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Organophosphorus compounds (OPs) are widely used in agriculture and industry and there is increased concern about their
toxicological effects in the environment. Bioremediation can offer an efficient and cost-effective option for the removal of
OPs. Herein, we describe the construction of a genetically engineered microorganism (GEM) that can degrade OPs and be
directly detected and monitored in the environment using an enhanced green fluorescent protein (EGFP) fusion strategy. The
coding regions of EGFP, a reporter protein that can fluoresce by itself, and organophosphorus hydrolase (OPH), which has a
broad substrate specificity and is able to hydrolyse a number of organophosphorus pesticides, were cloned into the expression
vector pET-28b. The fusion protein of EGFP–OPH was expressed in E. coli BL21 (DE3) and the protein expression reached
the highest level at 11h after isopropyl β-d-thiogalactopyranoside induction. The fluorescence of the GEM was detected by
fluorescence spectrophotometry and microscopy, and its ability to degrade OPs was determined by OPH activity assay. Those
GEM that express the fusion protein (EGFP and OPH) exhibited strong fluorescence intensity and also potent hydrolase
activity, which could be used to degrade organophosphorus pesticide residues in the environment and can also be directly
monitored by fluorescence.
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Introduction
Organophosphorus compounds (OPs) are a broad class of
neurotoxic chemicals, including insecticides, herbicides,
and plasticizers, which are widely used in agriculture and
industry. However, the use of OPs results in severe environ-
ment pollution and their residues can be detected in water,
soil, vegetables, fruits, milk, food products, and other liv-
ing organisms.[1] OPs released into the environment can
be detoxified by hydrolysis by exposure to sunlight, air,
soil, and so on,[2] half-life of OPs varies considerably from
days to months in different environment media for the same
organophosphorus pesticide.[3–5]

Several methods, such as chemical oxidation with
ozone, photo degradation, biological degradation, and
membrane filtration and adsorption, have been devel-
oped to cleanup OP residues in the environment.[1] In
particular, the use of microorganisms in detoxification
and decontamination of OPs is considered a viable and
environmental-friendly approach.[3] Various microorgan-
isms capable of biodegrading OPs have been isolated
from polluted environment.[2] In addition, the development
and application of genetically engineered microorganism
(GEM) that can degrade OPs would be an efficient way to
reduce OPs residues.

∗Corresponding author. Email: wuyj@ioz.ac.cn

Organophosphorus hydrolase (OPH) is an organophos-
photriester hydrolysing enzyme discovered in the soil
microorganisms Pseudomonas diminuta MG and Flavobac-
terium spp.[6] OPH has broad substrate specificity and
is able to hydrolyse a number of OPs.[7–9] Since the
natural OPH cannot be easily obtained, the development
of recombinant DNA technology provides a promising
approach for generating GEM that overexpresses OPH.
Many GEMs have been constructed to express recombinant
protein that possess diversified functions by recombinant
DNA technology.[10–12]

However, some problems exist which limit their practi-
cal use. In particular, when the novel GEMs are released
into natural environments, they may reproduce, spread,
and transfer their novel genetic materials to the indigenous
microbial populations to cause ecological problems. Thus,
detecting and monitoring released GEMs in the environ-
ment is necessary. In the past years, several monitoring
methods such as using gene probes,[13–15] polymerase
chain reaction (PCR),[16,17] monoclonal antibodies,[18]
and bioluminescence [19–21] have been developed to iden-
tify GEM. Although these methods are often sensitive, these
markers do not allow for direct detection of GEMs and
thus their applications were restricted. The discovery and
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application of green fluorescent protein (GFP) enable easy
and feasible detection. GFP is a natural protein expressed
in bioluminescent jellyfish that can emits bright green flu-
orescence upon UV light excitation.[22,23] Enhanced GFP
(EGFP) is a red-shifted variant of wild-type GFP, which flu-
oresces after visible light excitation and has much stronger
fluorescence than that of wild-type GFP.[24] In this study,
we demonstrate the successful construction of a GEM strain
to express the fusion protein of EGFP and OPH, which can
be used for monitoring the GEMs that degrade OPs in the
polluted environment.

Materials and methods
Construction of the expression vector pET-EGFP-OPH
The egfp gene was amplified by PCR except the stop
codon TAA from pEGFP-N3 (Clontech, Palo Alto, CA,
USA) using the primers: 5′-GAG CTA GCA TGG TGA
GCA AGG GCG AGG AGC-3′ and 5′-GTA AGC TTA
TGG TGC GCT CCT CCA AGA ACG TC-3′. The PCR-
amplified egfp gene and the vector, pET-28b (Novagen,
Madison, WI, USA), were digested by NheI and BamHI,
and then ligated with the egfp gene positioned between the
polyhistidine tag and the thrombin recognition site. The
resulting plasmid was designated as pET-EGFP. The opd
gene, which encodes OPH, was amplified from pGEMT-
opd obtained from Prof. Qiao (Institute of Zoology, Chinese
Academy of Sciences). The primers used for amplifying the
opd gene were: 5′-TTT AAG CTT ATA TGC AAA CGA
GAA GGG TTG TGC TCA AGT-3′ and 5′-TTA CTC GAG
TCA TGA CGC CCG CAA GGT CGG TG-3′. Restriction
sites of HindIII and XhoI were added to the ends of the
two primers, respectively. The PCR-amplified opd gene was
then inserted between the HindIII and XhoI sites of pET-
EGFP, and the plasmid was designated as pET-EGFP-OPH
(supplementary data Figure S1).

Cell culture
The plasmid pET-EGFP-OPH was transformed into E. coli
strain BL21 (DE3) (F−ompT hsdSB (r−

B m−
B )) gal dcm (DE3)

(Novagen, Madison, WI, USA) using the calcium chloride
procedure.[25] The seed cultures were incubated overnight
at 37 ◦C and then transferred into Luria-Bertani medium
(50 × volume of the seed culture) containing kanamycin
(50 μg/ml). The culture was grown at 37 ◦C in a shaker until
the optical density reached approximately 0.6 (OD600). The
cultures were then divided into 10 flasks and induced by iso-
propyl β-d-thiogalactopyranoside (IPTG) (0–1 mM). All
cultures were incubated continuously for 10 h at 30 ◦C in a
shaker, and samples were collected every 2 h. OD600 and flu-
orescence intensity were measured using Beckman DU800
spectrophotometer and Hitachi F-4500 fluorescence spec-
trophotometer (excitation wavelength, 488 nm; emission
wavelength, 540 nm and the bandwidth, 5 nm), respectively.

Expression of the recombinant protein in E. coli and
preparation of total cellular protein
The recombinant protein was expressed in E. coli strain
BL21 (DE3) after induction at 30 ◦C by 0.01 mM IPTG.
After addition of IPTG, the incubation was continued for
12 h and the samples were collected hourly after the induc-
tion. The OD600 value and fluorescence intensity of all
samples were measured by using the spectrophotometer and
fluorescence spectrophotometer, respectively. Furthermore,
the fluorescence of the samples was also detected by using a
Leitz DMIRB microscope (Leica, Germany). Samples were
divided into two parts and one of them was smeared directly
on microscope slides and then observed by fluorescence
microscopy; the other one was washed with 50 mM Tris-
HCl (pH 7.8) and then resuspended in the same buffer to a
final OD600 of 0.1. The suspension was smeared on slides
and then observed by fluorescence microscopy.

The bacteria were harvested by centrifugation at
10,000 × g for 1 min and the supernatant was discarded.
Pellets were completely resuspended in one-fifth volume of
50 mM Tris-HCl buffer (pH 7.8) and then sonicated on ice
for 2 min. The obtained total cell protein (TCP) was used for
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and the OPH activity assay. Protein concen-
tration was determined by the Bradford method with bovine
serum albumin as the standard.[26]

SDS-PAGE and Western blotting analysis
Equal amounts of the TCP sample (4 μg) were mixed with
4× sample buffer (250 mM Tris-HCl, pH 6.8, 40% glyc-
erol, 300 mM dithiothreitol, 8% sodium dodecyl sulfate,
10% β-mercaptoethanol, and 0.02% bromophenol blue)
and boiled at 100 ◦C for 3 min and then electrophoresed
on two identical 10% SDS–polyacrylamide gels.[27,28].
After electrophoresis, one gel was stained by Coomassie
bright blue, while the other was transferred onto a Hybond
enhanced chemiluminescence (ECL) nitrocellulose mem-
brane (Amersham, Arlington Heights, IL, USA) at 10 V
for 120 min with a Bio-Rad semi-dry blotter for West-
ern blotting analysis. The primary antibody was anti-His
antibody (1:2000, Tiangen Biotech, Beijing, China). The
secondary antibody was horseradish peroxidase-conjugated
anti-mouse IgG (1:5000, Sigma, St Louis, MO, USA).
The Western blots were developed using standard ECL
(Pierce, Rockford, IL, USA) and imaged using the Bio-Rad
ChemiDoc XRS system (Bio-Rad, Munich, Germany).

OPH activity assay
OPH can hydrolyse parathion, an organophosphorus pesti-
cide, into p-nitrophenol, which displays a strong absorption
at 400 nm. The value of OD400 is proportional to moles
of p-nitrophenol produced.[29,30] By making a standard
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curve of p-nitrophenol, the amount of parathion hydrol-
ysed can be calculated. Bacteria were washed with 50 mM
Tris-HCl buffer (pH 7.8) and then resuspended in the same
buffer and the OD600 of the suspension was adjusted to
0.1. The reaction was carried out at 30 ◦C for 20 min in
1 ml of 50 mM Tris-HCl buffer (pH 7.8), containing 3 μl
of 50 mM parathion (99% purity, dissolved in ethanol) and
997 μl of the cell suspension or TCP (100 μg protein). After
the parathion was added into the reaction system, the OD400
value was monitored continuously using a Beckman DU800
spectrophotometer. The degradation rate of parathion by
OPH from the GEM was expressed as the remaining amount
of parathion (%) and the value was expressed as mean ± SD.
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Figure 1. Growth curves and fluorescence intensity of the GEM
induced by IPTG. The cultures of the GEM induced by different
concentrations of IPTG (0–1 mM) were collected every 2 h and
the OD600 (a) and fluorescence intensity (b) were measured.

Results and discussion
IPTG-induced expression of the recombinant protein in
GEM
We found that the expression of the recombinant protein in
E. coli strain BL21 (DE3) was induced by different con-
centrations of IPTG. All cells have a similar growth trend
(Figure 1(a)) and each achieved final fluorescence intensity
beyond 4000 except the sample without IPTG induction,
which remained at a lower value (400–500) during the
whole course (Figure 1(b)). This is consistent with that seen
by fluorescence microscopy (Figure 2(a)). When the OD600
of GEM suspended in the buffer was adjusted to 0.1, bright
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Figure 3. Growth curves and fluorescence intensity of the GEM
induced by 0.01 mM IPTG. The OD (a) and fluorescence inten-
sity (b) of cultures containing E. coli BL21 (DE3) transformed
with pET-28b, pET-EGFP, and pET-EGFP-OPH were monitored
hourly by a spectrophotometer and fluorescence spectrophotome-
ter, respectively, after induction with 0.01 mM IPTG with an initial
OD600 of 0.6. 0 h indicates the start time of the induction.

Figure 2. Fluorescence image of the GEM. Cells of the induced E. coli BL21 (DE3) transformed with pET-EGFP-OPH in Luria-Bertani
medium (a) or in 50 mM Tris-HCl buffer (b) were smeared on microscope slides and then observed by fluorescence microscopy.
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green fluorescence dots could be seen clearly under a flu-
orescence microscope (Figure 2(b)). However, no bright
dot in the control sample could be seen in the microscope
(data not shown). In addition, this result indicated that the
induction with IPTG at 0.01 mM was sufficient to induce
the expression of the recombinant protein. Thus, this con-
centration of IPTG, 0.01 mM, was chosen for all subsequent
experiments.

This result showed that the concentration of IPTG we
used is 100 times lower than the common dosage (1 mM),
which makes this approach more feasible and practical since
IPTG is a relatively expensive and toxic chemical and the
reduce of IPTG dosage is desired.

Confirmation of the recombinant EGFP–OPH fusion
protein expression
As shown in Figure 3(a), the OD600 of cells transformed
with pET-EGFP and pET-EGFP-OPH was much higher
than those of the bacteria cells with pET-28b, suggesting
that the expressed short peptide by pET-28b is perhaps a lit-
tle toxic to the host cells. The fluorescence intensity of both
the bacteria containing pET-EGFP and pET-EGFP-OPH

increased clearly with the increase in induction time,
although the former was higher than the latter (Figure 3(b)).
Those bacteria containing pET-28b displayed only a basal
level of fluorescence during the whole process in spite of
their ascending growth curve. The EGFP used in our study
is a red-shifted variant of GFP and fluoresces 35 times
brighter than wild-type GFP.[24] Because of this brighter
fluorescence, detection of GEM is easier when observed by
fluorescence microscopy, and thus this fluorescence could
be used to monitor the dispersion and the cell density of
GEM.[31,32] One thing to be noted here is that the fluores-
cence of the bacteria containing pET-EGFP-OPH is dimmer
than that of the bacteria containing pET-EGFP, perhaps
resulting from fusion with OPH in the bacteria.[33]

The expression level of recombinant EGFP–OPH fusion
protein was determined by SDS-PAGE and Western blot-
ting using TCP samples collected hourly after induction.
The molecular weight of the fusion protein EGFP–OPH
is predicted to be approx. 66 kDa including the His6·tag
and the thrombin recognition sequence. As expected, a dark
band of the recombinant protein was visualized at 66 kDa
by Coomassie brilliant blue staining (Figure 4(a)), and this
was verified by Western blotting with antibodies against

Figure 4. Detection of the fusion protein in the GEM. Equal amounts of TCPs collected from E. coli BL21 (DE3) carrying the
pET-EGFP-OPH plasmid after different induction times were loaded per well, separated by SDS-PAGE (a) and detected by Western
blotting analysis with anti-His tag antibody (b). Lane M: protein marker; lanes from 0 to 12: samples collected after 0–12 h induction,
respectively. Position of fusion protein of EGFP–OPH is indicated.
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the His tag (Figure 4(b)). The data indicated that recom-
binant EGFP–OPH was expressed in E. coli strain BL21
(DE3) harbouring pET-EGFP-OPH. In addition, Figure 4(a)
showed that the level of EGFP–OPH fusion protein grad-
ually increased over time in Western blotting analyses and
reached the highest level at 11 h after IPTG induction
(Figure 4(b)).

The pET system that was used in the study is the most
powerful system yet developed for the cloning and expres-
sion of recombinant proteins in E. coli. After a few hours
of induction, the target gene product comprised more than
50% of the TCPs. This high level of expression and the
N -terminal His6·tag of the recombinant protein make it
easy to isolate the protein by utilizing conventional chro-
matographic methods, thereby allowing convenient protein
purification and a feasible means by which to detect the
fusion protein.

Degradation of parathion by the genetically engineered
bacteria
As shown in Figure 5, both TCP and whole-cell suspensions
(WCS) of the E. coli BL21 (DE3) transformed with pET-
EGFP-OPH plasmid have high catalytic activity to degrade
OP. During the detection, the OD400 of the controls (E. coli
BL21 (DE3) transformed with pET-28b, pET-EGFP plas-
mid) showed minimal change. For the TCP and WCS of
GEM bacteria transformed with pET-EGFP-OPH, analy-
ses of the first 5min of reaction showed that parathion was
degraded by 33.84 ± 2.28% and 21.25 ± 0.73%, respec-
tively. The initial hydrolysis rate of the TCP was about
1.01 ± 0.68 × 10−4 μmol/min/μg protein. This finding of
OPH activity in WCS indicates that the GEM can be used
directly to degrade OPs.
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Figure 5. Degradation of parathion by the GEM. Samples were
collected from E. coli BL21 (DE3) carrying pET-EGFP-OPH or
pET-EGFP or pET-28b 11 h after induction with 0.01 mM IPTG at
30 ◦C. The TCP and WCS were prepared by ultrasonic processing
and the OD400 value was monitored continuously by spectropho-
tometer. The degradation of parathion by OPH from the GEM was
expressed as the remaining amount of parathion (%).

The high catalytic activity of the fusion protein EGFP–
OPH to degrade OP as well as the high yield and the His6·tag
make the GEM to be a better candidate strain for the
preparation of degrading enzymes for organophosphorus
pesticides.[34,35] Compared with the method of expressing
hydrolase gene and marker gene separately, the prominent
advantage of the EGFP fusion strategy is that the fluores-
cence intensity could directly reflect the OPH activity in
GEM since the EGFP protein is fused to OPH.

Conclusions
In summary, the GEM we generated can exhibit strong
green fluorescence and high OPH activity. The GEM could
be directly used to degrade organophosphorus pollutants
directly and also could be effectively monitored in practice
by fluorescence detection. Moreover, this GEM could be
a potential resource for preparation of degrading enzymes
of organophosphorus pesticides since it is convenient to
isolate and purify the target protein EGFP–OPH from the
GEM due to its high expression level and the presence of
His6·tag.
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