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Abstract

Haplotypes contain genealogical information and play a prominent part in population

genetic and evolutionary studies. However, haplotype inference is a complex statistical prob-

lem, showing considerable internal algorithm variability and among-algorithm discordance.

Thus, haplotypes inferred by statistical algorithms often contain hidden uncertainties, which

may complicate and even mislead downstream analysis. Consensus strategy is one of the

effective means to increase the confidence of inferred haplotypes. Here, we present a consen-

sus tool, the CVhaplot package, to automate consensus techniques for haplotype inference.

It generates consensus haplotypes from inferrals of competing algorithms to increase the

confidence of haplotype inference results, while improving the performance of individual

algorithms by considering their internal variability. It can effectively identify uncertain

haplotypes potentially associated with inference errors. In addition, this tool allows file

format conversion for several popular algorithms and extends the applicability of some

algorithms to complex data containing triallelic polymorphic sites. CVhaplot is written

in PERL and freely available at http://www.ioz.ac.cn/department/agripest/group/zhangdx/

CVhaplot.htm.
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Introduction

A haplotype refers to any distinct set of nucleotide sites

linked on the same chromosome that are inherited

together as a unit. Thus, haplotypes contain genealogical

information and are the key components of contempo-

rary evolutionary and population genetic studies. As a

consequence, statistical inference of haplotypes from

population data has gained much attention in recent

years, and a large number (>40) of statistical algorithms

have been developed (for review, see Salem et al. 2005).

The major driving force for such effort is the effectiveness

of statistical haplotyping in reducing cost and labour

in large-scale studies. However, haplotype inference is

a complex statistical problem, showing considerable

internal algorithm variability and among-algorithm

discordance (Huang et al. 2009). Given the complexity of

genetic data and the simplification of assumptions of sta-

tistical models, no single algorithm can closely approach

the truth in every circumstance. For example, it is not

infrequent to observe that the best solution inferred by an

algorithm (i.e. the one being assigned a confidence proba-

bility close or equal to one) is not the true solution, or

more than one inferred haplotype pairs have similar

probability to be correct. Such hidden uncertainty may

complicate and even mislead downstream analysis using

the inferred haplotypes (Lin & Huang 2007). Therefore, a

great effort is needed to increase the confidence of haplo-

type inference results.

Consensus strategy is one of the effective means for

improving the performance of haplotype inference

(Orzack et al. 2003; Niu 2004; Scheet & Stephens 2006;

Kääriäinen et al. 2007; Huang et al. 2008). By combining

matching inferrals from the same approach or competing

approaches into a consensus solution, consensus
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techniques can filter out a great amount of noise signals

in individual inferences. It has been shown by experi-

mental verification that uncertain haplotypes associated

with noise signals can all be inference errors (Huang

et al. 2008). Basically, there are two complementary

approaches in haplotype reconstruction that apply the

consensus strategy. One approach limits its effort in the

internal variability of individual algorithms (e.g. Orzack

et al. 2003); the other approach places its emphasis on the

discordance among algorithms (e.g. Huang et al. 2008).

Approaches combining the two consensus strategies

should substantially increase the confidence for statistical

haplotyping results (Huang et al. 2009).

CVhaplot has been developed to realize such

combined approach. It automates the consensus vote

(CV) approach explored in Huang et al. (2008) (which

evaluates the among-algorithm discordance in haplotype

inference) while also considering the internal variability

of individual algorithms.

Implementation

CVhaplot has the following features: (i) File conversion:

it can convert raw genotype data into input files of

several algorithms, and directly output haplotype data

after the analysis. This avoids the tedious and error-

prone manual operation, being particularly convenient

for large data set; (ii) Data recoding: it recodes each triall-

elic site as two biallelic ones to extend the applicability

of several algorithms that were developed for analysing

biallelic data; (iii) Consistency testing: it can evaluate the

internal variability of individual algorithms using several

diagnostic indices (Huang et al. 2008); (iv) CV solution

inference: it infers CV solution by considering the confi-

dence probability and among-algorithm discordance of

the inferrals. Uncertain haplotypes are identified accord-

ing to among-algorithm discordance; and (v) Data

inspection: after the CV analysis, it identifies samples

that show any mismatch between the inferred and

original genotypes.

Workflow

CVhaplot consists of three Perl scripts: trans.pl, consis-

tency.pl and CV.pl. A typical analysis involves three

steps (Fig. S1). The first step is file conversion using

the script trans.pl. This script also generates three

batch files that allow automatically launching the rele-

vant statistical haplotyping programs and performing

multiple independent iterations at the users’ disposal

(independent iterations refer to different runs of an

algorithm with different seed number or random input

order). Second, the script consistency.pl examines the

internal variability of individual algorithms [excepting

GCHAP (Thomas 2003) and GERBIL (Kimmel &

Shamir 2005), as they always generate unique solu-

tions]. In addition, it helps to produce a HAPINFERX

(Clark 1990) solution with high accuracy and consis-

tency by generating an ensemble (consensus) from

those independent iterations whose NDH (number of

distinct haplotypes) values are among the smallest

(Figs 1, 2 and S4) (see Orzack et al. 2003 for a similar

approach). Finally, CV.pl performs the CV analysis. In

addition to generate the CV solution, it reports the con-

sensus vote information (Table 1 gives an example),

including the confidence probability of inferrals from

each algorithm, the vote number of the CV solution,

the discordance among algorithms, etc. This helps users

to have a closer inspection of haplotype uncertainty in

the CV solution. This script also allows the user to con-

trol which solution of an algorithm is used in the anal-

ysis.

Data conversion

Genotypic sequence data should be in sequential PHYLIP

format as an input file for CVhaplot. The Perl script

trans.pl can reformat the data into the input file formats

of the following programs: PHASE (Stephens et al. 2001),

HAPLOTYPER (Niu et al. 2002), HAPLOREC (Eronen

et al. 2006), ARLEQUIN-EM (Excoffier et al. 2005),

GCHAP, GERBIL, and HAPINFERX. Among them,

HAPLOTYPER, GCHAP and GERBIL require to code

triallelic sites as biallelic ones.
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Fig. 1 Frequency distribution of uncertain haplotypes in the

consensus vote (CV) solution on functions of the number of dis-

tinct haplotypes (NDH) of HAPINFERX inference. The ensemble

summarized from as few as ten independent HAPINFERX itera-

tions substantially (and sufficiently) improves the inference per-

formance compared to using only a single iteration (see Fig. S4

for details). The smaller the NDH values of independent HAP-

INFERX iterations are, the more accurate the ensemble is (Spear-

man rank correlation coefficient, 0.993 for individual error,

d.f. = 11, P < 0.001). Each data point represents 100 CV analyses

of scnpc76 data.
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Table 1 Summary of the output information of a consensus vote (CV) analysis using six algorithms

Number Sample

Confidence

probabilities* Solution status†

Vote number

of CV solution Algorithm assignment group‡

1 IOZLm1 + ) ) + ) ) 3 solutions 2.4 vote (ARLEQUINEM HAPLOTYPER HAPINFERX)

(GCHap PHASE) (HAPLOREC)

2 IOZLm2 + + + + + ) Fully supported 5.7 vote (ARLEQUINEM GCHap HAPINFERX

HAPLOTYPER HAPLOREC PHASE)

3 IOZLm3 + + + + ) ) 3 solutions 3 vote (HAPLOREC HAPLOTYPER GCHap)

(ARLEQUINEM HAPINFERX) (PHASE)

4 IOZLm4 + + + + + + Fully supported 6 vote (ARLEQUINEM GCHap HAPINFERX

HAPLOTYPER HAPLOREC PHASE)

5 IOZLm5 + + + + + ) Fully supported 5.7 vote (ARLEQUINEM GCHap HAPINFERX

HAPLOTYPER HAPLOREC PHASE)

6 IOZLm6 + + + + + + Fully supported 6 vote (ARLEQUINEM GCHap HAPINFERX

HAPLOTYPER HAPLOREC PHASE)

7 IOZLm7 + + + + + + Homozygote NA NA

NA, not applicable.

*‘+’ denotes high probability, i.e. the probability is higher than the threshold value of that algorithm; ‘)’ the low probability. Low proba-

bility leads to weighting down the inferral of an algorithm. The listing order of algorithms is given in the output file.

†The number of solutions among algorithms for each sample. ‘Homozygote’ means the sample is homozygous with clear haplotype

phase. ‘Fully supported’ means one single solution approved by all algorithms was obtained. ‘3 solutions’ means three different solu-

tions were obtained, each being supported by one or more algorithms.

‡Refers to a set of algorithms that gave identical inference results. Here, algorithms of the same group are bracketed together, and those

underlined are algorithms whose solution is identical to the CV solution.
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Fig. 2 Influence of iteration number on the consistency of the ensemble solutions of HAPINFERX inference. The consistency was

examined by four criteria: (a) haplotype-inferring discrepancy (HID), (b) standard deviation (STD) of haplotype-inferring discrepancy

(c) individual-resolving discrepancy (IRD), and (d) standard deviation of individual-resolving discrepancy. NDH is the number of

distinct haplotypes in a solution. HID is the discrepancy of distinct haplotypes between two solutions. IRD is the proportion (number) of

individuals whose genotypes were resolved differently between two solutions. In general, the larger the number of iterations is used, the

more consistent the ensemble solution is. Each data point represents 100 independent single iterations or ensemble solutions.
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Consensus rules

The following weighting rules are employed in CVhaplot

besides the inferring rules described in Huang et al.

(2008). First, inferrals are weighted according to their

confidence probability, which is a probability measure of

haplotype uncertainty computed by individual algo-

rithms. If the probability estimate is lower than a thresh-

old value (i.e. 0.7), the inferral will be assigned a low

weight (e.g. 0.7), and otherwise a high weight (i.e. 1). Sec-

ond, the cumulative vote value for each inferral is used

as the indicator of the reliability of the inferral. Third, the

CV solution only consists of inferrals with the highest

vote value.

Performance

The performance of the program was tested extensively

using sequence data from Locusta migratoria (Huang et al.

2008). The data set is comprised of 1052 chromosomes

and free from genotyping error, bearing 70 polymorphic

sites and 63 distinct haplotypes. A robust performance

was confirmed by comparing inference results of

CVhaplot with those of manual analysis and the true

haplotype data obtained from laboratory experiment.

Figures S2 and S3 demonstrate that compared to PHASE,

the CV approach generally shows a higher accuracy,

although it includes some algorithm with high internal

variability (e.g. HAPINFERX). Most data points in Fig. S2

are lower than 2.9%, which is the average error rate of

100 PHASE iterations (Fig. S3).

Compared to the preliminary version reported in

Huang et al. (2008), the present version of CVhaplot (ver.

2.01) has implemented several important functions and

thus greatly improved its performance and flexibility (see

the program manual for details). Here, in the following

paragraphs, we discuss two key aspects.

Internal algorithm variability was considered

CVhaplot now has options allowing users to run multiple

independent iterations for each algorithm to examine

their internal variability on the genotype data. Among

the algorithms explored in CVhaplot (i.e. HAPINFERX,

PHASE, HAPLOTYPER, ARLEQUIN-EM, HAPLOREC,

GCHAP and GERBIL), the algorithm HAPINFERX usu-

ally displays the highest internal variability (Orzack et al.

2003; Huang et al. 2008, 2009), that is, different HAPIN-

FERX runs tend to give quite different inference results.

This leads to higher error rate in general (Huang et al.

2009).

To further examine this issue, 100 000 iterations of

HAPINFERX with different input order were performed

for the scnpc76 data of Locusta migratoria. It is known that

the NDH value of a solution is a good indicator of the

accuracy of the solution for DNA regions with no (or

weak) recombination (Orzack et al. 2003; Huang et al.

2008, 2009). Short nuclear DNA fragments of a few

hundreds base pairs employed in population genetic

studies are often assumed to be free from recombination,

but this needs verification. Therefore, iterations of

HAPINFERX were grouped into different categories

according to their NDH values, and then the CV analyses

performed separately for different categories. Figure 1

shows that the uncertain haplotypes identified by

CVhaplot could increase by more than 20% when the

HAPINFERX iterations with large NDH values were

used in the CV analysis. Clearly, excessive inference

errors produced by individual algorithm can signifi-

cantly affect the overall performance of the CV approach

and hence require constant vigilance.

Ensemble solution was introduced

Although HAPINFERX manifests high internal algo-

rithm variability, it remains an important algorithm to

be included in the CV analysis because of its theoretical

and technical distinctness (Huang et al. 2008) and popu-

larity. The deficiency of HAPINFERX can be overcome

by choosing a HAPINFERX solution with high accuracy

and consistency, e.g. an appropriate ensemble solution.

Here, ensemble solution refers to a consensus solution

summarized from multiple independent iterations of an

algorithm. Figure 2 shows that ensembles from indepen-

dent iterations can efficiently reduce the internal vari-

ability of HAPINFERX inferences, being more consistent

than single iterations. Ensembles summarized from as

few as ten HAPINFERX iterations (see the following

paragraphs for more details) can substantially improve

the performance of the CV analysis, reducing consider-

ably the proportion of uncertain haplotypes in the CV

solution (Fig. S4A). It also reduces the variance of the

CV approach (Fig. S4B). Note that HAPINFERX ensem-

ble solutions with high accuracy can adequately remove

solutions with large NDH values, thus effectively reduc-

ing uncertain haplotypes associated with high internal

variability (Fig. 1). Therefore, we recommend that users

should first identify a good ensemble solution from

independent HAPINFERX iterations and then use it in

the CV analysis. This technique is equally applicable to

any other algorithms if internal variability becomes a

concern (see Orzack et al. 2003).

In practice, a rather robust frequency distribution

of NDH can be obtained from ‡100 independent HAPIN-

FERX iterations (Fig. S5). Therefore, 100 independent

iterations are generally sufficient for producing a HAP-

INFERX ensemble solution with high accuracy. This is

achieved in two steps. First, ten or more iterations with
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the smallest NDH values are chosen from the 100 itera-

tions; then they are used to generate the more accurate

ensemble solution by simple consensus technique.

Conclusions

CVhaplot effectively automated the consensus vote

approach for haplotype inference introduced in Huang

et al. (2008), allowing sensible identification of uncertain

haplotypes potentially associated with inference errors.

The present version (ver. 2.01) fully considered internal

algorithm variability and among algorithm discordance,

and employed the technique of ensemble solution to

further improve its overall performance. In addition, it

also facilitates file format conversion for several popular

algorithms, and extends the applicability of some algo-

rithms to complex data containing triallelic polymorphic

sites. Given the importance of haplotype determination

in population genetic and evolutionary studies using

nuclear DNA sequences (Zhang & Hewitt 2003), this

tool should promote the employment of nuclear DNA

markers in these research areas.
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comments on the program package, and Vincent Castric, the

subject editor, for valuable suggestions. This work was sup-

ported by the Natural Science Foundation of China (grant nos

30730016, 30870360), the Knowledge Innovation Program of the

Chinese Academy of Sciences (grant no. KZCX2-YW-428), and

the Ministry of Science and Technology of China (grant no.

2006CB805901).

References

Clark AG (1990) Inference of haplotypes from PCR-amplified

samples of diploid populations. Molecular Biology and Evolu-

tion, 7, 111–122.

Eronen L, Geerts F, Toivonen H (2006) HaploRec: efficient and

accurate large-scale reconstruction of haplotypes. BMC Bioin-

formatics, 7, 542.

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an

integrated software package for population genetics data

analysis. Evolutionary Bioinformatics Online, 1, 47–50.

Huang ZS, Ji YJ, Zhang DX (2008) Haplotype reconstruction for

scnp DNA: a consensus vote approach with extensive

sequence data from populations of the migratory locust

(Locusta migratoria). Molecular Ecology, 17, 1930–1947.

Huang ZS, Ji YJ, Zhang DX (2009) Internal algorithm variability

and among-algorithm discordance in statistical haplotype

reconstruction. Molecular Ecology, 18, 1556–1559.
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Supporting Information

Additional supporting information may be found in the online

version of this article.

Fig. S1 The flow chart of CVhaplot analysis.

Fig. S2 Error rate of the CV solution on functions of the number

of distinct haplotypes (NDH) in HAPINFERX inferences.

Fig. S3 Error rate of PHASE inference measured by the occur-

rence of incorrect inferrals (haplotypes) in 100 PHASE iterations.

Fig. S4 Importance of using HAPINFERX ensemble solution in

CV analysis.

Fig. S5 Frequency distribution of the number of distinct

haplotypes (NDH) in HAPINFERX inference.

Please note: Wiley-Blackwell are not responsible for the content

or functionality of any supporting information supplied by the

authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.

� 2010 Blackwell Publishing Ltd

1070 C O M P U T E R P R O G R A M N O T E


