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Abstract.—A Bayesian coalescent-based method has recently been proposed to delimit species using multilocus genetic se-
quence data. Posterior probabilities of different species delimitation models are calculated using reversible-jump Markov
chain Monte Carlo algorithms. The method accounts for species phylogenies and coalescent events in both extant and ex-
tinct species and accommodates lineage sorting and uncertainties in the gene trees. Although the method is theoretically
appealing, its utility in practical data analysis is yet to be rigorously examined. In particular, the analysis may be sensitive
to priors on ancestral population sizes and on species divergence times and to gene flow between species. Here we con-
duct a computer simulation to evaluate the statistical performance of the method, such as the false negatives (the error of
lumping multiple species into one) and false positives (the error of splitting one species into several). We found that the
correct species model was inferred with high posterior probability with only one or two loci when 5 or 10 sequences were
sampled from each population, or with 50 loci when only one sequence was sampled. We also simulated data allowing
migration under a two-species model, a mainland-island model and a stepping-stone model to assess the impact of gene
flow (hybridization or introgression). The behavior of the method was diametrically different depending on the migration
rate. Low rates at < 0.1 migrants per generation had virtually no effect, so that the method, while assuming no hybridiza-
tion between species, identified distinct species despite small amounts of gene flow. This behavior appears to be consistent
with biologists’ practice. In contrast, higher migration rates at > 10 migrants per generation caused the method to infer
one species. At intermediate levels of migration, the method is indecisive. Our results suggest that Bayesian analysis under
the multispecies coalescent model may provide important insights into population divergences, and may be useful for gen-
erating hypotheses of species delimitation, to be assessed with independent information from anatomical, behavioral, and
ecological data. [Species delimitation; coalescent; Bayesian inference; simulation; stepping-stone model; Lindley’s paradox.]

Species have traditionally been identified based on
morphological and behavioral traits, such as plumage,
mating behavior, reproductive incompatibility, etc. The
practice has much subjectivity and can vary widely
among taxonomists working on different species. For
example, Issac et al. (2004) observed that ant taxonomists
tend to be “splitters,” while butterfly taxonomists are
“lumpers,” so that species counts in those two groups
are not comparable. Genetic sequence data can pro-
vide valuable information about processes related to
speciation and species delimitation, such as gene flow
(Hey 2010). Much recent interest has focused on the
use of genetic sequence data to infer the species tree
despite considerable gene tree conflicts, caused for ex-
ample by ancestral polymorphism and lineage sorting.
A number of programs have been developed for this
purpose, including BUCKy (Ane et al. 2007), BEST (Liu
2008; Liu et al. 2009), STEM (Kubatko et al. 2009),
and *BEAST (Heled and Drummond 2010). They as-
sume that individuals are already correctly assigned
to species although the species phylogeny is yet to be
estimated.

Genetic data have also been used to delimit species.
Compared with traditional morphological characters,
genetic data have a clear advantage in delimiting cryp-
tic species, which may be indistinguishable morpho-
logically. Nevertheless, analyzing genetic data in their
proper population genetic and genealogical framework

is a challenging task. Some studies use arbitrary cut-
offs on certain indicators of species status such as the
amount of sequence divergence and the migration rate.
For example, the “10× rule” requires the between-
species divergence to be at least 10 times as large as
the within-species polymorphism (Hebert et al. 2004).
Another common strategy is to reconstruct gene trees at
individual loci and then use the inferred gene trees for
further analysis without accommodating errors in phy-
logeny reconstruction. Such errors may be substantial
due to the high sequence similarity and low information
content of the data and may have a large impact on in-
ference concerning ancestral processes (Yang 2002). For
example, delimitation of species using the genealogical
species concept (Baum and Shaw 1995) has often relied
on the gene trees at all loci (or the consensus of the gene
trees at all loci) showing reciprocal monophyly. In ad-
dition to ignoring phylogenetic errors, the requirement
for reciprocal monophyly is unnecessarily stringent
because the expected time to achieve reciprocal mono-
phyly at a neutral locus is very long (Neigel and Avise
1986; Hickerson et al. 2006) and because conflicting gene
trees can be generated by the stochastic fluctuation of
the coalescent process in the ancestral species (Hud-
son and Coyne 2002; Rannala and Yang 2003). Inferred
gene trees are also used by Knowles and Carstens (2007;
see also O’Meara 2010) as observed data to construct a
likelihood ratio test (LRT) to compare the one-species
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and two-species models. This method accommodates
species tree–gene tree conflicts due to ancestral poly-
morphism and lineage sorting but ignores phylogenetic
errors in gene tree reconstruction. Also, the authors’
use of the χ2 with one degree of freedom for the LRT
appears to be incorrect.

A Bayesian method for species delimitation using
multilocus genetic sequence data has recently been de-
veloped by Yang and Rannala (2010). This uses Bayesian
model selection to calculate posterior probabilities of
different species delimitation models. For example,
the one-species model assumes that the gene trees
among loci are generated by the standard coalescent
with one single population size parameter θ (Kingman
1982a,1982b; Hudson 1983; Tajima 1983). In contrast, a
two-species model may involve three population size
parameters (two θs for the two extant species and a θ for
the common ancestor) and a parameter for the diver-
gence time of the two species (τ ), with the multispecies
coalescent model specifying the distribution of gene
trees at different loci (Takahata et al. 1995; Yang 2002;
Rannala and Yang 2003). Calculation of the Bayesian
posterior probabilities for the two models allows one to
assess whether the sequence data are compatible with
the one-species model, or the two-species model has
to be invoked to explain the data. The method makes
use of concordance of gene trees across multiple loci
as evidence for existence of multiple species but does
not rely on reciprocal monophyly. It accounts for the
species phylogeny, random fluctuations in the coales-
cent process, and uncertainties in the gene tree topology
and branch lengths. The method has been used to de-
limit new species of African forest geckos by Leache
and Fujita (2010; see Bauer et al. 2011; Fujita and Leache
2011 for discussions).

In this paper, we conduct a computer simulation to
examine the statistical properties of the method. Se-
quence data at multiple loci are simulated assuming
either the one-species model or the two-species model
and are analyzed using the reversible-jump Markov
chain Monte Carlo (rjMCMC) algorithms implemented
in the program BPP (Yang and Rannala 2010) to calcu-
late the posterior model probabilities. This part of the
simulation extends the small-scale simulation of Yang
and Rannala (2010) to include more parameter settings
and to use more realistic priors on parameters. We are
interested in two kinds of errors: the false positives (or
the error of splitting the same species into two) and the
false negatives (or the error of lumping two species into
one). We also simulate data under several models in-
volving migration (hybridization) to assess the impact
of migration on the Bayesian inference. Whereas the
current implementation of Yang and Rannala (2010) as-
sumes no gene flow, it is interesting to know how much
gene flow is sufficient to cause the Bayesian method to
infer one species. A real data set of butterfly nuclear
loci is analyzed to evaluate the impact of priors and
to understand the similarities and differences between
the rjMCMC algorithms and the τ -threshold method
suggested by Yang and Rannala (2010).

METHODS

Simulation of Data

Generation of Gene Trees.—Data at multiple loci were
simulated using the program MCCOAL in the BPP pack-
age (Rannala and Yang 2003; Yang and Rannala 2010).
A random genealogical tree with branch lengths was
generated for each locus and used to “evolve” sequences
along the branches of the tree. Sequences at the tips of
the tree constitute the data to be analyzed. The simula-
tion program MCCOAL allows migration, even though
the inference program BPP assumes no migration.

If no migration is assumed in the simulation model,
the gene trees (topology and branch lengths) follow
distributions specified by the multispecies coalescent
model (Rannala and Yang 2003) and are generated by
simulating the coalescent process in each population
(Hudson 2002).

Here we describe the simulation procedure under the
migration model. In this study, we do not distinguish
among different forms of gene flow, such as migration,
hybridization, and introgression, and use those terms
interchangeably. Migration rates are specified using the
matrix M = {Mij}, where the (scaled) migration rate
Mij = Njmij is the expected number of migrants from
population i to population j per generation and where
mij is the migration rate from populations i to j or the
proportion of individuals in population j that are immi-
grants from population i. The gene tree is generated by
tracking the genealogy backwards in time in different
time epochs, defined by the species/population tree, so
that within each epoch the number of populations is
fixed, as is the per-lineage migration rate. In each time
epoch, the waiting time until the next event is sampled
from an exponential distribution with the intensity pa-
rameter (total rate) to be the sum of the coalescent rates
and the migration rates. Consider population i, with
size Ni and with ni lineages ancestral to the sample.
With time measured in generations, the coalescent rate
is ni(ni−1)/2×1/(2Ni), whereas the migration rate from
population j (to population i) is nimji. Divide both coales-
cent and migration rates by μ, so that time is measured
by distance or the expected number of mutations per
site. Then the coalescent rate becomes ni(ni−1)/2×2/θi,
whereas the migration rate from population j (into pop-
ulation i) becomes nimji/μ= niMji/θi × 4. Here θi = 4Niμ
is the population size parameter for population i. The
coalescent and migration rates are summed over all
populations for the time epoch, and the total rate is
used to sample the waiting time until the next event.
Given the occurrence of the event, the event type (coa-
lescent or migration) is sampled in proportion to their
rates. This process is repeated until the time epoch is
exhausted or until the most recent common ancestor for
the whole sample is reached.

For example, for the species tree of Figure 1, there are
5 populations (3 extant and 2 ancestral), so the migration
matrix M is of size 5×5. Simulation is done in three time
epochs. During the first epoch, which runs from time 0
(present) to τ12, there exist three populations (1, 2, and
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FIGURE 1. Species tree and parameters used to illustrate the al-
gorithm for simulating gene trees under the multispecies coalescent
model with migration. There are five populations, referred to as 1, 2,
3, 12 (the ancestor of 1 and 2), and 123 (the ancestor of 1, 2, and 3). This
figure is available in black and white in print and in color at Systematic
Biology online.

3), and migration may be possible between them. Dur-
ing the second epoch (from τ12 to τ123), there exist two
populations: 12 and 3, and migration may be possible if
M12→3 > 0 or M3→12 > 0. During the third epoch (from
τ123), only population 123 exists, so that only coalescent
events are possible.

Coalescent events create new nodes in the gene tree.
The branch length is calculated as the difference be-
tween the ages of the two nodes at the ends of the
branch.

We confirmed the correctness of the simulation pro-
gram by comparison with the theoretical results of
Wilkinson-Herbots (2008), who gives the expectations of
the coalescent times between two sequences under sev-
eral models of population subdivision and migration.
The results for this program validation are in Supple-
mentary material (available from http://www.sysbio.
oxfordjournals.org).

Simulation of Sequence Alignments.—After the gene tree
with branch lengths is generated for each locus, se-
quences at the tips of the gene tree are simulated by
“evolving” sequences along the branches. The JC69
model (Jukes and Cantor 1969) is used in both the
simulation and analysis of the data. We assume no
recombination between sites within each locus and free
recombination between loci, so that gene trees are inde-
pendent across loci. The sequence length at each locus
is 1000 sites.

The One-Species and Two-Species Models.—We examined
the simplest case of comparing the one-species and
two-species models (Fig. 2a). The sequence data were
simulated by fixing the species divergence time τ0 at
0 (one-species model), or at 0.001 or 0.01 (two-species
model), whereas all θ parameters were either 0.01 or

FIGURE 2. Species trees and parameters used in the simulation to
generate sequences at multiple loci. a) A two-species model may have
up to four parameters: the divergence time τ0 and three θ parameters
for the three populations (θA, θB, θ0). b) In the mainland-island model,
the mainland population (O) has a large constant size with param-
eter θO, whereas the two island populations B and A arose at times
τ0 and τ1, respectively, and have since been receiving immigrants
from the mainland. The population size parameters are assumed to
be θA = θB = 0.1θO = 0.001. c) In the stepping-stone model, migration
occurs between two neighboring populations only, at the rate M=Nm.
Samples are then taken from two populations for Bayesian analysis.

0.001. Both τ0 and θ are measured by distance: τ0 = 0.01
means that the sequence at the root of the two-species
tree of Figure 2a is about 1% different from the se-
quences at the tips A or B, whereas θ = 0.001 means that
two random sequences drawn from the population are
∼0.1% different. Note that at such low sequence diver-
gences, correction for multiple hits has negligible effect.
Previous estimates of θ for extant species include 0.0006
for humans (Rannala and Yang 2003),∼0.01 for the man-
groves (Zhou et al. 2007), and a broad range (0.0005–
0.02) for a variety of animal and plant species (Zhang
and Hewitt 2003). Estimates of θ for ancestral species
tend to be much larger than for modern species, but it is
unclear whether the pattern reflects true biological pro-
cesses (such as population subdivision) or is due to ana-
lytical artifact caused by gene flow at the time of specia-
tion creating variable divergence times among loci (Wu
and Ting 2004; Yang 2010). At any rate, the values 0.001
and 0.01 for θmay be representative of many species. Es-
timates for τ include 0.004 for the human–chimpanzee
divergence (Rannala and Yang 2003) but may be much
smaller for recently diverged species. For the butterfly
data analyzed below, θ ≈ 0.005 and τ ≈ 0.0013.

We considered three sample configurations: (1, 1),
(1, 5), and (5, 5), where (n1, n2) means sampling n1 se-
quences from species A and n2 sequences from species
B. In a few cases, larger samples were used as well to
examine the impact of the sample size on the inference.
The data were then analyzed using the rjMCMC algo-
rithms in the program BPP (Yang and Rannala 2010)
to compare the two models. We used the gamma pri-
ors θ ∼ G(1, 100) for all θs and τ0 ∼ G(1, 100) for the
root of the species tree. For data simulated under the
two-species model, the guide tree used had the correct
assignment of the individuals to species. For the data
simulated under the one-species model, the guide tree

http://www.sysbio.oxfordjournals.org
http://www.sysbio.oxfordjournals.org
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was generated by random assignment of individuals to
the two potential species. This part of the simulation
without migration extends the simulation of Yang and
Rannala (2010) and provides a basis for comparison
with simulations that involve migration.

We then simulated data sets under the two-species
models assuming migration between the two species/
populations. The migration rate is assumed to be the
same in the two directions, and migration rate is
measured by the expected number of immigrants in one
generation in each population. The data sets are then
analyzed using the rjMCMC algorithms as above to cal-
culate the posterior probabilities for the one-species and
two-species models. The same priors θ ∼ G(1, 100) and
τ0 ∼ G(1, 100) are assumed. Note that the BPP analysis
assumes no gene flow.

The Mainland-Island Model.—The species tree is shown
in Figure 2b. The mainland population O has the con-
stant size with parameter θO, and the two island popu-
lations A and B were much smaller with θA and θB. We
assumed θO = 0.01 and θA = θB = 0.001. Populations B
and A diverged from population O at times τ0 and τ1,
respectively. We used τ0=0.01 and considered three val-
ues for τ1: 0.001, 0.005, and 0.009. We considered a case
of no migration as well as a case of migration from the
mainland to the islands, with MOA =MOB =M, whereas
migration from the islands A or B to the mainland O, or
between A and B, was absent. The priors used in data
analysis were θ ∼ G(1, 100) for all θs and τ0 ∼ G(1, 100).

The Stepping-stone Model.—Data were simulated using
a linear stepping-stone model with four populations of
equal size (θ) (Fig. 2c). Migration was allowed to occur
at the same rate M = Nm in both directions between
any two adjacent populations, whereas migration be-
tween other populations was absent. Our simulation
program MCCOAL assumes a population/species tree.
The stepping-stone model is equivalent to the isolation-
migration model with infinite species divergence times.
Thus, we simulated this model by assuming an arbi-
trary species tree, for example ((A, B), (C, D)), with the
three divergence times (τs) being much greater than the
θs so that the root of the gene tree was expected to be
much younger than all the divergence times. The sam-
ple configuration was (5, 5), with five sequences each
taken from two populations: (a) A and B, (b) A and C,
or (c) A and D, whereas no sample was taken from the
other two populations. The data were then analyzed to
compare the one-species and two-species models. The
parameter values were θ = 0.01 for all four populations
and M = 0.001, 0.01, 0.1, 1, 10, and 100. The priors used
in the analysis were θ ∼ G(1, 100) for all θs and τ0 ∼ G
(1, 100).

Variable Rates among Loci.—To examine the impact of
the variable mutation rates among loci on posterior
probability for different species models, we simulated

sequence alignments assuming that the mutation rate
for each locus is a random variable from the gamma
distribution G(1, 1). The parameters used were θ = 0.01
and τ0 = 0 (one species) or 0.01 (two species). These are
defined using the average mutation rate over all loci.
The data were analyzed using the rjMCMC to compare
the one-species and two-species models assuming either
a constant rate for all loci or a model of variable rates
among loci, described using a Dirichlet distribution
with α = 2 (Burgess and Yang 2008, equation 4). Note
that the gamma and Dirichlet models for variable rates
among loci are equivalent except for a slight difference
in Bayesian parametrization: the former assumes that
the rate for each of the L loci has expectation 1: E(ri)= 1,
whereas the latter assumes that the average rate across
the L loci is 1: (r1 + r2 + . . . + rL)/L= 1.

Running the rjMCMC Algorithms.—For each parame-
ter setting, 1000 replicate data sets were simulated.
Each data set was analyzed using the two rjMCMC
algorithms described in Yang and Rannala (2010) to
ensure that the results were stable between runs. The
two MCMC samples were then merged to calculate the
posterior probabilities for the different species delimita-
tion models. Good fine-tune parameters were obtained
by trial and error according to the manual for BPP and
they differ for different simulation conditions such as
different data sizes.

Analysis of an Empirical Data Set of Heliconius Butterflies

Sequence data at four nuclear autosomal loci for two
sibling butterfly species Heliconius demeter and H. er-
atosignis were kindly provided by James Mallet and
Kanchon Dasmahapatra. Those species were identi-
fied as H. demeter ucayalensis and H. demeter ssp. nov.
in Dasmahapatra et al. (2010), but there now seems to
be little doubt that they are “good” separate species,
referable to the already published names Heliconius
demeter and Heliconius eratosignis (K. Dasmahapatra and
J. Mallet, personal communication). The two cryptic
species are largely allopatric or parapatric, but they
overlap in sympatry without evidence of hybridization
at Tarapoto, Peru, from where the data were obtained
(Dasmahapatra et al. 2010). The four loci are Ef1a (18
sequences, 766 bp), Mpi (9 sequences, 496 bp), Rp15 (15
sequences, 713 bp), and Tektin (9 sequences, 733 bp).

We have two objectives with analysis of this data set.
First, we are interested in the impact of the priors on
the Bayesian comparison of the species models. Thus,
the data were analyzed using the rjMCMC algorithms
with different priors for θ and τ0 to calculate the pos-
terior model probabilities. Second, we used the data to
examine the similarities and differences between the
rjMCMC algorithm and the τ -threshold method (Yang
and Rannala 2010). The τ -threshold method runs the
ordinary MCMC (instead of the rjMCMC) under the
two-species model and then evaluates the posterior
probability that the divergence time τ is less than a
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prespecified threshold value (τT). This was imple-
mented by Yang and Rannala (2010) as an alternative to
the rjMCMC algorithms, which often have mixing prob-
lems in large data sets. Here the data set is small enough
for both methods to be applicable. Mathematically both
the rjMCMC method and the τ -threshold method are
just different priors on τ0 under the same two-species
model. The rjMCMC uses a mixture prior on τ0: a com-
ponent of 0 and another component from the gamma
distribution, each with probability 50%, whereas the
τ -threshold uses a simple gamma prior. The case is sim-
ilar to the use of the gamma model versus the invariable
sites plus gamma model to accommodate variable rates
among sites in phylogenetic analysis (i.e., the “+Γ” and
“I + Γ” models) (Yang 1996). However, in a phyloge-
netic analysis, the focus is on the phylogeny and branch
lengths with the rate distribution to be of secondary
importance. Here τ0 is the focus.

RESULTS

Simulation Comparing the One-Species and Two-Species
Models

We simulated data under either the one-species model
(τ0 = 0) or the two-species model (τ0 > 0) and ana-
lyzed them using the rjMCMC algorithms to calculate
the posterior probabilities for the two models. Let these
be P1 and P2, with P1 + P2 = 1. The results are shown in
Figure 3.

First we consider Figure 3a–c, which shows P1 for
data simulated with τ0 = 0 (one species). P1 is quite
high even with one locus. Note that without data, the
two models have probability 1/2 each from the prior. If
we would like to avoid species inflation and consider
the false-positive error (the error of incorrectly selecting
the two-species model) to be serious and claim that
there are two species only if P2 > 95%, we may calculate
the false-positive error rate, akin to the type I error rate
in frequentist hypothesis testing. For the simulations
of Figure 3a–c, the false-positive rates are very low, at
≤0.5% for θ = 0.001 and ≤1% for θ = 0.01. Note that
the probability P1 for the correct one-species model can
reach ∼1 even with one locus when five sequences were
sampled from the population. Indeed P1 was higher for
the sample configuration (5, 5) with only one locus (with
a total of 10 sequences) than for the sample configura-
tion (1, 1) with 10 loci (with a total of 20 sequences) (cf.
Fig. 3a with Fig. 3c).

Figure 3d–i shows P2 for simulation with τ0 = 0.001
and 0.01 so that the true model is the two-species model,
and incorrectly selecting the one-species model may be
considered a false-negative error. P2 was much lower
when τ0 = 0.001 than when τ0 = 0.01: the two species
must be much harder to identify if their divergence is
more recent. For the sample configurations (1, 1) and (1,
5), P2 is close to 1 when 50 loci are available, whereas
for the configuration (5, 5), P2 is close to 1 when five or
more loci are available. The “power” of the method ap-
peared to be quite high. To see the impact of sampling,

FIGURE 3. Mean posterior probability for the correct model when
the data are simulated under the one-species model (τ0 = 0) or under
the two-species model (τ0 > 0) (Fig. 2a) without gene flow. The quar-
tiles (25% and 75% points) are shown as error bars. The priors used in
the analysis are θ ∼ G(1, 100) and τ0 ∼ G(1, 100). Note that the x-axis
is not to scale and that for clarity the points are slightly off position.

we also simulated data sets of one locus for the sample
configurations (10, 10), (15, 15), and (20, 20) for the case
of τ0=0.001 (cf. Fig. 3f). For θ=0.001, P2=0.91, 0.96, and
0.98 for the three configurations, respectively, whereas
for θ= 0.01, the corresponding values are P2= 0.83, 0.97,
and 0.99, respectively. It is noteworthy that the method
can infer the correct two-species model with posterior
probability close to 1 with just one locus, as long as a
large sample is taken from each population. Similarly,
P2 is higher for the sample configuration (5, 5) with only
one locus than for the sample configuration (1, 1) with 10
loci (cf. Fig. 3d with Fig. 3f). This pattern is in contrast to
the estimation of θ from a single population, in which
inclusion of more sequences adds very little informa-
tion when three to five sequences are already sampled,
because coalescent events occur extremely quickly near
the tips of the gene tree (e.g., Felsenstein 1992). The in-
formation used in the comparison of species tree models
is clearly different from that used for estimating a single
θ: for example, reciprocal monophyly of the gene tree
for two large samples from the two populations will be
strong evidence for two distinct species.

In smaller data sets, for example, with one or two loci
for the sample configurations (1, 1) or (1, 5), P2 can be
rather low, with substantial false-negative errors. For
some parameter combinations with only one or two loci
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(Fig. 3d,e), P2 < 1/2, so that the method performed
more poorly than without data. This is because of the
impact of the priors in small data sets. The prior means
for τ0 ∼ G(1, 100) and θ ∼ G(1, 100) are much larger
than the true values, so that the priors are somewhat in
conflict with the data, leading to reduced support for
the two-species model (see Discussion section). Similar
results were observed in the simulation of Yang and
Rannala (2010), where the priors used were even more
extreme and unrealistic.

The Impact of Migration

Two Populations with Migration.—Migration should have
the effect of homogenizing the populations and cause
the Bayesian analysis, which ignores migration, to fa-
vor the one-species model. Figure 4 shows P2 for data
simulated under the two-species model with migration
but analyzed assuming no migration. If the migration
rate is low, with <0.1 migrants per generation, the pos-
terior probability for the correct two-species model P2
was nearly identical to those when there is no migration
(cf. Fig. 4a with Fig. 3g and Fig. 4b with Fig. 3i for the
case of θ= 0.01 with 1 locus or 10 loci). Migration at this
level appeared to have little impact on Bayesian species
delimitation.

If the migration rate is high, with ≥10 migrants per
generation, P2 is near zero for most settings except for

FIGURE 4. Mean posterior probability for the correct model (P2)
when the data are simulated under the two-species model with mi-
gration (Fig. 2a). The parameters are θ = τ0 = 0.01. The priors used in
the analysis are θ ∼ G(1, 100) and τ0 ∼ G(1, 100). The migration rate
is measured by M=Nm, the expected number of migrants per genera-
tion. Note that the x-axis is on the logarithmic scale and the points are
shifted off position for clarity.

the very small data sets with sample configuration (1, 1)
and 1 locus, in which P2 was moderate, influenced by
the prior. At this level of migration, the method strongly
favors the one-species model.

If the migration rate is moderate with one migrant per
generation (M= 1), P2 is neither very high nor very low
in small data sets, although in large data sets, with the
configuration (10, 10) or (20, 20) and 10 loci, P2 ≈ 1.

Note that if M = 0, the two-species model is true,
whereas if M → ∞, the one-species model is true.
For Bayesian species delimitation under the parame-
ter settings used here, the “phase change” appeared to
occur around M = 1 migrant per generation or in the
range 0.1 < M < 10. We extended the simulation of
Figure 4b for 10 loci with the configuration (5, 5), to
explore further the impact of the migration rate M and
the divergence time τ0. The same priors were used as
before: θ ∼ G(1, 100) and τ0 ∼ G(1, 100). The results are
shown in Figure 5. The effect of migration was striking
and diametrically different depending on the migration
rate: when the migration rate was low with <0.1 immi-
grants per generation, the method behaved as if there
was no migration. At high migration rate with 5 or 10
immigrants per generation, the method inferred one
species. In comparison, the effect of the divergence time
τ0 was minor. When M = 5 or 10, P2 did not increase
with the increase of τ0.

The apparent peaks in P2 around τ0=0.0005–0.001 for
moderate levels of migration (with M = 1 and 5) were
apparently due to the impact of the prior: P2 tends to
be high when the prior on τ0 is consistent with the data
(Discussion and unpublished results).

Overall, the results appear to be consistent with the
theories in population genetics that examine the impact
of migration on population differentiation at neutral loci
measured by FST (e.g.,Takahata 1983): if M = Nm � 1,
the populations will be strongly differentiated, whereas
if M � 1 (e.g., if there are more than 10 or so migrants),

FIGURE 5. Mean posterior probability for the two-species model
(P2) when the data are simulated under the two-species model with
and without migration (with Nm = 0 or > 0). The data consist of 10
loci with sample configuration (5, 5). The priors used in the analysis
are θ ∼ G(1, 100) and τ0 ∼ G(1, 100). Parts of the results are shown in
Figure 4b.
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migration will swamp the population and the popula-
tion will behave as a panmictic unit. It is interesting that
Bayesian comparison of species models led to the same
conclusion from a very different perspective.

The Mainland-Island Model.—In this simulation, the
mainland population (O) has had a large and constant
size with parameter θO = 0.01, and it gave rise to two
island populations B and A through dispersal, with pa-
rameters θA = θB = 0.001 (Fig. 2b). We fix the divergence
time at the root of the species tree at τ0 = 0.01, whereas
three values are used for τ1: 0.001, 0.005, and 0.009. Mi-
gration is always from the mainland to the islands with
the scaled migration rate to be M = 0, 0.001, . . . , 10. In
the analysis of the data, the true species tree, ((O, A),
B), was used as the guide tree to run the rjMCMC al-
gorithms. There are three species models, generated by
collapsing none, one, or both of the two internal nodes
in the guide tree, respectively (Fig. 2b): the three-species

model, the two-species model (with two species B and
OA) and the one-species model. Let the posterior proba-
bilities for them be P3,P2, and P1. Figure 6a–c shows P3,
whereas Figure 6d–f shows P3,P2, and P1 for the sample
configuration (5, 2, 2) with 1 locus. As in the analysis
of the one-species and two-species models, including
more sequences from the same population increased
the power of the method considerably, so that P3 for (5,
2, 2) with 1 locus was higher than P3 for (2, 1, 1) with
five loci. Migration at rates lower than 0.01 migrants
per generation had little impact, whereas one migrant
per generation tended to lead to the inference of one
species. Migration appeared to be more important here
than in the comparison between the one-species and
two-species models in Figure 4. For example, the re-
sults for M = 0.1 and 0 were quite different in Figure 6
but were similar in Figure 4. This appears to be due to
the fact that here θA = θB = 0.001 is 10 times smaller
than in Figure 4. The impact of migration is affected not
only by the number of immigrants (Nm) but also by the

FIGURE 6. Mean posterior probabilities for different species-tree models when the data are simulated under the mainland-island model
(Fig. 2b). In (a)–(c), the mean posterior probability P3 for the three-species model is shown, whereas in (d)–(f), the mean posterior probabilities
for all three species models (P3,P2,P1) are shown for the sample configuration (5, 2, 2) and 1 locus. The parameters used are θO = 0.01, θA =
θB = 0.001, τ0 = 0.01, whereas τ1 = 0.001 (a,d), 0.005 (b,e), and 0.009 (c,f). The priors used in the analysis are θi ∼ G(1, 100) and τ0 ∼ G(1, 100).
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population size: at the same Nm, a smaller population
size (N)means a larger proportion of immigrants (m).

The Stepping-stone Model.—The data were simulated un-
der the equilibrium migration model of Figure 2c, but
samples were taken from two populations only. We re-
fer to the data sets as AB, AC, and AD data, respec-
tively, depending on the two populations sampled. This
simulation is intended to mimic geographical isolation,
where a species has a very broad geographical distribu-
tion with migration occurring between close localities
only. The concern for the Bayesian method of species
delimitation is that with samples taken from distant lo-
calities, the method may be misled to infer two species
because the migration rate between them is very low.
We took two samples from localities that are close by
(AB data), intermediate (AC data), or very distant (AD
data), and then run the rjMCMC algorithm to compare
the one-species and two-species models.

Figure 7 shows the mean posterior probability for the
two-species model (P2). First, we consider the results for
the AB data. If the migration rate is low, at≤0.1 migrants
per generation between any two adjacent populations,
P2 is near 1. With 10 or more migrants per generation, P2
is near 0 so that BPP will support the one-species model
with probability near 1. The results are similar to those
for the two-species case of Figure 4b.

The results for the AD data (Fig. 7) show that P2 for
the AD data was not much higher than for the AB and
AC data. At M > 1, the populations appear to have
been homogenized by migration, so that the one-species
model is strongly supported by the Bayesian method.
This result may be surprising, as intuitively one may ex-
pect the migration rate between A and D to be close to
m3 if the rate between A and B is m. However, this in-
tuition is incorrect. It is known from analysis of similar
stepping-stone models in population genetics that the
migration rate between A and D is in the order of m/3
instead of m3 (Strobeck 1987; Slatkin 1991). The results
of Figure 7 are consistent with this theory. As this faulty
intuition appears to be common, we include a more de-
tailed version of Slatkin’s proof in the Appendix.

The results of Figure 7 suggest that the Bayesian
inference may be quite robust to complex population
structures or ghost populations (Beerli 2004; Wakeley
and Aliacar 2001). When sequences are sampled from A
and D and used for species delimitation, the method is
not misled to infer two species even though the inter-
mediate populations (B and C) are not sampled.

The Impact of Mutation Rate Variation among Loci

Inference of ancestral population parameters relies to
some extent on the stochastic fluctuation of the coales-
cent process among loci, generating different topologies
and branch lengths in the gene trees. It may thus be a
concern that such inference may be sensitive to mutation
rate variation among loci. To examine the impact of the
variable mutation rates on the posterior probability for

FIGURE 7. Mean posterior probability for the correct model (P2)
when the data are simulated under the stepping-stone model of Fig-
ure 2c. The size of each of the four populations is θ = 0.01, whereas
M = Nm is the migration rate between two adjacent populations. The
sample configuration is (5, 5), with samples taken (a) from A and B,
(b) from A and C, and (c) from A and D. The data were then analyzed
to compare the one-species and two-species models. The priors used
in the analysis are θ ∼ G(1, 100) and τ0 ∼ G(1, 100).

different species models, we simulated sequence align-
ments under the one-species and two-species models as-
suming that the mutation rate for each locus is a random
variable from the gamma distribution G(1, 1). The shape
parameter α = 1 may be too small if the multiple loci
represent noncoding genomic regions but reasonable if
coding regions are used as well (Yang 1996). The para-
meters used were θ=0.01 and τ0=0 (one species) or 0.01
(two species). These are defined as averages over all loci.

The data were analyzed using the rjMCMC algo-
rithms to compare the one-species and two-species
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FIGURE 8. Mean posterior probability for the correct species model when the data are simulated under a model of variable rates among loci.
The sequence data were simulated under the one-species (τ0 = 0) and two-species (τ0 > 0) models, with variable mutation rates among loci
drawn from G(1, 1). The parameters used were θ = 0.01 and τ0 = 0 (a) or 0.01 (b). The data were analyzed under both the model of a constant
rate for loci (◦) and the model of variable rates among loci (�).

models assuming either a constant rate for all loci or
a model of variable rates among loci, modeled using
a Dirichlet distribution with α = 2 (Burgess and Yang
2008). The results are shown in Figure 8. In small data
sets, that is, with the sample configuration (1, 1) and 2
or 10 loci, the posterior probability for the one-species
model (P1) is higher when the rate variation among
loci is ignored than when it is accommodated in the
model. In other words, incorrectly ignoring rate vari-
ation among loci causes the method to unduly favor
the one-species model, whether the true model used
for data generation is one species or two species. The
reasons for this effect are not well understood. How-
ever, we examined the posterior parameter estimates.
Under the one-species model, the single parameter θ
is very slightly overestimated when rate variation is
ignored. Under the two-species model, parameter θAB
for the ancestor is seriously overestimated and τ is se-
riously underestimated when rate variation is ignored.
For example, for the case of τ0 = θ = 0.01 and when rate
variation is ignored, the average posterior means were
0.0217 for θAB and 0.0019 for τ for data configuration
(1, 1) with 10 loci, and were 0.0254 for θAB and 0.0039
for τ for the configuration (5, 5) with 10 loci. When rate
variation was accommodated, the posterior means were
close to the true values: 0.0125 for θAB and 0.0081 for τ
for configuration (1, 1) with 10 loci, and 0.0092 for θAB
and 0.0103 for τ for configuration (5, 5) with 10 loci.
The underestimated τ and overestimated θ when rate
variation among loci is ignored should make the two-
species model look similar to the one-species model,
which may explain the increased P1. The overestimation
of ancestral θ in the case of two species when rate varia-
tion among loci is ignored was discussed extensively by
Yang (1997).

In large data sets, that is, with the sample configura-
tion (5, 5) and with 2 or 10 loci, the posterior probability
for the correct model (P1 in Fig. 8a and P2 in Fig. 8b)
is ∼1 whether rate variation among loci is ignored or
accommodated, so there is little difference between the
two analyses.

Analysis of the Butterfly Data Set

Sequence data at four nuclear loci from the butter-
fly species H. demeter and H. eratosignis were analyzed.
First, we apply the two-species model to obtain some
basic parameter estimates. Use of the priors θ ∼ G(2,
500) and τ0 ∼ G(2, 2000) led to the following posterior
estimates (mean and 95% confidence interval): 0.0058
(0.0027, 0.0108) for θD, 0.0048 (0.0023, 0.0086) for θE,
0.0078 (0.0041, 0.0130) for θO, and 0.0013 (0.0006, 0.0022)
for τ0. The priors were noted to have some impact on
the estimates of the θ parameters. For example, with
the priors θ ∼ G(2, 2000) and τ0 ∼ G(2, 200), the esti-
mates were 0.0035 (0.0019, 0.0057) for θD, 0.0032 (0.0018,
0.0051) for θE, 0.0043 (0.0022, 0.0069) for θ0, and 0.0014
(0.0006, 0.0024) for τ0. Note that the estimates of τ0 (at
∼0.0013) were quite stable. If we use a mutation rate of
10−9 substitutions per site per year, this τ0 estimate will
translate into 1.4 myr of divergence between the two
species.

We then use the rjMCMC algorithms to calculate the
posterior probability for the two-species model (P2)
with different priors for θs and τ0. The one-species
model involves a single parameter θ, whereas the two-
species model involves four parameters: θD and θE
for the two extant species, θ0 for the ancestor, and τ0.
Figure 9a and b plots P2 against the parameters in the
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FIGURE 9. Contour plot of the posterior probability (P2) for the two-species model plotted (a) against the parameters in the prior θ ∼
G(α, β), with τ0 ∼ G(2, 2000) fixed; and (b) against the parameters in the prior τ0 ∼ G(α, β), with θ ∼ G(2, 500) fixed. In each case, P2 is
plotted against the shape parameter α and the mean α/β in the gamma prior. The four-loci data from the butterfly species Heliconius demeter
and H. eratosignis are analyzed using the rjMCMC algorithms. Note that both axes are on the logarithmic scale.

prior for the θs and the prior for τ0, respectively. Note
that the gamma prior G(α, β) has mean E = α/β, mode
(α − 1)/β (if α > 1), and variance V = α/β2. Thus
α = E2/V determines whether the gamma prior is dif-
fuse or informative: α = 1 may be considered a diffuse
prior, whereas α=5 or 10 highly informative priors. The
impact of the prior on P2 is largely determined by two
factors: how informative the prior is (α) and whether
the prior is in conflict with the data, with the latter be-
ing indicated by how close the prior mean or mode is
to the maximum likelihood estimate (MLE). From the
Bayesian estimates under different priors (see above),
the MLEs of parameters under the two-species model
may be close to 0.005–0.01 for the θs and 0.0013 for τ0.
Thus, we may consider the priors to be reasonable if
the prior means are in the range 0.001–0.05 for θs and
0.0001–0.01 for τ0. For priors in those ranges, P2 ≈ 1,
consistent with the species status of the two species.
Our theory (see Discussion section) predicts that P2
tends to be lower when the prior (in particular, the prior
on τ0) is informative and in conflict with the data. In
Figure 9, the smallest P2 was found when the prior is
highly informative (α = 5 or 10) and the prior mean is
orders of magnitude too large or too small for the data.

We then analyzed the data using the τ -threshold
method (Yang and Rannala 2010). An ordinary MCMC
algorithm was used to generate the posterior distri-
bution of parameters under the two-species model
(Rannala and Yang 2003) and the probability that the
divergence time τ0 is greater than a threshold value
τT was calculated from the posterior; this was taken
as the posterior probability for the two-species model:
P2 = Pr{τ0 > τT}. For this method, the choice of the
threshold value τT and of the prior on τ0 requires
care.

Here we consider two ideas. The first is to try to match
up the means and the variances between the two priors
on τ0. As the two prior distributions look very differ-
ent even with the same mean and variance, they may
still produce very different posterior model probabili-
ties. Suppose the gamma prior is τ0 ∼ G(α, β) in the
τ -threshold method, whereas the rjMCMC method as-
signs the prior probability 0.5 to the point value 0 and
probability 0.5 to G(a, b). Equating the means and vari-
ances between the two priors leads to α = 2a, and β = b
while τT is chosen so that there is 50% prior probability
left and right of τT, that is, τT is the median of G(α, β).
With the rjMCMC algorithms, we used the priors θ ∼
G(2, 500) and τ0 ∼ G(2, β), and found P2 ≈ 1 for β= 100,
1000, and 10,000. For the τ -threshold method, the match-
ing priors were θ ∼ G(2, 500) and τ0 ∼ G(1, β), with
τT = log(2)/β, which gave P2 = 0.00, 0.95, and 1.00 for
β = 100, 1000, and 10,000. Although the two analyses
agreed with each other for β=1000 and 10,000, they were
very different for β = 100.

The second idea is to decide on the threshold τT based
on a species definition. Here, we chose τT=0.0002 based
on 106 generations of divergence for a butterfly species,
with 4–6 generations per year, and a mutation rate of
10−9 mutations per site per year. We then fixed the shape
parameter α = 1 for the gamma prior for τ0 ∼ G(1, β)
and use Pr(τ0 > τT) = 0.5 to derive the scale param-
eter β, giving β = log(2)/τT = 3466. In other words,
τ0 ∼ G(1, 3466). The posterior probability under this
prior was calculated to be P2 ≈ 1, with a strong support
for the two-species model.

In summary, both the rjMCMC and τ -threshold
methods provide strong support for the distinct species
status of the two butterfly species. Although both meth-
ods may give compatible results for the same data, we
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note that the τ -threshold method is very sensitive to
the divergence threshold τT. We thus suggest that the
rjMCMC method of calculating posterior model proba-
bilities should be preferred.

DISCUSSION

Barcoding Dap, Reciprocal Monophyly, and DNA
Taxonomy

DNA barcoding uses a genetic marker (often a sin-
gle gene) to assign an individual to a particular known
species. It has also been suggested that barcoding can
be used to identify unknown species based on the ex-
pectation that interspecific genetic divergence consid-
erably exceeds intraspecific variation to form a clear
“barcode gap.” The “10× rule” requires a 10-fold dif-
ference in the within- and between-species divergence
(Hebert et al. 2004). DNA barcoding has gained pop-
ularity and provoked much discussion (e.g., Hebert
et al. 2004; Hickerson et al. 2006; Nielsen and Matz
2006; Spooner 2009). In a simulation study under a
model of speciation resulting from Dobzhansky–Muller
incompatibilities (Dobzhansky 1937), the 10× diver-
gence threshold failed miserably in discovering recently
divergent species (Hickerson et al. 2006). Indeed, a cut-
off on sequence divergence appears neither necessary
nor sufficient for species delimitation. In some of our
simulations, the within-species variation and between-
species divergence are similar. For example, under the
two-species model (Fig. 2a), the within-species diver-
gence is θ, whereas the between-species divergence is
2τ + θ0. These are 0.01 and 0.012, with only a 20% dif-
ference, for the case τ = 0.001 and θ = 0.01 (Fig. 3d–f).
Yet, BPP inferred the correct two-species model with
probability near 1 when 10–50 loci were used or when
large samples (15 or 20 from each species) were taken at
a single locus.

We also compared Bayesian species delimitation with
the criterion of reciprocal monophyly of gene trees, with
one locus used. The parameters are θ= 0.01 or 0.001 and
τ0 = 0.01 or 0.001 under the two-species model, and we
considered the following sample configurations: (5, 5),
(10, 10), (15, 15), and (20, 20). The results are shown
in Table 1 (see also Fig. 3f, i). The proportion of data
sets in which the gene tree at one locus shows recip-
rocal monophyly is calculated by two approaches: (i)
using the true simulated gene tree, and (ii) using the
estimated gene tree by the UPGMA method. Because
errors in gene tree reconstruction tends to destroy recip-
rocal monophyly, use of the inferred gene trees leads to
reduced power compared with use of the true gene tree.
When the population is small and divergence is ancient
(θ=0.001, τ0=0.01), both BPP and reciprocal monophyly
have power close to 1. Otherwise, the power for recipro-
cal monophyly is much lower than for BPP. In particular,
with a large population size and recent divergence (i.e.,
θ = 0.01 and τ0 = 0.001), the proportion of gene trees
showing reciprocal monophyly is nearly 0, whereas
BPP still identifies the two species with high posterior

TABLE 1. The power of delimiting two species by BPP and by re-
ciprocal monophyly of gene trees

Data configuration P2 (BPP) Reciprocal monophyly

θ = 0.001, τ0 = 0.001
(5, 5) 0.774 0.673 (0.425)
(10, 10) 0.912 0.635 (0.403)
(15, 15) 0.957 0.577 (0.338)
(20, 20) 0.975 0.567 (0.292)
θ = 0.001, τ0 = 0.01

(5, 5) 0.999 1.000 (1.000)
(10, 10) 1.000 1.000 (1.000)
(15, 15) 1.000 1.000 (1.000)
(20, 20) 1.000 1.000 (1.000)
θ = 0.01, τ0 = 0.001

(5, 5) 0.500 0.019 (0.011)
(10, 10) 0.831 0.001 (0.000)
(15, 15) 0.965 0.000 (0.000)
(20, 20) 0.992 0.000 (0.000)
θ = 0.01, τ0 = 0.01

(5, 5) 0.997 0.671 (0.631)
(10, 10) 1.000 0.623 (0.582)
(15, 15) 1.000 0.596 (0.561)
(20, 20) 1.000 0.568 (0.527)

The two numbers in each cell for reciprocal monophyly are calculated
using the true gene tree and the estimated gene tree (in parenthe-
ses), respectively. The UPGMA method was used to infer rooted gene
trees, with sequence distances calculated under JC69 (Jukes and Can-
tor 1969) using the programs DNADIST and NEIGHBOR in the PHYLIP

package (Felsenstein 2005).

probability, reaching 99.2% for the large data set of 20
sequences from each species.

Nonmonophyletic gene trees for well-established
species are quite common in real data sets (see Funk
and Omland 2003 for a summary based on animal mi-
tochondrial DNA). In general, the criterion of gene tree
reciprocal monophyly is too stringent to be useful for
species delimitation. The power will be even lower if we
require all gene trees at multiple loci to be reciprocally
monophyletic.

Another question is whether a single DNA segment
is sufficient for species delimitation and whether the
current recommendation of sampling 5–10 individuals
(Hajibabaei et al. 2007) is adequate. Our results sug-
gest that one single gene locus may indeed contain
enough information to delimit species. However, 15
or more individuals from each species seem necessary
if the species divergence is recent (e.g., τ0 = 0.001),
whereas five individuals may be enough for identifying
well-diverged species. When it is unfeasible to sample
multiple individuals, as with rare or protected species,
multiple loci should be used for effective species delim-
itation.

Species Delimitation and Statistics

Although there are fundamental philosophical dis-
agreements between frequentist and Bayesian statistics,
the two methodologies most often produce numerically
similar results when applied to real-world problems.
A major exception, however, is the problem of hypoth-
esis testing or model selection. Unfortunately, species
delimitation as formulated in Yang and Rannala (2010;
see also Carstens and Richards, 2007) is exactly one such
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problem, so that the controversies in statistics affect our
use and interpretation of BPP. The species-delimitation
models are nested statistical hypotheses: the one-species
model may be considered the null hypothesis with
τ0 = 0, whereas the two-species model is the alternative
with τ0 > 0. Here, we consider a simple case based on
a normal sample to illustrate the differences between
frequentist hypothesis testing and Bayesian model se-
lection. The analysis will also provide insights into the
effect of the priors for model parameters on the Bayesian
inference and explanations for some of the simulation
results observed earlier.

Suppose we take an independent sample of size n
from the normal distribution N(μ, 1) with unknown
mean and known variance to compare model H1: μ = 0
with model H2: μ /=0. The sample mean x̄ is the sufficient
statistic, with x̄ ∼ N(0, 1/n) under H1 and x̄ ∼ N(μ, 1/n)
under H2. The P value for the test of H1 against H2 is
Φ(−
√

n|x̄|), where Φ(∙) is the cumulative density func-
tion (CDF) of the standard normal distribution. Note
that this is also the LRT because the likelihood under
H1: μ= 0 is

L1 =
1

√
2π/n

exp
{
−

n
2

x̄2
}
, (1)

the (maximized) likelihood under H2: μ /= 0 is

L2 = L2(μ̂) =
1

√
2π/n

exp
{
−

n
2
(x̄− μ̂)2

}
=

1
√

2π/n
, (2)

evaluated at the MLE μ̂= x̄, and the LRT statistic is

2Δ`=−2 log
L1

L2
= nx̄2. (3)

Note that if
√

n|x̄| ∼ N(0, 1), then nx̄2 ∼ χ2
1, so that the

P values based on the two test statistics are identical.
In the Bayesian framework, we assign the prior π1 =

π2=1/2 for the two models, and μ ∼ N(μ0, σ
2) under H2.

As H1 does not involve any unknown parameters, the
marginal likelihood under H1 is M1 = L1. The marginal
likelihood under H2 is an average of the likelihood L2(μ)
over the prior on μ:

M2 = E(L2(μ))

=

∫ ∞

−∞

1
√

2π/n
exp
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−
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2
(x̄− μ)2

}

×
1

√
2πσ2

exp
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−
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2

}

dμ

=
1

√
2π(1/n + σ2)

exp
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−
1

2(1/n + σ2)
(x̄− μ0)

2

}

. (4)

Thus, the posterior probability for model H2 is

P2 =
π2M2

π1M1 + π2M2
=

1
1 + M1/M2

=
1

1 +
√

1 + nσ2 exp
{

n(μ2
0−2μ0x̄−nσ2x̄2)

2(1+nσ2)

} . (5)

If one uses μ0 = 0 in the prior, a case considered by
Yang (2006: Eq. 5.21 on page 157), we have

P2 =
1

1 +
√

1 + nσ2 exp
{
− nx̄2

2[1+(1/(nσ2))]

} . (6)

Now suppose that in a particular data set x̄ is quite
different from 0, so that we reject H1 at the significance
level α, that is,

√
n|x̄|= zα/2, the α/2 quantile of the stan-

dard normal distribution. However, if nσ2 is large, we
may have P2 ≈ 0. Thus, although the test rejects H1, the
Bayesian analysis of the same data strongly supports H1
with P1 = 1− P2 ≈ 1. This contradiction between meth-
ods, known as Lindley’s paradox (Lindley 1957; see also
Jeffreys 1939), is highly controversial. Nevertheless a
few relevant remarks can be made. First, one should
exercise caution in applying one’s intuition based on
hypothesis testing to interpret the results obtained from
BPP. Second, compared with the Bayesian analysis, the
LRT does not penalize parameter-rich models (such as
H2) enough, especially in large data sets (Schwarz 1978).
Third, Bayesian model comparison may be very sensi-
tive to priors on parameters that are in one model but
not in the other.

Indeed, P2 in equations 5 and 6 can be made as close
to 0 as one likes by choosing a very diffuse prior (i.e.,
by using a large enough σ2). For the upper bound on P2,
note that the marginal likelihood M2 of equation 4 is no
larger than the maximized likelihood L2 of equation 2

M2 = E(L2(μ)) 6 L2(μ̂), (7)

and thus

P2 =
M2

M1 + M2
6

L2

L1 + L2
. (8)

This upper bound can be achieved if the prior on μ is
very close to the MLE, that is, if μ0 = x̄ and σ2 → 0.
In other words, P2 will be large if the prior is highly
concentrated around the MLE and is thus highly con-
sistent with the data. When the LRT is significant at the
5% level (i.e., when L2/L1 = e1.92), the highest P2 achiev-
able is 0.872. In such a data set, P2 may go from ∼ 0 to
0.872 by changes to the prior on μ.

In the species delimitation problem, we compare the
null one-species model S1: τ0 = 0 against the alternative
two-species model S2: τ0 > 0. This is noted to have a
few extra complications relative to the normal example
above. First, both models S1 and S2 have unknown pa-
rameters. Second, τ0 = 0 is at the boundary of the pa-
rameter space in S2 as τ0 is nonnegative. Third, when
τ0 = 0, some parameters in S2 (θA and θB) are undefined.
The last two complications invalidate the use of the χ2

distribution for the LRT. However, none of those com-
plications makes a qualitative difference to the Bayesian
analysis and the patterns we identified above from the
simple example largely apply to the species delimita-
tion problem. For example, the posterior probability for
the two-species model P2 will be larger if the priors on
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the parameters unique to H2 (τ0 and the θs for the mod-
ern species) are concentrated around their MLEs, and P2
will be smaller if those priors are highly incompatible
with the data. This theory provides an explanation for
the results of Figure 9, in which the effect of the priors
on θs and τ does not have a fixed direction and the low-
est P2 is for prior means that are orders of magnitude
away from the MLEs.

The sensitivity of posterior probabilities for the species
models to the priors on θ and τ0 appears to be a feature
of the problem. Biologically, it is difficult to specify uni-
versal criteria, such as the number of generations, the
level of genetic sequence divergence, etc., that can con-
vincingly define species. The controversies surrounding
the species concepts will no doubt have an impact on
species delimitation using genetic data, as BPP attempts
to do.

The Utility of Bayesian Species Delimitation

Compared with traditional taxonomic practices for
species delimitation, which may vary widely among
taxa, the Bayesian method is arguably more objective
as all its model assumptions are explicit and can be
tested (Fujita and Leache 2011). An important feature
of this method is that it infers species status from a
genealogical and population genetic perspective, relax-
ing the requirement of reciprocal monophyly of gene
trees followed in current DNA taxonomy and barcod-
ing practice. It should also be superior to methods that
analyze estimated gene trees without accommodating
phylogenetic errors (e.g., Knowles and Carstens 2007;
O’Meara 2010).

The current implementation of Bayesian species de-
limitation in BPP is based on the biological species
concept, assuming complete cessation of gene flow fol-
lowing species divergence (Yang and Rannala 2010).
This simulation study, however, suggests that the be-
havior of BPP when there is gene flow is consistent with
the practice of taxonomists. Low levels of migration,
with the expected number of immigrants per gener-
ation at M = Nm < 0.1, have virtually no impact: the
method infers different species despite small amounts of
gene flow. This appears to be consistent with biologists’
common practice of identifying distinct species de-
spite occasional hybridizations. Although Mayr (1963)
initially defined a biological species as “groups of in-
terbreeding natural populations that are reproductively
isolated from other such groups,” Coyne and Orr (2004,
p. 30) revised the definition so that “distinct species are
characterized by substantial but not necessarily complete
reproductive isolation.”

When the migration rate is high, with 10 or more mi-
grants per generation, the method infers one species.
By any sensible species concept, the two populations
should be considered one species at such high levels
of hybridization. Our simulation also demonstrates that
the method is very unlikely to be misled to infer sep-
arate species if samples are taken from distant localities

of one species with a wide geographical distribution and
experiencing isolation by distance. For the purpose of
delimiting species, there does not appear to be a need
to explicitly incorporate migration in BPP. However, a
model of migration (e.g., Hey 2010) is useful for esti-
mating parameters such as migration rates when such
migrations are known to occur.

The Bayesian method of Yang and Rannala (2010) is
designed for analyzing multilocus genomic sequences
that evolve neutrally. Although protein-coding genes
under similar purifying selection in different species
may be used in the analysis, perhaps with the dif-
ferent mutation rates among loci accommodated in
the model, genes undergoing species-specific selec-
tion such as those involved in the establishment of
reproductive isolation are not suitable for analysis by
this method. Similarly, the method does not take into
account whether the lack of gene flow or the low mi-
gration rate is due to geographical barriers or to intrin-
sic reproductive isolation. Two allopatric populations
that diverge due to neutral drift without the establish-
ment of reproductive barriers may be inferred to be
two species by the method if the divergence time is
long enough or if a sufficiently large data set is ana-
lyzed. The species status of allopatric populations is
often debatable, and we expect this ambiguity to affect
the Bayesian analysis. We suggest that Bayesian infer-
ence by BPP not be used as the sole criterion for species
delimitation, and instead the results from the Bayesian
analysis be integrated with other sources of informa-
tion, such as information on morphological, behavioral,
and ecological traits. We note that this ambiguity of in-
terpretation does not exist if sympatric populations are
analyzed.

For the present, it is unclear how large the data set has
to be for BPP to infer two species even when divergence
is relatively recent. Computational problems in the cur-
rent rjMCMC algorithms make it impossible to analyze
very large data sets. It is thus important to improve the
algorithms, perhaps by integrating some parameters an-
alytically rather than through the Markov chain (e.g.,
Hey 2010). Furthermore, Leache and Fujita (2010) have
demonstrated that the use of an incorrect guide tree can
have adverse effects on the inference, causing BPP to in-
fer multiple species. It is thus important to remove the
reliance on the guide tree or to accommodate possible
errors in the guide tree topology.

Finally, we hope that the development and appli-
cation of coalescent-based statistical methods such as
BPP may have the effect of prompting taxonomists and
speciation biologists to formulate their models and con-
cepts precisely, which may be tested using the ever-
increasing genomic sequence data.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found athttp://www.
sysbio.oxfordjournals.org/.

http://www.sysbio.oxfordjournals.org/
http://www.sysbio.oxfordjournals.org/
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Leaché, Bruce Rannala, Monty Slatkin, and Weiwei Zhai
for discussions and comments. We gratefully acknowl-
edge extensive discussions with Jim Mallet throughout
this project.

REFERENCES

Ane C., Larget B., Baum D.A., Smith S.D., Rokas A. 2007. Bayesian es-
timation of concordance among gene trees. Mol. Biol. Evol. 24:412–
426.

Bauer A.M., Parham J.F., Brown R.M., Stuart B.L., Grismer L., Papen-
fuss T.J., Bohme W., Savage J.M., Carranza S., Grismer J.L., Wag-
nerm P., Schmitz A., Ananjeva N.B., Inger R.F. 2011. Availability
of new Bayesian-delimited gecko names and the importance of
character-based species descriptions. Proc. R. Soc. Lond. B. Biol. Sci.
278:490–492.

Baum D.A., Shaw K.L. 1995. Genealogical perspectives on the species
problem. In: Hoch P.C., Stephenson A.G., editors. Molecular and
experimental approaches to plant biosystematics. St Louis (MO):
Missouri Botanical Garden. p. 289–303.

Beerli P. 2004. Effect of unsampled populations on the estimation of
population sizes and migration rates between sampled popula-
tions. Mol. Ecol. 13:827–836.

Burgess R., Yang Z. 2008. Estimation of hominoid ancestral popula-
tion sizes under Bayesian coalescent models incorporating muta-
tion rate variation and sequencing errors. Mol. Biol. Evol. 25:1979–
1994.

Carstens B.C., Richards C.L. 2007. Integrating coalescent and ecolog-
ical niche modeling in comparative phylogeography. Evolution.
61:1439–1454.

Coyne J.A., Orr H.A. 2004. Speciation. Sunderland (MA): Sinauer
Associates.

Dasmahapatra K.K., Iamas G., Simpson F., Mallet J. 2010. The anatomy
of a ‘suture zone’ in Amazonian butterflies: a coalescent-based
test for vicariant geographic divergence and speciation. Mol. Ecol.
19:4283–4301.

Dobzhansky T.G. 1937. Genetics and the origin of species. New York:
Columbia University Press.

Feller W. 1968. An introduction to probability theory and its applica-
tions. 3rd ed. New York: Wiley.

Felsenstein J. 1992. Estimating effective population size from samples
of sequences: inefficiency of pairwise and segregating sites as com-
pared to phylogenetic estimates. Genet. Res. 59:139–147.

Felsenstein J. 2005. Phylip: phylogenetic inference program. Version
3.6. Seattle (WA): University of Washington.

Fujita M.K., Leache A.D. 2011. A coalescent perspective on delimiting
and naming species: a reply to Bauer et al. Proc. R. Soc. Lond. B.
Biol. Sci. 278:493–495.

Funk D.J., Omland K.E. 2003. Species-level paraphyly and polyphyly:
frequency, causes, and consequences, with insights from animal mi-
tochondrial DNA. Annu. Rev. Ecol. Syst. 34:397–423.

Hajibabaei M., Singer G.A., Hebert P.D., Hickey D.A. 2007. DNA bar-
coding: how it complements taxonomy, molecular phylogenetics
and population genetics. Trends Genet. 23:167–172.

Hebert P.D., Stoeckle M.Y., Zemlak T.S., Francis C.M. 2004. Identifica-
tion of birds through DNA barcodes. PLoS Biol. 2:1657–1663.

Heled J., Drummond A.J. 2010. Bayesian inference of species trees
from multilocus data. Mol. Biol. Evol. 27:570–580.

Hey J. 2010. Isolation with migration models for more than two popu-
lations. Mol. Biol. Evol. 27:905–920.

Hickerson M.J., Meyer C.P., Moritz C. 2006. DNA barcoding will often
fail to discover new animal species over broad parameter space.
Syst. Biol. 55:729–739.

Hudson R.R. 1983. Testing the constant-rate neutral alele model with
protein sequence data. Evolution. 37:203–217.

Hudson R.R. 2002. Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics. 18:337–338.

Hudson R.R., Coyne J.A. 2002. Mathematical consequences of the ge-
nealogical species concept. Evolution. 56:1557–1565.

Issac N.J.B., Mallet J., Mace G.M. 2004. Taxonomic inflation: its influ-
ence on macroecology and conservation. Trends Ecol. Evol. 19:464–
469.

Jeffreys H. 1939. Theory of probability. Oxford: Clarendon Press.
Jukes T.H., Cantor C.R. 1969. Evolution of protein molecules. In:

Munro H.N., editor. Mammalian protein metabolism. New York:
Academic Press. p. 21–123.

Kingman J.F.C. 1982a. The coalescent. Stoch. Proc. Appl. 13:235–248.
Kingman J.F.C. 1982b. On the genealogy of large populations. J. Appl.

Probab. 19A:27–43.
Knowles L.L., Carstens B.C. 2007. Delimiting species without mono-

phyletic gene trees. Syst. Biol. 56:887–895.
Kubatko L.S., Carstens B.C., Knowles L.L. 2009. STEM: species tree

estimation using maximum likelihood for gene trees under coales-
cence. Bioinformatics. 25:971–973.

Leache A.D., Fujita M.K. 2010. Bayesian species delimitation in West
African forest geckos (Hemidactylus fasciatus). Proc. R. Soc. Lond. B.
Biol. Sci. 277:3071–3077.

Lindley D.V. 1957. A statistical paradox. Biometrika. 44:187–192.
Liu L. 2008. BEST: Bayesian estimation of species trees under the coa-

lescent model. Bioinformatics. 24:2542–2543.
Liu L., Yu L., Kubatko L., Pearl D.K., Edwards S.V. 2009. Coalescent

methods for estimating phylogenetic trees. Mol. Phylogenet. Evol.
53:320–328.

Mayr E. 1963. Animal species and evolution. Cambridge (MA): Belk-
nap Press.

Neigel J.E., Avise J.C. 1986. Phylogenetic relationships of mitochon-
drial DNA under various demographic models of speciation. In:
Karlin S., Nevo E., editors. Evolutionary processes and theory. New
York: Academic Press. p. 515–534.

Nielsen R., Matz M. 2006. Statistical approaches for DNA barcoding.
Syst. Biol. 55:162–169.

O’Meara B.C. 2010. New heuristic methods for joint species delimita-
tion and species tree inference. Syst. Biol. 59:59–73.

Rannala B., Yang Z. 2003. Bayes estimation of species divergence times
and ancestral population sizes using DNA sequences from multiple
loci. Genetics. 164:1645–1656.

Schwarz G. 1978. Estimating the dimension of a model. Ann. Stat.
6:461–464.

Slatkin M. 1991. Inbreeding coefficients and coalescence times. Genet.
Res. 58:167–175.

Spooner L.J. 2009. DNA barcoding will frequently fail in complicated
groups: a example in wild potatoes. Am. J. Bot. 96:1177–1189.

Strobeck K. 1987. Average number of nucleotide differences in a sam-
ple from a single subpopulation: a test for population subdivision.
Genetics. 117:149–153.

Tajima F. 1983. Evolutionary relationship of DNA sequences in finite
populations. Genetics. 105:437–460.

Takahata N. 1983. Gene identity and genetic differentiation of popula-
tions in the finite island model. Genetics. 104:497–512.

Takahata N., Satta Y., Klein J. 1995. Divergence time and population
size in the lineage leading to modern humans. Theor. Popul. Biol.
48:198–221.

Wakeley J., Aliacar N. 2001. Gene genealogies in a metapopulation.
Genetics. 159:893–905.

Wilkinson-Herbots H.M. 2008. The distribution of the coalescence time
and the number of pairwise nucleotide differences in the ”isolation
with migration” model. Theor. Popul. Biol. 73:277–288.



2011 ZHANG ET AL.—EVALUATION OF A BAYESIAN COALESCENT METHOD 761

Wu C.I., Ting C.T. 2004. Genes and speciation. Nat. Rev. Genet. 5:114–
122.

Yang Z. 1996. Among-site rate variation and its impact on phyloge-
netic analyses. Trends Ecol. Evol. 11:367–372.

Yang Z. 1997. On the estimation of ancestral population sizes. Genet.
Res. 69:111–116.

Yang Z. 2002. Likelihood and Bayes estimation of ancestral popula-
tion sizes in Hominoids using data from multiple loci. Genetics.
162:1811–1823.

Yang Z. 2006. Computational molecular evolution. Oxford: Oxford
University Press.

Yang Z. 2010. A likelihood ratio test of speciation with gene flow using
genomic sequence data. Genom. Biol. Evol. 2:200–211.

Yang Z., Rannala B. 2010. Bayesian species delimitation using multilo-
cus sequence data. Proc. Natl. Acad. Sci. U.S.A. 107:9264–9269.

Zhang D.X., Hewitt G.M. 2003. Nuclear DNA analyses in genetic stud-
ies of populations: practice, problems and prospects. Mol. Ecol.
12:563–584.

Zhou R., Zeng K., Wu W., Chen X., Yang Z., Shi S., Wu C.-I. 2007. Pop-
ulation genetics of speciation in nonmodel organisms: I. ancestral
polymorphism in mangroves. Mol. Biol. Evol. 24:2746–2754.

APPENDIX

Proof of Slatkin’s (1991) Result Concerning the Effective
Migration Rate in the Circular Stepping-stone Model

Slatkin’s result.This is stated right above equation 16 in
Slatkin (1991): “The average time until two genes i steps
apart initially are first found in the same deme is (d −
i)i/2m.” The model is a circular stepping-stone model
with d demes. In our simulation, we considered a linear
stepping-stone model with four demes: A ↔ B ↔ C ↔
D. If A and D are linked the model will be circular. The
linear and circular models have qualitatively the same
behavior, but the circular model is slightly easier to ana-
lyze. Slatkin’s result is that if the migration rate between
two adjacent demes in each direction is m/2, so that in
each generation, a proportion m of alleles in each deme
are immigrants, then the expected waiting time for two
alleles drawn from two demes i steps apart in the circle
to be found in the same deme is

Ti = i(d− i)/(2m). (A.1)

If the number of demes d is large and i is small, this
is nearly linear with i, so that the expected waiting time
for i= 3 is about three times as long as it is for i= 1. The
reciprocal of the expected waiting time gives the “effec-
tive migration rate.” Thus, the result can be stated as
follows: two alleles from populations three demes apart
in the stepping-stone model with migration rate m are
as divergent as two alleles taken from two neighboring

populations with the migration rate at m/3 (instead of
m3 as the faulty intuition mentioned in the text has).

Below is a more detailed version of Slatkin’s proof.
A proof based on difference equations is given by
Strobeck (1987, equation 7).

1.Duration of the Gambler’s Ruin game. Suppose a
gambler has i pounds and bets against a machine
which holds d − i pounds. He tosses a fair coin
and either wins or loses a pound depending on
whether it lands heads or tails. The game ends
when the gambler has either 0 or d pounds. The
gambler’s fortune constitutes a symmetric ran-
dom walk on the states 0, 1, . . . , d, with 0 and d
to be the absorbing states. The expected duration
of the game is i(d − i). This result is well known
in theories of random walks (see, e.g., Feller 1968,
equation 3.5). Its common proof is through solving
a difference equation, constructed by considering
the outcome of the first coin toss:

Ti =
1
2

Ti−1 +
1
2

Ti+1 + 1, (A.2)

under the boundary condition T0 = Td = 0.
2.A slight extension of the above model includes

a nonzero probability of no state change. Sup-
pose the coin lands on its edge with probability
1 − c, and when that happens, the gambler’s for-
tune does not change. Suppose c does not depend
on i. Then the expected duration of the game is
i(d − i)/c. If an event occurs with probability c,
the average time to wait until such an event is 1/c.
Here the expected waiting time until a state change
is 1/c.

3.Waiting time Ti in the circular stepping-stone
model. Imagine d + 1 demes on a line, but with
deme d +1 to be deme 1. The distance between two
alleles can be 0, 1, . . ., or d, with d being the same
as 0 or with both 0 and d to mean that the two
alleles are in the same deme. Thus the distance
between the two alleles form a symmetric random
walk on 0, 1, . . . , d, with 0 and d to be the absorb-
ing states. When we trace back the genealogy in
each generation, the state (the distance between
the two alleles) changes by 0, 1, and 2, but changes
of 2 can be ignored as they occur with rates of
order m2. The probability of change (by +1 or −1)
is c= 2m(1−m) ≈ 2m. Thus, the expected waiting
time until absorption or until the two alleles are in
the same deme is i(d− i)/(2m).


