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Abstract

The molecular clock provides a powerful way to estimate species divergence times. If information on some species divergence
times is available from the fossil or geological record, it can be used to calibrate a phylogeny and estimate divergence times
for all nodes in the tree. The Bayesian method provides a natural framework to incorporate different sources of information
concerning divergence times, such as information in the fossil and molecular data. Current models of sequence evolution are
intractable in a Bayesian setting, and Markov chain Monte Carlo (MCMC) is used to generate the posterior distribution of
divergence times and evolutionary rates. This method is computationally expensive, as it involves the repeated calculation of
the likelihood function. Here, we explore the use of Taylor expansion to approximate the likelihood during MCMC iteration.
The approximation is much faster than conventional likelihood calculation. However, the approximation is expected to be
poor when the proposed parameters are far from the likelihood peak. We explore the use of parameter transforms (square
root, logarithm, and arcsine) to improve the approximation to the likelihood curve. We found that the new methods, partic-
ularly the arcsine-based transform, provided very good approximationsunder relaxed clock models and also under the global
clock model when the global clock is not seriously violated. The approximation is poorer for analysis under the global clock
when the global clock is seriously wrong and should thus not be used. The results suggest that the approximatemethod may
be useful for Bayesian dating analysis using large data sets.
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Introduction
Themolecular clock assumption provides a powerful way to
estimate species divergence times frommolecular sequence
data (Zuckerkandl and Pauling 1965). If protein and nu-
cleic acid sequences accumulate substitutions at a uniform
rate, the degree of divergence between two homologous se-
quences will grow linearlywith the divergence time. If infor-
mation on the time of divergence is available (for example,
from the fossil record) for one or more pairs of sequences in
a phylogenetic tree, the substitution rate can be calculated
and used to obtain times of divergence for all the nodes in
the tree.

Although intuitively appealing, this approach has two
limitations. First, the molecular clock may not hold, and the
rate may vary with time or over lineages (Kumar 2005). Sec-
ond, information from the fossil record is uncertain, and this
uncertainty needs to be incorporated in the computation
of substitution rates (Thorne et al. 1998; Yang and Rannala
2006; Benton and Donoghue 2007). Recently, much effort
has been taken to overcome these limitations. Several works
have studied variation in molecular rates among lineages,
and models that consider autocorrelated rates along the
branches of a tree (Thorne et al. 1998; Rannala and Yang
2007) or independent rates following a specified statistical
distribution (Drummond et al. 2006; Rannala and Yang
2007) have been developed. The uncertainties in the fossil

record can be dealt with by the Bayesianmethod, during the
specification of the prior for divergence times (Thorne et al.
1998; Drummond et al. 2006; Yang and Rannala 2006).

Due to the complexity of the model, Markov chain
Monte Carlo (MCMC) methods are used to obtain nu-
merical approximations to the posterior distribution. The
MCMC method involves repeated evaluation of the likeli-
hood function on the phylogeny to determine whether a
proposed move should be accepted or rejected. Computa-
tion of the likelihood function is expensive, and a typical
Bayesian analysis for a phylogeny of<50 speciesmight take
several days.

Thorne et al. (1998) proposed the use of Taylor expan-
sion to approximate the likelihood function in the MCMC
algorithm. This approximation is fast and has been used
with success in several studies (Seo et al. 2004; Inoue et al.
2010; Guindon 2010). However, a rigorous assessment of
the approximate versus exact likelihood calculations for
various phylogenies under different clock models has not
been carried out. Here, we examine the accuracy of the
approximate methods in the estimation of divergence
times and rates, using the programMCMCtree in the PAML
package (Yang 2007), which implements both the exact and
the approximatemethods. First, we develop the approxima-
tion theory for the case of two species under the Jukes and
Cantor (1969)model. This simple case inspired us to explore
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several parameter transforms thatmay improve the approx-
imation.We then compare the old andnew approximations
using a data set of mitochondrial protein-coding genes for
36 mammalian species and another data set of 18S riboso-
mal RNA and ATP1 mitochondrial protein-codinggenes for
50 plant species.

A number of Bayesianmolecular clock dating algorithms
have been developed, with different rate–drift models
developed to relax the molecular clock assumption (e.g.,
Thorne et al. 1998; Drummond et al. 2006; Yang andRannala
2006; Rannala and Yang 2007). Inference under any of these
models requires the calculation of the likelihood, that is,
the probability of the sequence data given a set of branch
lengths. Our approximate methods are not specific to any
particular relaxed clockmodel and should be useful inmany
Bayesian dating algorithms. The approximation cannot be
used when the topology changes, so joint inference of tree
and divergence times (as in Drummond et al. 2006) will
require extensions of this framework.

Theory and Methods
Taylor Expansion of the Log-Likelihood
The second-order Taylor expansion of the log-likelihood
function around the maximum likelihood estimates
(MLEs) is

�(θ) ≈ �(θ̂) + gTΔθ +
1

2
ΔθTHΔθ (1)

or

Δ�(θ) = �(θ)− �(θ̂) ≈ gTΔθ +
1

2
ΔθTHΔθ, (2)

where θ = {θi} are the model parameters,Δθ = θ − θ̂,
θ̂ = {θ̂i} are the MLEs, and g = {gi} and H = {Hij} are
the gradient and the Hessianmatrix, respectively, that is, the
vector of first derivatives and matrix of second derivatives,
both evaluated at the MLEs. As the likelihood function is
defined up to a constant, use of �(θ) orΔ�(θ) leads to the
same inference.

We apply the Taylor expansion to the 2s − 3 branch
length parameters on the unrooted tree for s species
without assuming the clock. Commonly used phylogenetic
models include, in addition to the branch lengths,
parameters describing the evolutionary process, such as the
transition/transversion rate ratio κ and the gamma shape
parameterα for variable rates among sites. In theory, those
substitution parameters can be treated in the same way
as the branch lengths in equations (1) or (2). In particular,
parameter α is known to be negatively correlated with
branch lengths, and ignoring the uncertainties in theMLE of
αmay lead to too narrowposterior credibility intervals (CIs)
for divergence times. However, in our test using the two
data sets analyzed in this paper, we found that the CIs gen-
erated from the exact and approximatemethods are nearly
identical, possibly because the data sets are large so that α
is estimated reliably by maximum likelihood (ML). Thus, for
simplicity in this paper, θ includes the 2s−3 branch lengths
only.

When the MLEs are inside the parameter space (i.e., if
all MLEs of branch lengths are strictly positive), g = 0,
so that the linear (second) term in equation (1) is zero.
In this case, the likelihood is L = exp(�) ≈ L (θ̂) ×
exp( 12Δθ

THΔθ), proportional to the density function for
the multivariate normal distribution with mean vector θ̂
and variance–covariancematrix−H−1. This is the approxi-
mation used in the multidivtime program of Thorne et al.
(1998). When the MLEs of some branch lengths are zero,
multidivtime does not use the linear term but instead
overestimates the variances of those branch lengths as a
compensation.

If the likelihood function is very asymmetrical around
the MLEs, equation (1) may not provide a good approxi-
mation. Inclusion of the third-order term in equation (1)
may be computationally expensive and numerically unsta-
ble. Instead, a transform of θ (i.e., a reparameterization)
may be a better approach to improving the accuracy of the
approximation. Suppose we apply the transform u = h(θ),
in which θ andu form amultidimensional one-to-onemap-
ping.The Taylor expansionof the log-likelihood function on
the transformed parameters is

Δ�(u) = �(u)− �(û) ≈ ΔuT gu + 1

2
ΔuTHuΔu, (3)

where Δu = u − û, gu = {gu ,i}, and Hu = {Hu ,ij} are
the gradient and Hessian of the log-likelihood function on
the transformed parameters evaluated at the MLEs û. Note
that û = h(θ̂) as MLEs are invariant to reparameteriza-
tion. Although the theory applies to quite general one-to-
one transforms from θ to u, we consider in this paper only
the element-wise transforms of the type ui = h (θi ). Then
the gradient and Hessian for the transformed variables are
given by

gu ,i =
∂�

∂θi

∂θi
∂ui
= gi
∂θi
∂ui

, (4)

Hu ,ij =
∂2�

∂ui∂uj
=
∂gu ,i
∂uj

=

⎧⎨
⎩
gi
∂2θi
∂u2

i
+ Hii

(
∂θi
∂ui

)2
if i = j ,

Hij
∂θi
∂ui

∂θj
∂uj

if i �= j .
(5)

Transforms and Their Application to the Case of Two
Sequences
In this section, we describe several transforms and test their
performance in approximate likelihood calculation in the
case of comparing two sequences to estimate the evolution-
ary distance (the branch length) b . We will describe the ap-
plication of those transforms in divergence time estimation
on a phylogeny later. Although the results obtained for two
sequences do not apply exactly to phylogenetic analysis of
many sequences, the general pattern appears to hold and
offers important insight to approximate likelihood calcula-
tion on a phylogeny.

Consider two aligned nucleotide sequences with n sites
and x differences. We use the Jukes and Cantor (1969)
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model to estimate b . The log-likelihood function is
�(b ) = x log p + (n − x) log (1− p)

= x log

(
3

4
− 3

4
e−4b/3

)

+ (n − x) log

(
1

4
+

3

4
e−4b/3

)
, (6)

where p = 3
4 − 3

4e
−4b/3 is the expected proportion of dif-

ferences between the two sequences. The value of b that
maximizes � is

b̂ = −3

4
log

(
1− 4

3
p̂

)
, (7)

where p̂ = x/n is the observed proportion of differences in
the alignment. The gradient and Hessian of equation (6) are

g =
d�

db
=

(
x

p
− n − x

1− p

)
e−4b/3, (8)

H =
d2�

db 2
=

(
− x

p 2
− n − x

(1− p)2

)
e−8b/3

− 4

3

(
x

p
− n − x

1− p

)
e−4b/3. (9)

Both g and H are evaluated at the MLEs p̂ and b̂ . The
approximation by the second-order Taylor expansion is
thus

Δ�(b ) ≈ g · (b − b̂ ) +
1

2
H · (b − b̂ )2. (10)

We call this the untransformed (NT) approximation.
In molecular phylogenetics, the log-likelihood as a func-

tion of branch lengths (e.g., eq. 6) has the feature that
the curve drops steeply on the left (i.e., when b < b̂ )
and decreases more slowly on the right (when b > b̂ ).
In other words, large branch length estimates tend to
have large sampling errors. Thus, variance-stabilizing trans-
forms are expected to improve the accuracy of the ap-
proximation. We consider three transforms of the branch
length:

1. Square-root transform (SQRT): u =
√
b and b = u 2.

Then db/du = 2u = 2
√
b and d2b/du 2 = 2.

2. Log transform (LOG): u = log(b + ε) and b = eu − ε.
We use ε = 0.1 if b̂ < 10−4 or ε = 0 otherwise. The
use of ε here is to deal with the case of b̂ = 0, where
the simple transform u = log(b ) breaks down. Then
db/du = eu = b + ε and d2b/du 2 = b + ε.

3. Arcsine transform (ARCSIN): u=2 arcsin
√

3
4− 3

4e
−4b/3

and b = − 3
4 log (1− 4

3 sin
2( u2 )). Then

db

du
=

cos ( u2 ) sin (
u
2 )

1− 4
3 sin

2( u2 )
, (11)

d2b

du 2
=

1
2 cos

2( u2 )− 1
2 sin

2( u2 )

1− 4
3 sin

2( u2 )

+
4
3 cos

2( u2 ) sin
2( u2 )(

1 − 4
3 sin

2( u2 )
)2 . (12)

This transform is based on the following reasoning. The
number of differences in the alignment, x , follows a bino-
mial distribution bi(n , p), so that E (p̂) = p and Var(p̂) =
p(1− p)/n . This dependency of the variance on the mean
is undesirable, so we wish to find a transform h (p) so that
Var(ĥ (p)) = Var (h (p̂)) ≈ c , a constant. Such a variance-
stabilizing transformshould lead to amore symmetrical like-
lihood in the transformed parameter space. By the delta
technique (e.g., Yang 2006: p. 314), the asymptotic variance
of the transform is

Var(h (p̂)) ≈ Var(p̂)

[
dh (p)

dp

]2

= p(1− p)/n

[
dh (p)

dp

]2
. (13)

Equating this to constant c leads to the differential
equation

c =
p(1− p)

n

[
dh (p)

dp

]2
,

dh (p)

dp
=

√
cn√

p(1− p)
. (14)

We get

u = h (p) ∝
∫

dp√
p(1− p)

= 2 arcsin
√
p

= 2 arcsin

√
3

4
− 3

4
e−4b/3. (15)

We note that limb↓0 2 arcsin
√

3
4 − 3

4e
−4b/3 = 2

√
b so

the ARCSIN converges to the SQRT for small branch lengths.
For amino acid or codon alignments, the likelihood formula
(eq. 6) needs to be modified. We use p = 19

20 − 19
20 e
−20b/19

or p = 60
61 − 60

61e
−61b/60 for those data types, respectively.

We can use equations (4), (5), (8), and (9) to construct
the gradient and Hessian for any of the three transforms
suggested above. For example, for the SQRT, we have gu =
g db
du = 2g

√
b andHu = g d2b

du2 + H
(
db
du

)2
= 2g + 4Hb , all

evaluated at theMLE. Substituting these in equation (3), we
obtain the approximate likelihood function:

Δ�(b ) ≈ 2g
√

b̂ (
√
b −
√

b̂ )

+ (g + 2H b̂ )(
√
b −
√

b̂ )2 (16)

(cf: eq. (10)).
We are interested in how good the transformed approx-

imations are for the simple two-species JC69 model. There
are three cases of interest: 1) p̂ = 0. In this case, b̂ = 0
is at the lower boundary of the parameter space. 2) 0 <
p̂ < 0.75. This is the most common case with 0 < b̂ <∞
inside theparameter space. Asn →∞, the likelihood tends
asymptotically to the normal distribution and the Taylor
expansion provides an increasingly better approximation.
3) p̂ � 0.75. In this case, the likelihood increases asymp-
totically with b , and b̂ = ∞ is at the upper boundary of
the parameter space.
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FIG. 1. Log-likelihood curves for the distance (b ) between two sequences under the JC69 model. Three types of data are considered in which the
number of differences between the two sequences is x = 0 (a ), x = 37 (b ), and x = 74 (c ), respectively. The number of sites is n = 100.
The log-likelihood (Δ�) is calculated using the exact method (equation 6) (solid line) as well as four approximate methods: NT, SQRT, LOG, and
ARCSIN.

Figure 1 shows the exact and approximate log-likelihood
curves as a function of b when n = 100 and x = 0, x = 37,
and x = 74. For the first case (x = 0, fig. 1a), all methods
provide an adequate approximation to the true likelihood
function. We note that in this case, limb̂↓0g = −n and
limb̂↓0H =

1
3n . Therefore, asΔb → 0,Δb 2 tends to zero

much faster, and the linear term in equation 10 dominates
the approximation.Figure 1a clearly shows this, as all meth-
ods but LOG approximate the likelihood by a fairly straight
line with slope≈ −n .

The second case (x = 37, fig. 1b ) is the classical case
where the estimate b̂ is inside the parameter space (i.e.,
b̂ is neither 0 nor ∞) and the gradient at the MLE is
zero. Because the gradient is zero, the Hessian entirely
determines the approximation. However, the (exact) log-
likelihood curve is steeper on the left side of the MLE and
flatter on the right side (fig. 1b ). Indeed, on the left side
�→ −∞ when b → 0, but on the right side � approaches
a constant, � → x log 3

4 + (n − x) log 1
4 when b →

∞, instead of −∞ as expected from the normal approx-
imation. The NT method approximatesΔ� by a parabola
on the untransformed branch length, which is always
symmetrical around the MLE. Thus, NT overestimates
the likelihood for branch lengths smaller than the MLE
and underestimates the likelihood for branch lengths
larger than the MLE. The SQRT corrects the problem to
some extent but not enough. LOG does a much bet-
ter job, but it slightly overcorrects on the left and un-
dercorrects on the far right. Like the NT, the SQRT and

ARCSIN also overestimate the likelihood on the left side
of the MLE but to a lesser degree. The LOG method
is the only one that underestimates the likelihood for
the shorter branch lengths. The ARCSIN method pro-
vides the closest approximation to the true likelihood
curve.

In the third case (x = 74, fig. 1c), substitutions are close
to saturation, although there is a shallow peak in the like-
lihood function with b̂ = 3.24. In this case, the ARCSIN
method is the only one that can approximate the likelihood.
When the MLE of a branch length is infinity, the likelihood
curve increases asymptotically and there is no maximum.
As b → ∞, the gradient and Hessian both tend to zero.
This is a very pathological case and none of the transforms
can approximate the likelihood curve appropriately. For
example, when x = 75, equation (6) has no maximum and
all transforms break down. One should not use such data
in which the sequences are more divergent than random
sequences.

Implementation of the Approximate Likelihood
Calculation in the Dating Program MCMCtree
The approximate likelihood method with its various trans-
forms is implemented in the program MCMCtree of the
PAML package (Yang 2007). Estimation of divergence times
with the approximate method follows two steps. First, the
branch lengths are estimated by ML without assuming the
clock using the BASEML or CODEML programs (Yang 2007).
The gradient and Hessian for the branch lengths (g and H)
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are estimated at this step. The gradient is calculated by
the difference method, and the Hessian is calculated using
the outer product of scores estimator (OPS, Porter 2002;
Seo et al. 2004). This estimator of the Hessian is generally
more stable than the difference approximation to second
derivatives (see Appendix). In the second step, an MCMC
algorithm is used to estimate the posterior distribution of
divergence times and substitution rates. The likelihood
function is approximated using the appropriate Taylor
expansion (Yang 2006: fig. 7.10b ). For the NT method, the
likelihood is calculated using equation (2). As noted above,
this differs from the approximation used in multidivtime
(Thorne et al. 1998) if the MLEs of some branch lengths are
zero. For SQRT, LOG, and ARCSIN, the likelihood is calcu-
lated using equation (3), with the transformapplied to each
branch length on the tree, and with the gradient gu and the
Hessian Hu for the transformedparameters calculated using
equations (4) and (5).

Analysis of Real Data Sets
We use two real data sets to assess the accuracy of the
approximate method. In both data sets, the global clock
is seriously violated. Although we use the global clock to
test the performance of the approximatemethods in com-
parison with the exact calculation of likelihood, we do
not recommend its use in divergence time estimation in
such data sets as use of the global clock when it is seri-
ously wrong is known to generate unreasonable time esti-
mates. We test all the transforms assuming the global clock
(Yang and Rannala 2006) or assuming a relaxed clock with
autocorrelated rates following a log-normal distribution
(Rannala and Yang 2007). The log-normal distribution of
rates is specified by the overall rate μ and by the rate–
drift parameter σ2 (Thorne et al. 1998; Rannala and Yang
2007). Large σ2 indicates large variation in rates along the
branches of the tree, whereas σ2 close to zero indicates that
the tree is clock-like. When the global clock is assumed, the
proposed branch lengths during the MCMC iteration are
expected to be far from the likelihoodpeak. The global clock
is thus a stern test of the suitability of the approximate
method.

The first data set analyzed is an alignment of the first and
second codon positions from the 11 protein genes (>90
codons) on theH strand of themitochondrial genome of 36
mammalian species, compiled by Jun Inoue. The alignment
has 7,260 sites. The prior on divergence times is specified
using fossil calibrationswith soft bounds (Yang andRannala
2006; Inoue et al. 2010). We use 24 minimum and 14 max-
imum constraints based on the fossil record (Benton et al.
2009). We use a gamma prior G (1, 1) for the mean sub-
stitution rate μ (for both the global clock and the corre-
lated rates models). This is a diffuse prior with the mean
at one change per site per 100 My. We also use a dif-
fuse gamma prior G (1, 1) for the rate–drift parameter σ2

(for the correlated rates model only). The tree and fos-
sil calibration are shown in figure 2a . Examination of the
MLEs of branch lengths under the no-clock model suggests
that the global clock is seriously violated in this data set:

the likelihood ratio test of the clock under the Hasegawa-
Kishino-Yano (HKY)+Γ5 model rejects the clock at p =
9.9 × 10−324 (with 2Δ� = 1641.1, degree of freedom
[df]= 34).

The second data set is an alignment of two slowly evolv-
ing genes: the 18S ribosomal RNA gene (nuclear-encoded)
and the ATPase alpha subunit (ATP1) gene (mitochondrial-
encoded) from 50 land plant species, kindly provided by
Joseph Brown and Yin-Long Qiu. The alignment has 1,974
sites. This is a subset of the seven-gene 192-species align-
ment of Qiu et al. (2007). We use seven minimum and
three skew-t constraints based on the fossil record. We
use a gamma prior G (2, 0.04) for the mean substitution
rate μ (for both the global clock and the correlated rates
models), and a gamma prior G (1, 10) for the rate–drift
parameter σ2 (for the correlated rates model). The tree
and the fossil constraints are shown in figure 2b . As in
the mammal data set, the global clock is seriously violated:
the likelihood ratio test of the clock under the HKY+Γ5
model rejects the global clock at p = 1.8 × 10−182 (with
2Δ� = 1, 020.6, df = 48). Although the test statistic is
smaller than for the mammal data set, note that there is
far more data in the mammal data set (36 sequences each
of 7,260 sites compared with 50 sequences each of 1,974
sites for the plantdata set). Thus, the global clock is violated
more seriously in the plant data set than in the mammal
data set.

For each data set, we estimated the branch lengths,
the gradient g and the Hessian H with BASEML using
the HKY85+Γ5 substitution model (Hasegawa et al. 1985;
Yang 1994). We then used the program MCMCtree to es-
timate the divergence times under both the global clock
(clock = 1 in the MCMCtree control file) and the corre-
lated rates (clock = 3 for MCMCtree) models, using each
one of the three transforms (SQRT, LOG, ARCSIN), the plain
approximation (NT), and the exact method. We also used
the independent rates model (Drummond et al. 2006;
Rannala and Yang 2007) (clock = 2 for MCMCtree) to
analyze the two data sets. The results are very similar to
those for the correlated rates model and are not pre-
sented.We ran eachMCMC setup twice from different ran-
dom starting values to check convergence to the posterior
distribution.

Results and Discussion
Mammal Data Set
When the relaxed clock was assumed, all four approxima-
tions gave essentially the same posterior mean times as the
exact method (fig. 3). The 95% posterior CIs were virtually
the same as well (results not shown). The posterior distri-
bution of the root age, and the posterior distribution of the
mean rate μ were also the same as from the exact method
(fig. 4). The mean posterior rate was μ = 0.16 × 10−8

per site per year (0.091, 0.28) and the drift parameter σ2 =
0.61 (0.37, 0.97) by the exact method. There is substantial
rate variation among lineages, consistent with the rejection
of the global clock by the likelihood ratio test.
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FIG. 2. Phylogenetic trees used for divergence time estimation for the mammal and plant data sets. L(a , p , c): lower (minimum) age bound a
with distribution parameters p and c ; B(a ,b ): joint bounds with the minimum at a , and maximum at b ; U(b ): upper (maximum) age bound b ;
and ST(ξ ,ω,α, df): Skew-t distribution for the node age with distribution parameters ξ , ω,α, and df. For details about the various distribution
parameters and specification of the fossil calibrations, see Inoue et al. (2010) and the PAML documentation.
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FIG. 3. The posterior means of divergence times obtained using the approximate methods of likelihood calculation (NT, SQRT, LOG, and ARCSIN)
plotted against those obtained using the exact method of likelihood calculation. The mammal data set was analyzed, and the posterior means of
the 35 node ages in the tree of figure 2a are used in the scatterplots. Either the global clock (top) or the correlated clock (bottom) was assumed.
See text for the specification of priors and other details of the analysis.

When the global clock was assumed, substantial differ-
ences in the mean posterior times among the transforms
were observed (fig. 3). The SQRT andARCSIN outperformed
the LOG, and all these three clearly outperformed the plain
NT approximation.There were noticeabledifferences in the
posterior distribution of the root age and the substitution
rate (fig. 4). The age of the root for the approximationswas
between 1.03 and 1.12 times the age estimated with the
exact method. Furthermore, the NT, SQRT, and ARCSIN
underestimated the substitution rate by 25%, 12%, 10%,
respectively, whereas the LOG slightly overestimated it by
3% (fig. 4). Overall, for the worst performingapproximation,
NT, node age estimates were between 0.93 and 1.19 times
those from the exact method. For the best performing
approximation, ARCSIN, node age estimates ranged
between 0.95 and 1.09 times those from the exact method.
Therefore, node ages were estimatedmore reliablywith the
approximations than the substitution rate.

Figure 5 shows the approximate Δ� values for param-
eter values proposed during the stationary phase of the
MCMC for each transform plotted against Δ� calculated
using the exact method. The discrepancies between the ex-
act and the approximatemethods are more apparentwhen
the global clock is considered. In this case, all approximate
methods overestimated the likelihood. With the relaxed
clock,Δ� values sampled during the stationaryphase of the
MCMC ranged between 20 and 80 log-likelihoodunits away
from the likelihood peak. For the global clock, Δ� values
were considerably further away from the peak, by roughly
between 900 and 1,300 units. This is because the molecu-

lar clock is seriously violated in the data, and it is impos-
sible for the global clock model to fit the branch lengths
estimated without the clock assumption. It is noteworthy
that the ARCSIN can still achieve a reasonable approxima-
tion so far away from the likelihood peak.

Land Plant Data Set
When the relaxed clock was assumed, all approximations
gave similar posterior mean times to the exact method,
although some discrepancies in the age of some nodes were
apparent (fig. 6). The LOG appears to be slightly worse than
the other transforms. Likewise, the posterior distribution of
the root age and mean rate μ were similar across methods,
although the plain approximation (NT) underestimated the
mean substitution rate by about 28% (fig. 7). The mean
posterior rate was μ = 0.049 × 10−8 per site per year
(0.021, 0.11) and the drift parameter σ2 = 0.93 (0.65, 1.3)
by the exact method. There is considerably more rate vari-
ation among lineages and the molecular clock is violated
much more severely in the plant data set than in the mam-
mal data set.

When the global clock was assumed, large discrepancies
in node ages were observed between the approximations
and the exact method (fig. 6). Also, the various approxi-
mations produced different posterior distributions for the
root age and substitution rate (fig. 7). The NT, SQRT, and
ARCSIN underestimated the substitution rate by 72%, 37%,
and 35%, respectively, whereas LOG overestimated it by
30% (fig. 7).
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FIG. 4. Estimated posterior density for the age of the root (left) and the overall rateμ (right) under the global clock (top) and autocorrelated rates
(bottom)models. The mammal data are used. Two curves are shown for each analysis, from two independent MCMC runs.

The molecular clock was violated seriously, so the branch
lengths proposed during the MCMC were far from their
MLEs. Correspondingly, theΔ� values for the various trans-
forms differ substantially from the exact method, specially
under the global clock model (fig. 8). With the relaxed
clock, Δ� values for proposals made during the station-
ary phase of the MCMC ranged between 50 and 200 log-
likelihood units away from the likelihood peak. Under the
global clock,Δ� values were further away from the peak, by
roughly between 600 and>1, 600 units. All approximations
overestimated the likelihoodunder both clockmodels, with
the NTmethod providing the poorest approximation.

In comparison with the mammal data set, the clock is
more seriously violated in the plant data set. As a result, the
branch lengths visited by the MCMC are farther away from
the likelihood peak and the approximations are in general
poorer in the plant data set than in the mammal data set
(cf., fig. 8 with fig. 5).

Proposal Space in the MCMC Algorithm and Adequacy
of the Approximate Method
It is interesting to consider how large the range of param-
eter values should be within which we need to calculate
the likelihood reliably. For the simple two-species example
when 0 < b̂ < ∞ (fig. 1b ), the 99.9% “likelihood inter-
val (region)” is constructed by lowering the log-likelihood

from the peak by 1
2χ

2
ν ,0.1% , where χ

2
ν ,0.1% is the 0.1% criti-

cal point of the χ2 distribution with ν df (e.g., Yang 2006:
p. 25). In our current example with ν = 1 parameter,
the likelihood interval consists of all values of b at which
Δ� > − 1

2 × 10.83 = −5.41. If the prior is diffuse and
not in strong conflict with the likelihood, the Bayesian 99.9%
CIs may roughly coincide with the 99.9% likelihood inter-
val. Then in 99.9% of the samples taken in the MCMC, the
log-likelihood will be within 5.41 units of the maximum at
theMLE. Many rejected proposals, however, may have even
lower likelihood values, so that we need to be able to calcu-
late the log-likelihood reliablyover a larger (but perhaps not
much larger) region than the 99.9% likelihood interval, that
is, the interval withΔ� > − 1

2χ
2
ν ,0.1% . Very poor proposals

will be rejected whether their log-likelihood is reliably cal-
culated: it makes virtually no difference to the acceptance
or rejection of the proposal whether the logarithm of the
likelihood ratio for the proposal is−1, 000 or−2, 000.

Divergence time estimation on a phylogeny under the
clock and relaxed clock models is more complicated.
Currently, for a phylogeny of s species, PAML estimates
2s−3 branch lengths on the unrooted tree without assum-
ing the molecular clock in order to construct the Taylor ap-
proximation to the likelihood surface used in the MCMC.
The global clock and the relaxed clock models are all special
cases of this no-clock model and their likelihood cannot be
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FIG. 5. The log-likelihood values (Δ�) calculated using the approximate methods (NT, SQRT, LOG, and ARCSIN) for branch lengths visited during
the MCMC plotted against the exact log-likelihood values. The mammal data set was analyzed under the global-clock (top) and correlated rates
(bottom) models. See also figures 3 and 4 for results from the same analysis.

higher than the optimal likelihood achieved at the MLEs of
branch lengths under the no-clock model. Because the as-
sumed clock model (either the global clock or relaxed clock
model) may impose unrealistic constraints on the branch
lengths, proposals and samples taken in the MCMCmay be
consistently far away from the likelihood peak calculated
under the no-clock model. In fact, branch lengths near the
likelihood peak may not be achievable. For the plant and
mammal data sets, the branch lengths proposed in the

MCMC were from 20 (mammal data set, correlated rates
model) to over 1,600 (plant data set, global clock) log-
likelihood units away from the peak (figs. 5 and 8).

We note that the global clock should not be assumed to
estimate divergence times if it is seriously violated by the
data. Nevertheless, if time estimates under the global clock
are desired, an alternative procedure is to obtain the MLEs,
gradient and Hessian for parameters under the global clock,
which are the s − 1 node distances (node ages measured

FIG. 6. The posterior means of divergence times obtained using the approximate methods of likelihood calculation (NT, SQRT, LOG, and ARCSIN)
plotted against those obtained using the exact method. The plant data set was analyzed, and the posterior means of the 49 node ages in the tree
of figure 2b are used in the scatterplots. Either the global clock (top) or the correlated clock (bottom) was assumed. See text for details of the
analysis.
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FIG. 7. Estimated posterior density for the age of the root (left) and overall rate μ (right) for the global clock (top) and autocorrelated rates
(bottom)models. The plant data are used. Two curves are shown for each analysis, from two independent MCMC runs.

by the number of substitutions) on the rooted tree. The ML
and Bayesian models would then be conducted under the
same clock model and proposals in the MCMC would be
expected to be close to the likelihood peak, thus improving
the approximation for analysis under the global clock. We
have not pursued this approach in this paper, partly because
there seems to be little point in fitting the global clock when
it is seriously violated.

To summarize the results obtained from the real data
analysis, the approximation is very good when the branch
lengths proposed during the MCMC are close to the MLEs.
This is the case for the mammal data set under the corre-
lated ratesmodel, where the time and rate estimates fromall
approximate methods are virtually identical to those from
the exact method. The approximation is quite good under
the correlated rates model for the plant data set as well. In
contrast, when the proposed branch lengths are far from
theMLEs, the discrepancies between the true likelihood and
the approximation become important. Because the NT ap-
proximation overestimates the likelihood on the left side
of the MLE, there will be an excess of short branch lengths
sampled during the MCMC. Overall, trees sampled when
the likelihood is calculated with the NT approximation un-
der the global clock are much shorter (in terms of substitu-
tions per site) than if the likelihood is calculated exactly. The

posterior substitution rate is therefore underestimated, as
shorter trees require slower rates to accommodate the fos-
sil constraints. Because the SQRT and ARCSIN approxima-
tions also overestimate the likelihood for the short branch
lengths, they underestimate the posterior rate as well, al-
though not as severely as the NT method. In contrast, the
LOG overestimates the rates. This pattern was apparent in
the posterior distribution of substitution rates in the global
clock analysis for both data sets (figs. 4 and 6).

It is clear that the suitability of the approximatemethod
depends on the data set being analyzed. Two factors seem
important: the alignment length and the adequacy of the
molecular clock. ML theory establishes that as the sample
size increases the MLEs are asymptotically normally dis-
tributed around the true parameter values. If the alignment
is too short, the asymptotic theory may not be reliable. Fur-
thermore, as discussed above, the approximation may be
poor for analysis under the global clock when the global
clock is seriously violated. The plant data set represents such
an extreme, where the clock is seriously violated, the align-
ment is relatively short, and the differences between the
exact and approximatemethods are large.

As an example of good approximation for the clock anal-
ysis when the clock is largely correct, we reanalyzed the
cat data set of Johnson et al. (2006) and Rannala and Yang
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FIG. 8. The log-likelihood values (Δ�) calculated using the approximate methods (NT, SQRT, LOG, and ARCSIN) for branch lengths visited during
the MCMC plotted against the exact log-likelihood values. The plant data set was analyzed under the global-clock (top) and correlated rates
(bottom) models. See also figures 6 and 7 for results from the same analysis.

(2007), using exactly the same fossil calibrations and rate
prior as in Inoue et al. (2010) but assuming the global clock.
The alignment has 19,984 sites. The divergences are within
15 My, and the substitution rate appears constant over lin-
eages. Under these settings, the NT method and the exact
method gave virtually the same posterior times (results not
shown).

Computational Efficiency
The approximate method is substantially faster than con-
ventional likelihood calculation. For the exact method,
one MCMC run under correlated rates model for the 36
mammalian species alignment with 7,260 sites took ∼ 2
days on a desktop computer, but only ∼3 min. with the
approximations. The plant data set, having more species
(50) but a shorter alignment (1,974 sites), took ∼20 hr for
the exact method and about ∼10 min with the approx-
imations. Calculation of the MLEs, the gradient, and the
Hessian took a negligible amount of time for those two data
sets. Such speed performance is appealing as it opens up
the possibility of analyzing large genomic alignments. We
recommend the use of the approximatemethod, especially
the ARCSIN, for analysis of large data sets under relaxed
clock models such as the correlated rates and independent
rates models. If results under the global clock are desirable,
care should be taken to confirm that the molecular clock
is not seriously violated, as otherwise the exact method is
necessary.
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Appendix

Calculation of the Gradient and Hessian
In BASEML and CODEML, the gradient for the branch
lengths (g) is calculated using the central differencemethod.
For a general multivariate function f (x), with x =
{xi}, the central difference method approximates the
gradient by

gi =
∂f (x)

∂xi
≈ f (x+ hi ei )− f (x− hiei )

2hi
, (17)

where ei is a vector with the i th element to be 1 and all
other elements to be 0. The step length is set at hi =
ε(|xi | + 1), with ε to be a small number, around 10−8-
10−5. Equation (17) is stable and normally leads to a good
approximation.

Similarly, the second-order difference method can be
used to calculate the Hessian

Hii =
∂2f (x)
∂x 2i

≈ f (x+ hiei ) − 2f (xi ) + f (x− hi ei )
h 2
i

, (18)

Hij =
∂2f (x)
∂xi∂xj

≈
f (x+ hiei + kj ej )− f (x+ hiei − kj ej )
−f (x− hi ei + kjej ) + f (x− hi ei − kjej )

4hi kj
, (19)

2171

 at Institute of Z
oology, C

A
S on A

pril 24, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


Approximate Likelihood Calculation · doi:10.1093/molbev/msr045 MBE

where hi and kj are the step sizes. This was used in pre-
vious versions of PAML. However, equations (18) and (19)
are unstable and highly sensitive to the step sizes. The
current version of PAML (since version 4.3) uses the OPS
estimator of the Hessian (Porter 2002; Seo et al. 2004),
which is generally more stable. However, the OPS estima-
tor is based on the assumption that the expectation of
the gradient at the MLE is zero. This is not true when the
MLEs are at the boundary of the parameter space (i.e., when
they are zero). Thus, the current version of PAML does not
provide accurate estimates of the Hessian for zero branch
lengths.

One way to address this problem may be to use the dif-
ference approximation (equations (18) and (19)) to calcu-
late the Hessian elements for zero branch lengths, and the
OPS method to estimate the rest of the matrix. Addition-
ally, the first derivatives and the diagonals of the Hessian
could be computed exactly, as described by Yang (2000)
and combined with the first-order difference method: that
is, we compute gi exactly and then apply the difference
approximation

Hij =
gi (x+ hjej )− gi (x− hj ej )

2hj
. (20)

This approach should lead to correct Hij values even for
branches of length zero. In any case, as the gradient of a
zero branch length is typically not zero, the linear term of
the Taylor expansionhas a substantial effect on the approx-
imation. The plant data set contains nine branches of length
zero. The gradient for these nine branch lengths ranges from
−1, 218 to−53, so their contribution to the approximation
is important. Therefore, the corresponding node age esti-
mates are reasonably close to the estimates obtained by the
exact method.

Compared with zero branch lengths, infinite branch
lengths cause even bigger problems. In this case, the branch
lengths reported by BASEML or CODEML are arbitrarily
large and depend on the particular data set and on the
upper bound set in the program. These branch lengths
have Hessian elements that approach zero asymptotically.
The approximatemethods described here are not expected
to perform well in this case, although the ARCSIN might
provide the most robust approximation. Users who wish
to use the approximate method should inspect the ML
tree and observe whether unusually long branches are
present. If they are, some species may be removed, a new
alignment may be prepared or the exact method should
be used.

References
Benton M, Donoghue P, Asher R. 2009. Calibrating and constraining

molecular clocks. In Hedges S, Kumar S, editors. The timetree of
life. Oxford: Oxford University Press. p. 35–86.

Benton MJ, Donoghue PC. 2007. Paleontological evidence to date the
tree of life.Mol Biol Evol. 24:26–53.

Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phyloge-
netics and dating with confidence. PLoS Biol. 4:e88.

Guindon S. 2010. Bayesian estimation of divergence times from large
sequence alignments.Mol Biol Evol. 27:1768–1781.

Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape
splitting by a molecular clock of mitochondrial DNA. J Mol Evol.
22:160–174.

Inoue J, Donoghue PC, Yang Z. 2010. The impact of the representation
of fossil calibrations on Bayesian estimation of species divergence
times. Syst Biol. 59:74–89.

JohnsonWE, Eizirik E, Pecon-Slattery J, MurphyWJ, Antunes A, Teeling
E, O’Brien SJ. 2006. The late Miocene radiation of modern Felidae:
a genetic assessment. Science 311:73–77.

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In Munro
HN, editor. Mammalian proteinmetabolism. NewYork: Academic
Press. p. 21–123.

Kumar S. 2005. Molecular clocks: four decades of evolution. Nat Rev
Genet. 6:654–662.

Porter J. 2002. Efficiency of covariancematrix estimators formaximum
likelihood estimation. J Bus Econ Stat. 20:431–440.

Qiu YQ, Li L, Wang B, et al. (13 co-authors) 2007. A non-flowering
land plant phylogeny inferred from nucleotide sequences of seven
chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci.
168:691–708.

Rannala B, Yang Z. 2007. Inferring speciation times under an episodic
molecular clock. Syst Biol. 56:453–466.

Seo TK, Kishino H, Thorne JL. 2004. Estimating absolute rates of syn-
onymous and nonsynonymous nucleotide substitution in order to
characterize natural selection and date species divergences. Mol
Biol Evol. 21:1201–1213.

Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution
of the rate of molecular evolution.Mol Biol Evol. 15:1647–1657.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate meth-
ods. J Mol Evol. 39:306–314.

Yang Z. 2000. Maximum likelihood estimation on large phylogenies
and analysis of adaptive evolution in human influenza virus A.
J Mol Evol. 51:423–432.

Yang Z. 2006. Computational molecular evolution. Oxford: Oxford
University Press.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 24:1586–1591.

Yang Z, Rannala B. 2006. Bayesian estimation of species divergence
times under a molecular clock using multiple fossil calibrations
with soft bounds.Mol Biol Evol. 23:212–226.

Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and conver-
gence in proteins. In Bryson V, Vogel HJ, editors. Evolving genes
and proteins. New York: Academic Press. p. 97–166.

2172

 at Institute of Z
oology, C

A
S on A

pril 24, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/

	Calculation of the Gradient and Hessian

