxÞ @

@x/ðx;tÞ 1Nþ @
@x/ðx;tÞ
� �

@
@xw

þðxÞ� �
1
N2

þwþðxÞ @2

@x2/ðx;tÞ 1
2N2

þ/ðx;tÞw�ðxÞþ/ðx;tÞ @
@xw

�ðxÞ 1Nþ @2

@x2w
�ðxÞ 1

2N2

h i
þw�ðxÞ @

@x/ðx;tÞ 1Nþ @
@x/ðx;tÞ
� �

@
@xw

�ðxÞ� �
1
N2

þw�ðxÞ @2

@x2/ðx;tÞ 1
2N2

�/ðx;tÞw�ðxÞ�/ðx;tÞwþðxÞ
¼ /ðx;tÞ @ w�ðxÞ�wþðxÞð Þ

@x
1
N

� �
þ w�ðxÞ�wþðxÞ	 


1
N

@/ðx;tÞ
@x

þ@2 w�ðxÞþwþðxÞð Þ/ðx;tÞ
@x2

1
2N2

þ @
@x/ðx;tÞ
� �

@
@x w�ðxÞþwþðxÞ	 
� �

1
N2

þ w�ðxÞþwþðxÞ	 

1

2N2
@2

@x2/ðx;tÞ
¼ 1

N
@
@x w�ðxÞ�wþðxÞ	 


/ðx;tÞ� �þ 1
2N2

@2

@x2 w�ðxÞþwþðxÞ	 

/ðx;tÞ� �

:

ðA6Þ

Thus, Eq. (A1) can be approximated as

@/ðx; tÞ
@t

¼ � @

@x
Bð1ÞðxÞ/ðx; tÞ
h i

þ @2

@x2
Bð2ÞðxÞ/ðx; tÞ
h i

; ðA7Þ

where

Bð1ÞðxÞ ¼ wþðxÞ � w�ðxÞ;
Bð2ÞðxÞ ¼ wþðxÞþw�ðxÞ

2N :
ðA8Þ
A.2. Derivation of Eq. (5)

Similar to the master equation of /ðx; tÞ, the master equation of
/ðx; p; tÞ about the initial frequency p is given by

/ðx;p;tþ1=NÞ�/ðx;p;tÞ¼ wþðpÞ/ðx;pþ1=N;tÞ
þw�ðpÞ/ðx;p�1=N;tÞ
�wþðpÞ/ðx;p;tÞ�w�ðpÞ/ðx;p;tÞ:

ðA9Þ

Notice that

/ðx;p;tþ1=NÞ¼ wþðpÞ/ðx;pþ1=N;tÞþw�ðpÞ/ðx;p�1=N;tÞ
þ 1�wþðpÞ�w�ðpÞ� �

/ðx;p;tÞ: ðA10Þ

From the Taylor series expansions at p and t, we have that

/ðx;p;tþ1=NÞ�/ðx;p;tÞ � 1
N

@/ðx;p;tÞ
@t ;

wþðpÞ /ðx;pþ1=N;tÞ�/ðx;p;tÞ½ � � wþðpÞ 1
N

@/ðx;p;tÞ
@p þ 1

2N2
@2/ðx;p;tÞ

@p2

h i
w�ðpÞ /ðx;p�1=N;tÞ�/ðx;p;tÞ½ � � w�ðpÞ � 1

N
@/ðx;p;tÞ

@p þ 1
2N2

@2/ðx;p;tÞ
@p2

h i
:

ðA11Þ

Thus, the backward Kolmogorov equation corresponding to Eq.
(A9) can be obtained, which is

@/ðx;p; tÞ
@t

¼ Bð1ÞðpÞ @/ðx;p; tÞ
@p

þ Bð2ÞðpÞ @
2/ðx; p; tÞ

@p2 : ðA12Þ
6

A.3. Derivation of Eq. (7)

The solution of equation

Bð1ÞðpÞduðpÞ
dp

þ Bð2ÞðpÞd
2uðpÞ
dp2 ¼ 0 ðA13Þ

can be expressed as

uðpÞ ¼
Z p

0
HðsÞds=

Z 1

0
HðsÞds ðA14Þ

(Ewens, 2004), where for Nw � 1 (i.e., weak selection), we have
the approximation

HðsÞ � exp � R s
0

Bð1ÞðzÞ
Bð2ÞðzÞ dz

h i
¼ exp �2N

R s
0

w pC ðzÞ�pDðzÞð Þ
2ð1�wÞþw pC ðzÞþpDðzÞð Þ dz

h i
� exp �Nw

R s
0 pCðzÞ � pDðzÞð Þ dz� �

:

ðA15Þ

This also implies that

uðpÞ ¼
R p

0
e
�Nw
R s

0
ðpC ðzÞ�pD ðzÞÞdz

dsR 1

0
e
�Nw
R s

0
ðpC ðzÞ�pD ðzÞÞdz

ds

� p� Nw
R p
0 GðsÞds� p

R 1
0 GðsÞds

h i
;

ðA16Þ

where

GðsÞ ¼
Z s

0
pCðzÞ � pDðzÞð Þdz ¼ sðrb� c � rdÞ þ s2

2
rð2d� edÞ: ðA17Þ

Therefore, we have that

uðpÞ ¼ pþ pð1� pÞNw
2

� rd� ðrbþ cÞð Þ þ 1þ p
3

rð2d� edÞ� �
:

ðA18Þ
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