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Dattani et al.1 developed amethod for inducing hypoblast-like cells from human naive pluripotent stem cells.
They elucidated the requirement for FGF signaling in human hypoblast specialization at a specific time win-
dow, which was previously controversial.
During the blastocyst stage ofmammalian

embryos, three cell lineages are formed:

epiblast, trophoblast, and primitive endo-

derm (PrE, also known as hypoblast in hu-

mans). The PrE will give rise to yolk sac

upon implantation and can further

contribute to the gut after gastrulation.

Unlike in mice, the gene regulatory

network and signaling requirements for

hypoblast specification and yolk sac

development are poorly understood in hu-

mans. PrE stem cells (PrESCs), which

recapitulate the molecular and functional

features of PrE cells, have been estab-

lished in mice.2 Despite identification of

several conserved key transcription fac-

tors that regulate PrE specialization,

such as the upstream GATA6, which sub-
sequently activates SOX17, GATA4, and

SOX7, the signaling requirements for hy-

poblast specialization appear distinct be-

tween humans and mice. Additionally,

stem cell analogs to PrESCs have not

been established for humans.

FGF signaling is known as one of the

most important upstream regulators of

mouse PrE specialization.3 For example,

FGF/ERK signaling is critical for maintain-

ing GATA6-positive mouse PrE cells, and

inhibition of FGF/MEK signaling in mouse

embryos suppresses PrE fate.4 Whether

the FGF signaling is required for human

hypoblast specialization remains contro-

versial.5 In this issue of Cell Stem Cell,

Dattani et al.1 addressed this issue. They

developed a method for inducing the dif-
ferentiation of human naive pluripotent

stem cells (nPSCs, which represent

the pre-implantation epiblast) to hypo-

blast-like cells and revealed the FGF

signaling requirement in human hypoblast

specialization.

Human nPSCs retain the ability to

differentiate into both the trophoblast

and the hypoblast. In their current paper,

Dattani et al. demonstrated that a

combination of the MEK/ERK inhibitor

PD0325901 and Activin/Nodal inhibitor

A83-01, referred to as the PA condition,

can drive nPSCs to differentiate into either

the trophoblast or the hypoblast, depend-

ing on exposure duration. This same con-

dition was previously used by the

same and other labs to generate human
ll 31, July 5, 2024 ª 2024 Elsevier Inc. 945
, AI training, and similar technologies.
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blastocyst-like structures, known as blas-

toids,6,7 which contain cells resembling all

blastocyst lineages. Comparative single-

cell RNA-sequencing (scRNA-seq) ana-

lyses with reference human embryo data-

sets revealed that nPSCs cultured in

PXGL medium and exposed to PA for 24

h, followed by 48 h in N2B27 medium

(PA-N condition), exhibited a shift in cell

fate toward the nascent hypoblast. In

contrast, nPSCs continously exposed to

PA for 72 h differentiated toward the

trophoblast. Thus, PA-N confers a win-

dow of emerging hypoblast in vitro.

Interestingly, scRNA-seq analysis re-

vealed that despite the presence of

PD0325901 during hypoblast differentia-

tion, nPSCs and hypoblast cells highly ex-

pressed FGF ligands (FGF2 and FGF4)

and their receptors, respectively. To

investigate the requirement for FGF

signaling in human hypoblast differentia-

tion from nPSCs, the authors treated

nPSCs with an FGF receptor inhibitor

(PD173074, PD17) at different time points

within the 48 h window following PA treat-

ment. Suppressing FGF signaling with

PD17 immediately after PA treatment

(PA-PD17) greatly prevented hypoblast

emergence, while delayed PD17 treat-

ment (PA-N-PD17) had no effect. More-

over, during human blastoid formation,

PA-PD17 treatment resulted in almost no

hypoblast cells forming. Treating early

day 5 human blastocysts with PD17 ex-

hibited reduced, but not entirely absent,

hypoblast differentiation, suggesting re-

maining requirements for other signaling

pathways. Additionally, the addition of

FGF2 after PA treatment, along with sup-

pressing epiblast and trophoblast differ-

entiation using A83-01 and XAV939,

respectively (FA83X condition), further

enhanced hypoblast differentiation effi-

ciency from nPSCs. In conclusion, using

nPSC-based in vitro models and human

blastocysts, Dattani et al. demonstrated

that nascent hypoblast specialization

from the epiblast requires a transient

FGF signaling activation.

This study not only provided a method

for obtaining nascent hypoblast-like cells

in vitro but also systematically investi-

gated the dependence of FGF signaling
946 Cell Stem Cell 31, July 5, 2024
on early human hypoblast specialization.

Recently, several other studies have re-

ported successful generation of human

hypoblast-like cells. Wei et al. and Okubu

et al. independently developed systems

for inducing human hypoblast-like cells

from nPSCs, both of which also included

FGF ligands.8,9 Wei et al. developed an

FTW condition to induce extraembryonic

endoderm cells in mice, monkeys, and

humans by co-activating FGF, TGF-b/

Smad, and WNT/b-catenin signaling

pathways. Okubu et al. established a

seven-factor condition to induce human

hypoblast-like cells from nPSCs, which

showed high transcriptome correlation

with the hypoblast produced by GATA6

and in vivo. Several other signaling path-

ways, such as BMP, Activin/NODAL,

TGF, WNT, PDGF, and retinoic acid,

were suggested to play a role in hypoblast

specification or in vitro maintenance. It is

important to determine whether these

signaling pathways play a role in the

specialization or the maintenance of the

hypoblast. Weatherbee et al. dissected

the dynamic and potential roles of some

well-known signaling pathways (NODAL,

BMP, and NOTCH) in the spatiotemporal

patterning of human embryos from pre-

to post-implantation, highlighting their

similarities and differences between hu-

mans and mice.10 They suggested a po-

tential role for NODAL and BMP signaling

pathways in hypoblast specialization

and revealed their essential role in the

maintenance of anterior hypoblast after

implantation.

Despite the advances made by Dattani

et al. and others, essential signaling path-

ways regulating hypoblast specification

and self-renewal remain to be further

elucidated before we can derive bona

fide human hypoblast stem cells analo-

gous to their blastocyst counterparts.
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