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A Mathematical Equation for Describing Growth 
of Freshwater Species 

Xin-Rong Wan, Li Wang, and Wei Doua 
Chinese State Key Lab of 

Integrated Management of Pest Insects & Rodents 
Institute of Zoology 

Chinese Academy of Sciences 
Beijing, 100080. CHINA 

ABSTRACT 
We introduced a new four-parameter growth equation and tested it with 

observed growth data sets for a variety of aquatic species. The equation is: 

W = W, - (W, - W,) /{c. (I - W, f W,) . [l - exp(kr)] + exp(k)) 

where W, and W, are the upper asymptotic and initial values respectively, 
and c and k are constants. The new equation is a modification of the logistic 
and the Spillman equations with a special value of parameter c. Unlike the 
logistic and the Spillman functions, the new model has an unfxed value of 
the inflection point a s  dictated by the additional parameter c. We compared 
the model to the logistic, Spillman, Gompertz, and Bertalanffy equations 
using 10 sets of reference growth data of freshwater species ranging from 
protozoans to crustaceans to fishes. The new equation yielded excellent fits 
to each data set, which suggests that it is worthy of being considered by 
freshwater growth data analysts. 

INTRODUCTION 
Many growth functions have been used in the life sciences to provide 

mathematical summaries of time course data (Banks 1994, Begall 1997). 
Among models, the Gompertz (Gompertz 1825), logistic (Verhulst 1838), 
Spillman (Spillman and Lang 1924), and Bertalanffy (Bertalanffy 1957) 
equations are considered as  the classic three-parameter growth models 
which are nested with many general models. In the study of freshwater 
species, the Bertalanffy equation has been extensively used to describe 
growth patterns by many authors (Ma et al. 1996, Jiang and Qin 1996, 
Wang and Jiang 1992). 

Although these three-parameter models possess the advantage of 
mathematical simplicity, their theoretical assumptions are too simple and 
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open to much criticism (Banks 1994). Kroops (1986) pointed out that it is 
hard to believe that a model with a few parameters can describe so 
complicated a process as growth from birth to death. Due to the deficiency 
in the number of parameters, these three-parameter equations usually have 
less flexibility and give poorer fits in describing many types of growth 
patterns than those with more parameters (Gille and Salomon 1995). For 
these reasons, many authors have attempted to modify these three- 
parameter equations to give better fits to data sets (Richards 1959, Cui and 
Lawson 1982, Jolicoeur et al. 1992, Wan 1998). 

We derived a new flexible four-parameter growth equation which may 
be more suitable for depicting diverse growth courses of freshwater species, 
and we have tested the equation with 10 sets of observed growth data. 

MATERIALS AND METHODS 
In order to evaluate the fits of these models, we used 10 sets of 

referenced growth data of freshwater species (including protozoans, 
crustaceans and fishes) to fit each growth equation. Data set No. 1 refers to 
the body length growth data of Diaphanosoma brachyumm (Huang 1986); 
No.2 refers to the body length growth data of Daphnia hyalina (Huang 1984); 
No.3 refers to the body length growth data of Daphnia carinata (Huang 
1984); No.4 refers to the body length growth data of Moina afmis (Huang 
1983); Nos.5-6 refer respectively to the population growth of Paramecium 
aurelia and P. caudatum a t  "one-loop" concentration of bacterial food 
(Gause 1934); Nos.7-8 refer to the body length and body weight growth data 
of crucian carp (Carassius auratus), respectively (Jiang and Qing 1996); and 
Nos.9-10 refer to the body length and body weight growth data of female 
paddlefish (Psephums gladius, Ma et al. 1996). 

RESULTS 
The new equation takes the form of 

where W is the size at any convenient time unit t, parameters W, and W, 
are the initial and final values of W, respectively. The values c and k are 
shape parameters, controlling the shape of growth curve. In addition, c is 
also a flexible parameter. For illustration, when c=O, the new model reduces 
to the Spillman equation (France et al. 1996): W = W, - (W, - W,).exp(-kt)  

when c=l, the new model reduces to the logistic equation(Banks 1994) 

w = W, . W, l[W, + (W, - W,) . exp(-kt)] 

Setting the second derivative d W/dt2 of equation (1) equals to zero yields 
the POI (point of inflection) of time t' 

1 
t t= - ln{c / [1 / (1  - W, / W,) - c ] }  

k (2)  

Substituting equation (2) into equation (1) obtains the POI of size W' 
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Unlike these commonly applied three-parameter models, which have a 
fured value of POI (POI located a t  Wr/2 for logistic, WJe for Gompertz, 
(8127) Wf for Bertalanffy, and no POI for Spillman), the new model possesses 
a variable value of POI according to its additional fourth parameter c. For 
this reason, the new equation has more flexibility in depicting diverse 
growth courses of freshwater species than the classic growth models. 

We cited 10 observed growth data sets of freshwater species ranging 
from protozoans to crustaceans to fishes to fit the logistic, Spillman, 
Gompertz, and Bertalanffy equations and the new one to compare the 
fitness. All parameters were obtained through the least squares method. 
The values of RSS (residual sum of squares) were used to evaluate the fit of 
each model. This results are presented in Tables 1-2 and Figure 1. 

Table 1. Estimated parameter values, POI of time t' and size W', residual 
sum of squares (RSS), and percent of variation accounted for (R2) 
obtained by fitting the new growth function to each data set. 

Data k WO wr c t' W' RSS RZ 

DISCUSSION 
In the logistic hypothesis, the peak growth rate occurs at  Wr/2, which is 

not necessarily the truth. A lot of authors have revealed that in many 
organisms, including microorganisms, plants and animals, the maximum 
growth velocity does not occur a t  exactly half equilibrium (Thompson 1952, 
Ricklefs 1968, Cui and Lawson 1982, Wan 1998). In these cases, the 
ordinary logistic equation may fail to give a suitable fit to growth data sets. 
Like the logistic equation, Bertalanffy and Gompertz equations also have 
fured values of POI, which leads to less flexibility in portraying various 
growth patterns. On the contrary, the new model possesses a unfured value 
of POI, which enables it to have good flexibility in describing diverse growth 
patterns of freshwater species. For example, in many crustacean species 
(Nos. 1-4), the value of parameter c is somewhat lower than 112, in these 
cases equation (3) gives W'< W, or Ws Wf and therefore there is no POI; in 
some other situations, equation (3) may give any value of POI. For 
illustration, in the population growth of protozoans and the body weight 
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Figure 1. Growth curves obtained by fitting the new model to observed data 
sets of freshwater species. 
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growth of fishes (Nos.5-6, No.8, No. lo), there are different values of POI. For 
these reasons, the new equation possesses the ability to depict diverse 
growth courses ranging from no POI to every value of POI. 

In fisheries management, one of the central activities is the setting of 
harvest regulations on populations of recreationally and commercially 
important species to maintain a sustainable yield. Based on the RSS values 
presented in Table 2, the new model has better fits than the logistic, 
Spillman, Gompertz, and Bertalanffy equations in 10, 10, 8, and 10 out of 
10 cases respectively. Considering the fact that the new equation can 
provide a more accurate estimations than other commonly used growth 
models, the new function is significant not only in theory, but also in 
practice. Therefore, the new model proposed here appears to be a worthy 
successor to the ordinary logistic and the Spillman equations and should be 
considered by data analysts. 

Table 2. The values of RSS (residual sum of squares) obtained through least 
square method by fitting each model to observed growth data sets. 

Data Set Gompertz logistic Spillman Bertalanffy New model 
No. 1 0.01387 0.02335 0.00558 0.01083 0.00232 
No.2 
No.3 
NO .4 
No.5 
No.6 
No.7 
No.8 
No.9 
No. 10 
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