
e c o l o g i c a l m o d e l l i n g 2 0 4 ( 2 0 0 7 ) 420–426

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

The outbreak pattern of SARS cases in China as
revealed by a mathematical model

Zhibin Zhang ∗

State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology,
Chinese Academy of Sciences, 25 Beisihuan Xilu, Haidian District, Beijing 100080, China

a r t i c l e i n f o

Article history:

Received 13 October 2004

Received in revised form

23 January 2007

Accepted 30 January 2007

Published on line 6 March 2007

Keywords:

a b s t r a c t

Since it first appeared in China’s Guangdong Province, Severe Acute Respiratory Syndrome

(SARS) has caused serious damages to many parts of the world, especially Asia. Little is

known about its epidemiology. We developed a modified discrete SIR model including sus-

ceptible individuals, non-hospitalized SARS persons; hospitalized patients, cured hospital

patients, and those who have died due to SARS infection. Here, we demonstrate the effective

reproduction number is determined by infection rates and infectious period of hospital-

ized and non-hospitalized SARS patients. Both infection rate and the effective reproductive

number of the SARS virus are significantly negatively correlated with the total number of
Severe Acute Respiratory Syndrome

(SARS)

Epidemiology

Model

cumulative cases, indicating that the control measures implemented in China are effective,

and the outbreak pattern of accumulative SARS cases in China is a logistic growth curve.

We estimate the basic reproduction number R0 of SARS virus is 2.87 in mainland of China,

very close to the estimations in Singapore and Hong Kong.

knowledge of R is extremely valuable for developing epidemic
Effective reproduction number

1. Introduction

The first SARS case was reported in China’s Guangdong
Province in November of 2002. The total number of cases
recorded in China climbed to over 5200 with about 5–10%
mortality by the end of 2003. It has been confirmed that SARS
is caused by a new coronavirus, but its epidemiology is little
known (Dye and Gay, 2003; Lipsitch et al., 2003; Riley et al.,
2003). Consequently, modelers are struggling to estimate the
severity of the SARS epidemic, the effectiveness of control
measures and to provide earlier warning of possible SARS out-
breaks (Vogel, 2003). Mathematical models have been widely
used to calculate and describe the dynamic evolution of epi-
demic threshold values and severity (Bailei, 1975; Anderson

and May, 1992). The most widely used is the Kermarck-
McKendrik model, also called the SIR model (Capasso and
Serio, 1978), which is based on a system of three popula-
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tions: susceptible, infectious and removals. Various epidemic
models have been developed from the classic SIR model for
different purposes, or with different assumptions, e.g. the SIRS
model (Mollison, 1995), SEIR model (Keepling et al., 1997), two-
level or two-stage SIR model (Ball and Neal, 2002), SIR models
considering immunity (Greenhalgh et al., 2000), intermediate
class (Méndez and Fort, 2000), non-linearity of infection
(Moghadas, 2002; Wendi and Zhien, 2002; Ruan and Wang,
2003), etc. In classic SIR models, the effective reproductive
number, R, is the threshold parameter of epidemic diseases:
if R < 1, the disease will eventually disappear, but R > 1 implies
that the disease will persist (Hethcote and van den Driesssche,
1995; Wallinga et al., 1999; Diekmann et al., 1990). Therefore,
management strategies as it gives some indication of the
effort required to reach specific goals (Wendi and Zhien, 2002;
Ruan and Wang, 2003). Recently, two studies reported the
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ransmission epidemic of SARS in Singapore and Hong Kong
Dye and Gay, 2003; Lipsitch et al., 2003; Riley et al., 2003).
oth estimated the basic reproduction number R0 is order of
–4. Both teams make use of mathematical models based on
system of four subpopulations: susceptible, exposed, infec-

ious, and recovered (immune) individual, also called a SEIR
odel.

. The discrete models

e developed a discrete SARS model based on the follow-
ng groups: susceptible individuals, N1(t); non-hospitalized
ARS persons, N2(t); hospitalized patients, N3(t); cured hospital
atients, N4(t); and those who have died due to SARS infec-
ion, N5(t); (Fig. 1a). The infectious period of non-hospitalized
atients, T1(t), is defined as the time non-hospitalized SARS
ersons from being infectious to being removed to hospitals.
e assume that non-hospitalized SARS persons are infec-

ious at the rate P1(t). Infected people with symptoms, once
etected, are removed immediately to hospital for isolation
nd treatment. These infected patients further infect doctors,
urses and other front-line hospital staff at the rate P2(t) dur-

ng the treatment period T2(t) in hospitals. Non-hospitalized
ARS individuals are composed of two sub-groups: front-line
ospital staff (doctors, nurses, etc.), N2d(t), and the general
ublic, N2n(t). Non-hospitalized SARS people, N2(t), infect the
eneral public, N2n(t), at the rate P1(t), while hospitalized SARS
atients, N3(t), infect front-line hospital staff, N2d(t), at the
ate P2(t). The transfer rates from N2(t) to N3(t) is determined
y T (t), and the transfer rate from N (t) to N (t) or N (t) are
1 3 4 5

etermined by the proportion of cured patients, P3(t), and T2(t).
he proportion of mortality due to SARS infection is 1 − P3(t).
his model is especially designed for estimating the basic and
ffective reproductive number of the SARS virus from the data

ig. 1 – (a) Diagramatic representation of the SARS model. See te
ffective reproductive number of the SARS model. When R < 1 (©
2 = 0.1473, T1 = 4.5, T2 = 14); when R > 1(�), the outbreak curve is
= 1(�), the outbreak curve is linear (P1 = 0.01404, P2 = 0.1785, T1 =

umulative mortality, cumulative recovered patients and cumula
4 ( 2 0 0 7 ) 420–426 421

that has been released daily by the Chinese Ministry of Health
(CMH) since April 21, 2003.

We assume that the immigration and emigration rates of
infected individuals are the same. Clinical observations indi-
cate that cured SARS patients are unlikely to be infectious
again (Yang, 2003). We will ignore the effect of natural birth
and mortality rates because we are only interested in the
dynamics of the SARS epidemic over a period of short time
(e.g. a few weeks or months). The dynamic model is described
as below:

N1(t + 1) = N1(t) − P1(t) · N2(t) − P2(t) · N3(t) (1)

N2(t + 1) = N2(t) + P1(t) · N2(t) + P2(t) · N3(t) − N2(t)
T1(t)

(2)

N3(t + 1) = N3(t) + N2(t)
T1(t)

− P3(t) · N3(t)
T2(t)

− (1 − P3(t)) · N3(t)
T2(t)

(3)

N4(t + 1) = N4(t) + P3(t) · N3(t)
T2(t)

(4)

N5(t + 1) = N5(t) + (1 − P3(t)) · N3(t)
T2(t)

(5)

Notice that, P1(t)·N2(t) is the number of new SARS cases among
the general public caused by N2(t); and P2(t)·N3(t) is the number
of new SARS cases among front-line hospital staff caused by
N3(t). We assume the T1(t) of N2n(t) and N2d(t) is same, then:

N2n(t + 1) = N2n(t) + P1(t) · N2(t) − N2n(t)
T1(t)

(6)
N2d(t + 1) = N2d(t) + P2(t) · N3(t) − N2d(t)
T1(t)

(7)

The time step in our models is set as one day.

xt for symbol definitions; (b) the outbreak pattern and the
), the outbreak curve is a power curve (P1 = 0.0062,
exponential (P1 = 0.0378, P2 = 0.2144, T1 = 4.5, T2 = 14); when
4.5, T2 = 14). The initial values of total cumulative cases,

tive cases are 3106, 139, 1306 and 653, respectively.
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Table 1 – The cumulative SARS cases in Mainland China
from April 21 to May 12, 2003, released by the Chinese
Ministry of Health

Date Days Total Dead Cured Doctorsa

April 21 1 2158 97 1213 480
April 22 2 2305 106 1231 517
April 23 3 2422 110 1254 541
April 24 4 2601 115 1277 578
April 26 6 2753 122 1285 588
April 27 7 2914 131 1299 610
April 28 8 3106 139 1306 653
April 29 9 3303 148 1322 709
April 30 10 3460 159 1332 727
May 1 11 3638 181 1351 753
May 2 12 3799 322 1372 778
May 3 13 3971 190 1406 810
May 4 14 4125 197 1416 832
May 5 15 4280 206 1433 851
May 6 16 4409 214 1460 883
May 7 17 4560 219 1487 901
May 8 18 4698 224 1529 917
May 9 19 4805 230 1582 925
May 10 20 4884 235 1620 931
May 11 21 4948 240 1652 935
May 12 22 5013 252 1693 941
422 e c o l o g i c a l m o d e l l

3. Theoretical analysis

First, let us assume that the growth pattern of total cumula-
tive SARS cases is linear against time t, and let Ns(t) be total
cumulative SARS cases at time t, then:

Ns(t) = b0 + b1 · t

Ns(t + 1) = b0 + b1 · (t + 1)

Here, b0, b1 are constants.

Ns(t + 1) − Ns(t) = b1

b1 is the number of new SARS cases at time t. That is to say,
if b1 is constant, the growth pattern of SARS cases is linear
against time t. From Eq. (3), the number of new cases of SARS
removed to N3(t) is N2(t)/T1(t), then Ns(t + 1) − Ns(t) = N2(t)/T1(t).
If N2(t + 1) − N2(t) = 0, Ns(t + 1) − Ns(t) is constant and the growth
pattern of SARS cases will be linear; if N2(t + 1) − N2(t) > 0 it will
be exponential; if N2(t + 1) − N2(t) < 0 it will be a power curve.
From Eq. (2):

N2(t + 1) − N2(t) = P1(t) · N2(t) + P2(t) · N3(t) − N2(t)
T1(t)

= 0

P1(t) · T1(t) + P2(t) · T1(t) · N3(t)
N2(t)

= 1 (8)

For a linear growth pattern N2(t) has to be stable. To satisfy the
Eq. (8), N3(t) also has to be stable: N3(t + 1) − N3(t) = 0. From Eq.
(3):

N3(t + 1) − N3(t) = N2(t)
T1(t)

− N3(t)
T2(t)

If N3(t + 1) − N3(t) = 0, N3(t)/N2(t) = T2(t)/T1(t). From Eq. (8),
then

P1(t) · T1(t) + P2(t) · T2(t) = 1 (9)

Let R(t) = P1(t)·T1(t) + P2(t)·T2(t), the outbreak pattern of SARS
cases is determined by the following conditions: R(t) = 1, lin-
ear growth; R(t) > 1, exponential growth; R(t) < 1, power growth.
If P2(t) = 0, i.e. SARS infection among front-line hospital staff
is completely controlled, then the Eq. (9) is written as:
R(t) = P1(t)·T1(t) = 1. Through qualitative analysis, we conclude
that the outbreak pattern of SARS cases is determined by four
parameters: the infection rate among the general public P1(t)
and front-line hospital staff P2(t), the infectious period of non-
hospitalized patients T1(t) and the treatment period of SARS
patients in hospital T2(t).
4. Model parameter estimation

The data provided by the CMH include total cumulative SARS
cases, cumulative SARS cases among front-line hospital staff,
cumulative SARS mortality, cumulative cured SARS cases, and
cumulative suspected SARS cases on the Chinese Mainland
(Table 1). Let us define:
Source: Chinese Ministry of Health.
a Includes all front-line hospital staff.

Ns(t) is total cumulative SARS cases at time t;
Nd(t), cumulative SARS cases among front-line hospital staff
at time t;
Nn(t), cumulative SARS cases among general public at time t;
N5(t) is cumulative SARS mortality at time t;
N4(t) is cumulative cured SARS cases at time t.

Then:

N3(t) = Ns(t) − N4(t) − N5(t) (10)

N2(t) = T1(t) · [Ns(t + 1) − Ns(t)] (11)

Nn(t) = Ns(t) − Nd(t) (12)

N2n(t) = T1(t) · [Nn(t + 1) − Nn(t)] (13)

N2d(t) = T1(t) · [Nd(t + 1) − Nd(t)] (14)

From Eqs. (6) and (13):

P1(t) =

{T1(t) · [Nn(t + 2) − Nn(t + 1)] − T1(t) · [Nn(t + 1)
− Nn(t)] + [Nn(t + 1) − Nn(t)]}

N2(t)
(15)
From Eqs. (7) and (14):

P2(t) =

{T1(t) · [Nd(t + 2) − Nd(t + 1)] − T1(t) · [Nd(t + 1)
− Nd(t)] + [Nd(t + 1) − Nd(t)]}

N3(t)
(16)
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Table 2 – Estimated values of P1 w(t), P2 w(t), R(t) and their standard errors S1, S2 and S

Date Day Ns r
∑

N3(t) P2 w(t) S2
∑

N2(t) P1 w(t) S1 R(t) S

April 21 1 2158 0.0659
April 22 2 2305 0.0495
April 23 3 2422 0.0713
April 24 4 2601 0.0568
April 26 6 2753 0.0568
April 27 7 2914 0.0638 6841 0.0378 0.0023 4266 0.2144 0.0063 1.4937 0.0159
April 28 8 3106 0.0615 8502 0.0169 0.0014 5152.5 0.2031 0.006 1.1503 0.0130
April 29 9 3303 0.0464 9505 0.0230 0.0015 5197.5 0.2329 0.0059 1.3706 0.0137
April 30 10 3460 0.0502 10506 0.0150 0.0012 5472 0.1786 0.0052 1.014 0.0118
May 1 11 3638 0.0433 11565 0.0259 0.0015 5391 0.1835 0.0053 1.1875 0.0125
May 2 12 3799 0.0443 12461 0.0178 0.0012 5481 0.1760 0.0051 1.0413 0.0118
May 3 13 3971 0.0381 13490 0.0085 0.0008 5449.5 0.1708 0.0051 0.8867 0.0112
May 4 14 4125 0.0369 14572 0.0062 0.0007 5283 0.1473 0.0049 0.7492 0.0106
May 5 15 4280 0.0297 15552 0.0112 0.0008 4977 0.1818 0.0055 0.9749 0.0120
May 6 16 4409 0.0337 16454 0.0078 0.0007 4950 0.1598 0.0052 0.8289 0.0113
May 7 17 4560 0.0298 17339 0.0051 0.0005 4770 0.1529 0.0052 0.7589 0.0112
May 8 18 4698 0.0225 18167 0.0017 0.0003 4527 0.1232 0.0049 0.5773 0.0104
May 9 19 4805 0.0163 19055 0.0021 0.0003 4108.5 0.1139 0.0050 0.542 0.0106
May 10 20 4884 0.0130 19709 0.0023 0.0003 3703.5 0.1009 0.0050 0.4854 0.0106
May 11 21 4948 0.0131 20253 −0.002 – 3298.5 0.1608 0.0064 0.6895 –

3

rate

T
c

P

P

T
L
n

a

I
t∑

t
a
2
o
a
o
P
s

c
n

May 12 22 5013 0.0145 20680 0.0000

Ns is the total cumulative SARS cases. r is the instantaneous increase

he weekly average values of P1(t), P2(t) last week at time t are
alculated as:

1 w(t) =

∑{T1(t) · [Nn(t + 2) − Nn(t + 1)] − T1(t)
·[Nn(t + 1) − Nn(t)] + [Nn(t + 1) − Nn(t)]}∑

N2(t)
(17)

2 w(t) =

∑
{T1(t) · [Nd(t + 2) − Nd(t + 1)] − T1(t)
·[Nd(t + 1) − Nd(t)] + [Nd(t + 1) − Nd(t)]}∑

N3(t)
(18)

he standard errors were estimated by following Krebs (1999).
et p1 = P1 w(t); q1 = 1 − p1; n1 =

∑
N2(t); p2 = P2 w(t); q2 = 1 − p2;

2 =
∑

N2(t); S1, S2 and S are standard errors of P1 w(t), P2 w(t)
nd R(t), then:

S1 =
√

p1 · q1

n1

S2 =
√

p2 · q2

n2

S =
√

T1 · S2
1 + T2 · S2

2

t is obvious that using the rolling weekly averages of infec-
ion rates reduces estimation errors since the higher the

N2(t) or
∑

N3(t), the lower the standard errors.
Clinical observations indicate that in mainland of China,

he infectious period of the non-hospitalized persons is usu-
lly between 4 and 5 days with an average of 4.5 days (Yang,
003). The average treatment period (admission to discharge)
f hospitalized SARS patients is 14 days. About 95% of patients
re completely cured. Thus, we assume that the parameters
f T1(t), T2(t) and P3(t) are constant, and let T1 = 4.5, T2 = 14,

= 0.95. The model parameters P (t), P (t), R(t), and their
3 1 w 2 w

tandard errors are shown in Table 2.
The instantaneous rate of increase in cumulative SARS

ases Ns(t) is defined as: r = ln[Ns(t + 1)/Ns(t)]. If the instanta-
eous rate of increase is negative and linear correlated with
.4E−05 3046.5 0.0552 0.0041 0.2485 0.0088

. “–” S2 and S are not calculated due to the negative value of P2(t).

cumulative SARS cases, the growth pattern of cumulative
SARS cases is a logistic (Zhang et al., 2003).

5. Results

Fig. 1b illustrates how effective reproductive number R deter-
mines the outbreak pattern of SARS cases. The initial values
of N1(0), N2(0), N3(0), N4(0), N5(0) are from the data of April 21,
2003, released by CMH. Changing the values P1, P2, P3, T1 and
T2 produce different curves for the total number of cumulative
cases. The simulation results further support the conclusion
that R is the threshold for the outbreak pattern of SARS.

Sensitivity analysis indicates that T1 and P1 are the most
sensitive parameters, T2 and P2 are less sensitive and P3 is the
least sensitive (Fig. 2). Therefore, R is mainly determined by
P1, P2, T1 and T2.

Fig. 3a shows that the effective reproductive number (R)
and infection rates (P1, P2) among front-line hospital staff
and the general public are significantly negatively correlated
with total cumulative SARS cases (Ns). The instantaneous
rate of increase in total cumulative cases is also significantly
negatively correlated with the number of total cumulative
cases, indicating that the outbreak pattern of cumulative SARS
cases in China is a logistic growth curve. Table 3 shows the
results of linear regression between dependents variables (R,
P2, P1, r) and independent variable (Ns). From Table 3, the
maximum R (equal basic reproductive number R0), P2, P1, r
(equal b0 in Table 3) are 2.8716, 0.0684, 0.4245 and 0.1129
when the cumulative SARS case (Ns) is approaching zero.
Therefore, in the early stage of SARS outbreak, each SARS

infect 1.9 (P1·T1 = 0.4245 × 4.5) members of the general pub-
lic, 0.9576 (P2·T2 = 0.0684 × 14) front-line hospital staff. During
the study period, we estimate that each infected individual
infects 0.48–1.49 individuals, average 0.93 (0.18 front-line hos-
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Table 3 – Linear regressions between dependents (R, P2, P1, r) and independent Ns by using linear models: r = b0 + b1Ns,
R = b0 + b1Ns, P2 = b0 + b1Ns, P1 = b0 + b1Ns

Dependent Mth R2 d.f. F Sigf b0 b1

R LIN 0.875 16 111.80 0.000 2.8716 −0.0005
P2 LIN 0.833 16
P1 LIN 0.745 16
r LIN 0.909 22

Fig. 2 – Sensitivity analysis of model parameters P1, P2, P3,
T1, T2. Each parameter was increased or reduced by 20%
while the other parameters remained unchanged. The
linear curve is the contrasting curve (C) (R = 1, P1 = 0.01404,
P2 = 0.1785, T1 = 4.5, T2 = 14). The initial values of total
cumulative cases, cumulative mortality, cumulative
recovered patients and cumulative cases are 3106, 139,
1306 and 653, respectively. The curves of P3* 1.2 and P3* 0.8
are totally overlapped with the contrasting curve (C).

Fig. 3 – (a) The negative relationship between the SARS infection
the infection rate among front-line hospital staff (P2, +) (R2 = 0.74
(R2 = 0.813, p = 0.000), the relative rate of increase of total cumulat
cases of SARS in China. (b) The simulated total cumulative SARS
SARS cases (Ns − O, �), the simulated cumulative SARS cases am
cumulative SARS cases among front-line hospital staff (Nd − O, �
public (Nn − S, *) and the observed cumulative SARS cases among
May 12, 2003.
79.57 0.000 0.0684 −0.00001
46.83 0.000 0.4245 −0.00007

218.51 0.000 0.1129 0.00002

pital staff and 0.75 members of the general public) during the
study period of 3 weeks. In general, the infection of SARS per-
son to front-line hospital staff is better managed due to the
improved protection measures taken in hospitals.

Fig. 3b shows the simulated and observed values of total
cumulative cases, cumulative cases among front-line hospi-
tal staff and the general public. The negative relationship
between infection rates and cumulative cases has been incor-
porated into the model. In general, the simulation curves are
a good fit to the observed growth patterns, but the discrep-
ancy between observed and expected became a little larger
over the last week. Higher accuracy of simulation is achieved
if it is conducted within a 1-week time frame (Fig. 4). These
results indicate that the model is generally a good predictor of
the dynamics of SARS epidemic.

6. Discussions

Although there have been no reported cases of transmis-
sion of SARS during pre-symptomatic period (Lipsitch et al.,
2003), our study suggests that such transmission by SARS per-
son before hospitalized is quite high; about 2–4 times higher

than transmission from hospitalized patients. At present, the
transmission process by non-hospitalized persons is not com-
pletely understood. Infection paths of nearly 20–30% SARS
patients are not clear in mainland of China. Though it is gener-

rate among the general public (P1, �) (R2 = 0.743, p = 0.000),
0, p = 0.000), the effective reproductive number (R, ×)
ive cases (r, �) (R2 = 0.934, p = 0.000) against total cumulative
cases (Ns − S, +), observed values of the total cumulative
ong front-line hospital staff (Nd − S, ×), the observed
), the simulated cumulative SARS cases among the general
the general public (Nd − O, �) in China from April 21 to
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Fig. 4 – Simulations conducted within a 1-week time frame
with the simulated total cumulative SARS cases (+), the
simulated cumulative SARS cases among front-line
hospital staff (×), the simulated cumulative SARS cases
among the general public (*); the observed values of the
total cumulative SARS cases (�), the observed cumulative
SARS cases among front-line hospital staff (�), and the
observed cumulative SARS cases among the general public
(�) in China from April 21 to May 12, 2003. (a) First week, (b)
S
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econd week and (c) Third week.

lly believed SARS persons are only infectious during the few
ays with symptoms, alternative infection paths may exist.
ccording to a survey in China, the SARS virus can survive
everal days outside the body of SARS persons. It is possi-
le these viruses explain the high proportion of SARS cases
ithout unknown origins.

We estimate that the basic reproductive number R0 for a
ingle infected individual in the early stage is 2.8716, which
s very close to the estimation of R0 in Singapore and Hong
ong by Lipsitch et al. (2003) and Riley et al. (2003). The rate
f SARS transmission is not very high compared to some air-

orne diseases, which suggests that transmission of the SARS
irus requires a relatively long-term period of close contact.
his is supported by the fact that SARS cases most often occur
mong family members, residents or workers in the same
4 ( 2 0 0 7 ) 420–426 425

apartment complex or office building and front-line hospital
staff.

Some epidemiologists have suggested that the apparently
linear growth in SARS cases is due to the slow rate of transmis-
sion of the virus, and estimate that each infected individual
infects no more than two other people (Vogel, 2003). Our study
generally supports this speculation, but indicates that the
outbreak pattern of the accumulative SARS cases in China
is logistic in general, rather than linear. The infection rates,
effective reproductive number and the instantaneous rate of
increase in total cumulative cases are significantly negatively
correlated with the total number of cumulative cases. This is
a good indication that the SARS epidemic can be well man-
aged by using traditional prevention measures like isolation,
reduction of contacts, etc.

The basic and effective reproductive numbers are good
indicators of the severity of epidemic diseases and effective-
ness of control (Hethcote and van den Driesssche, 1995). In
general, estimation of these parameters from disease out-
break data is not easy since the actual process of infection is
not observed, data are often incomplete and the rate of infec-
tion is often non-linear. Kramer (1994) accurately simulated
the growth of an HIV infected population. Some other meth-
ods are also proposed to estimate model parameters, like the
Martingale method (Fine and Clarkson, 1982; Yip, 1989; Becker,
1989, 1993; Haydon et al., 1997; Becker and Britton, 1999),
Markov Chain Monte Carlo method (O’Neill, 2002). The SARS
model described here is a variant of the SIR model with the
addition of two-stage infections and two sub-compartments
that reflect unique features of the SARS virus. The model has
the advantage that its parameters are easy to estimate from
the data released by the CHM. The advantage of our estima-
tion is that R0, R, P1, P2 can be estimated by using simple data
of cumulative SARS cases as shown in Table 1.

Our model also includes three basic components: suscep-
tible (N1), infectious (N2, N3) and removals (N4, N5). Thus, it
is basically a SIR model used widely in epidemiological stud-
ies (e.g. Capasso and Serio, 1978; Mollison, 1995; Keepling et
al., 1997; Ball and Neal, 2002; Greenhalgh et al., 2000; Dye and
Gay, 2003; Lipsitch et al., 2003; Riley et al., 2003). The differ-
ence of our model from the classic SIR model is that we further
divide the infectious component into two parts: hospitalized
and non-hospitalized populations, and we divide the removal
component into two parts: cured and dead populations. These
modifications were specially done for SARS transmissions.
The other difference is that we define the infectious rate dif-
ferently. Let S(t) is the number of susceptible population at
time t, I(t) is the number of infectious population at time t,
˛ is the maximum infection rate, � is the incubation time. In
the classic SIR model (e.g. Monteriro et al., 2006a,b), the con-
tribution of I(t) to the increase of newly infection population is
calculated as: � = ˛·S(t)·I(t − �). In our model, we define P(t) as
the infection rate of infectious individual of I(t) at time t. Thus,
we have the following equation: � = P(t)·I(t). The parameter P(t)
varies in time. It contains the combined effect of incubation
time, immunity and control efforts. In the classic SIR model, ˛
is assumed to be constant, only S(t) and I(t − �) determine the
increase of newly infected population. In fact, isolation mea-
sures by human obviously affect the infection rate ˛. Such an
effect is not well presented in the classic SIR model.
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It is obvious that our model has advantages over the con-
ventional SIR model because it has fewer parameters. This will
make parameter estimation easier without knowing detailed
mechanism of disease transmission (e.g. incubation time,
immunity and control efforts) and the susceptible population
size. Although the parameters of P1(t), P2(t), T1(t), T2(t) vary in
time, it is reasonable to assume they are stable when they are
estimated at the rolling interval of 1 week.

Using our model, the infection rate of one infectious indi-
vidual can easily be estimated at any time if the accumulative
numbers of infection and dead cases are given. Though this
epidemiological model and the parameter estimation method
are specially designed for SARS transmission, they are also
applicable to other infectious diseases, and to population
growth of other organisms.

The decline of the effective reproductive number indicates
that the measures adopted to control SARS in China are effec-
tive. One of the key preventative measures in China is the
complete isolation of those confirmed or suspected of having
been infected, including anyone likely to have had close con-
tact with confirmed or suspected SARS carriers. This measure
is strongly recommended because the model shows that both
the infectious period (T1) and the infection rate (P1) are very
sensitive parameters. In addition to isolating confirmed cases
reducing the infectious period (T1) is an effective means of
reducing SARS infection. This requires the early identification
of infected individuals using modern diagnostic techniques.
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