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Introduction

Levels of atmospheric oxygen and temperature have fluc-
tuated considerably (from 12  % to over 30  %) over the 
past 550 million years (Bergman et al. 2004; Berner 2006; 
Huber et  al. 2000). The interaction between oxygen and 
temperature not only affects the behaviour and physiology 
of organisms, but may also have influenced the course of 
biological evolution (Berner et  al. 2007; Huey and Ward 
2005; Pörtner 2010). For example, temperature increase 
causes oxygen limitation for marine fish by reducing 
aquatic dissolved oxygen and by enhancing the animals’ 
oxygen consumption (Pörtner and Knust 2007); low oxy-
gen plus warm temperatures have been hypothesised to 
have led to a catastrophic extinction at the end of the Per-
mian period (Huey and Ward 2005). Despite the importance 
of the oxygen–temperature interaction for organismal phys-
iology and survival, these two environmental factors gen-
erally have been treated as different environmental stresses 
and hence, studied separately (Pörtner 2010; Willmer et al. 
2004). However, the oxygen–temperature interaction, 
which has received increasing scientific attention recently 
(Huey and Ward 2005; Pörtner 2010), may shed light on 
both phenotypic plasticity and evolutionary adaptation of 
organisms in response to environmental changes.

Unlike viviparous embryos that develop inside the maternal 
body with stable temperature and oxygen supply, the embryo 
within an oviparous amniote egg develops in an external 
nest and may be exposed to a wide and unpredictable range 
of oxygen and temperature availability. For example, oxygen 
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declines significantly after rain or if metabolic activities of 
microbes and sibling eggs deplete the oxygen within the nest 
chamber (Ackerman and Lott 2004; Booth 2000; Seymour 
et al. 1986); nest temperatures fluctuate dramatically in reptiles 
(most notably in shallow nests) or when brooding parent birds 
leave the nest to forage (Jia et al. 2010; Shine et al. 2003). In 
addition, oviparous amniotes produce eggs with parchment or 
rigid shells that not only provide a protective environment for 
the embryo, but may also restrict oxygen influx (Packard and 
DeMarco 1991). High temperature and hypoxia are two cru-
cial environmental stresses that oviparous amniote embryos 
may face during development. Previous studies have demon-
strated that oxygen and temperature can significantly affect 
embryonic development and the resultant hatchlings in ovipa-
rous amniotes (see reviews by Deeming 2004; Deeming and 
Ferguson 1991; DuRant et al. 2013; Nechaeva 2011), but the 
vast majority of these studies focus on single-factor effects 
rather than among-factor interactions. For example, amniote 
embryos at benign temperatures would develop into larger 
hatchlings that performed better than those at high or low 
temperatures, and extremely high or low temperatures could 
be harmful or even lethal for amniote embryos (Booth et al. 
2000; Du and Ji 2003; Ji and Du 2001; Whitehead et al. 1992). 
Hypoxia may reduce metabolic and growth rates of embryos, 
and induce cardiac hypertrophy and facultative increase of 
heart rate, vascular density on the chorioallantoic membrane 
and haematocrit in oviparous amniotes (Corona and Warbur-
ton 2000; Crossley and Altimiras 2005; Du et al. 2010; Kam 
1993; Seymour et  al. 1986; Snyder et  al. 1982; Warburton 
et al. 1995). By contrast, the effect of hyperoxia on embryonic 
development receives much less attention, but may be impor-
tant for understanding how atmospheric oxygen level affects 
the physiology of both extinct and contemporary vertebrates 
(Owerkowicz et al. 2009).

Identifying the oxygen–temperature interaction may pro-
vide new insights into the proximate and evolutionary con-
straints on embryonic development and offspring fitness in 
oviparous amniotes. First, if the interaction of temperature 
and oxygen affects thermal tolerance, the survival of embryos 
under thermal stress would depend on oxygen availability in 
nests. Second, even within the viable oxygen and tempera-
ture ranges, temperature–oxygen interaction is likely to sig-
nificantly modify hatchling phenotypes and to severely affect 
offspring fitness, because both high temperature and hypoxia 
have negative effects on embryonic development and hatch-
ling traits (Deeming 2004; Nechaeva 2011).

The Chinese soft-shelled turtle (Pelodiscus sinensis) lives 
in rivers, lakes and ponds, and lays clutches of small rigid-
shelled eggs from May to August in eastern China (Zhang 
et al. 1998). The rigid-shelled eggs have low gas permeability 
(Deeming and Thompson 1991; Overgaard et al. 2007), mak-
ing this an ideal species to identify oxygen-dependent thermal 
tolerance and development in amniote embryos. We used a 

two-factor (oxygen concentration × temperature) experimen-
tal design to test for the effects of oxygen and temperature on 
the thermal tolerance and development of embryos and the 
phenotypic traits of hatchlings in the Chinese soft-shelled tur-
tle. We predicted that (1) hatching success at the critically high 
temperature would be higher for turtle embryos exposed to 
hyperoxia than for those exposed to hypoxia; (2) the effects of 
hypoxia would be more severe at the critically high tempera-
ture than at the benign temperature.

Materials and methods

Experimental design

We used a two-factor experimental design [three oxygen 
concentrations (12, 22 and 30 %) × two temperatures (26.5 
and 34  °C)] to identify the effects of the oxygen–temper-
ature interaction on embryonic development and hatchling 
traits. The two temperatures, 26.5 and 34 °C, are the benign 
and critically high temperatures for embryonic develop-
ment of P. sinensis, respectively (Du and Ji 2003). Our 
pilot study indicated that, when incubated in an incubator 
with natural air circulation with an oxygen concentration 
of 20.1  %, P. sinensis eggs from a captive population at 
Hangzhou had high hatching success (97  %, or 31/32) at 
26.5 °C, but much lower hatching success (50 %, or 23/46) 
at 34 °C. This result verified that 26.5 °C and 34 °C are the 
benign and critically high temperatures, respectively, for 
embryonic development in our study population.

Egg collection and incubation

In May, 2013, we collected 25 clutches containing 286 
freshly laid and fertilised P. sinensis eggs from a private 
farm in Hangzhou city of Zhejiang Province, China. The 
eggs were weighed (average egg mass 5.47 ± 0.34 g), incu-
bated in plastic boxes (220 ×  100 ×  80  mm) containing 
moist vermiculite (−220 kPa), and assigned to one of the 
six treatments in the two-factor experiment, using a split-
clutch design. Each box was sealed in a 30-L polybag and 
supplied with hyperoxic or hypoxic gas. Oxygen concen-
trations were achieved by mixing compressed oxygen with 
nitrogen, using air cylinders. Each polybag was filled with 
the mixed gas until slightly inflated, and was checked twice 
per day to ensure that eggs were under slight positive pres-
sure from the mixed gas supply. The gas in the polybag was 
renewed each day, and the gas renewal of each polybag 
was completed within 3  min. Meanwhile, the boxes were 
weighed and water added to compensate the water loss 
due to evaporation and absorption by the eggs and thereby 
maintain a relatively constant water potential of the incuba-
tion substrate. Gas from polybags was sampled periodically 
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before and after each renewal and checked with O2 and 
CO2 sensors (UI-2; Model TR3, Sable Systems, Hender-
son, NV, USA), connected to O2 and CO2 analysers (FC-
10A and CA-10A; Model TR3, Sable Systems, Henderson, 
NV, USA). Throughout the experiment, the O2 level of the 
gas in each polybag was maintained within 2 % of 12, 22 or 
30 %, with a CO2 level less than 0.2 %.

Incubation period, hatching success, and hatchling 
phenotypes

Once the first hatchling appeared, we monitored the boxes 
once a day for newly emerging hatchlings. The number of 
days elapsed between the beginning of incubation and the 
emergence of the hatchlings was recorded as the incuba-
tion period. Hatching success was calculated as the per-
centage of hatched eggs relative to incubated eggs in each 
treatment.

After emergence, the hatchlings were weighed (±1 mg) 
and maintained in a 300-mL jar until the yolk had been 
entirely absorbed (2  days in most cases). The turtles 
were then measured for carapace size (length and width, 
±1 mm), and their locomotor performance was assessed by 
chasing them along a 0.8-m long straight racetrack. The tri-
als were conducted in a room with a constant temperature 
of 30  °C, which is optimal for locomotor performance in 
this species (Wu et al. 2013). The locomotor performance 
of each turtle was tested twice with a half-hour resting 
period between trials and recorded with a SONY HDR-
XR150 digital video camera. The fastest speed over 20-cm 
intervals was collected a posteriori from the videotapes.

Following the locomotion test, the hatchling turtles were 
housed individually in 500-mL jars with 5-cm-deep water 
in a temperature-controlled room at 30 ± 1 °C and with a 
12-h light:12-h dark cycle. The turtles were fed with com-
mercial food daily, and their survival was monitored for 
2 months after hatching.

Data analysis

We conducted G tests to determine whether the hatch-
ing success of eggs and the survival rate of hatchlings 
differed among oxygen treatments in each thermal treat-
ment. Two-way mixed-model ANOVAs were used to ana-
lyse the effects of oxygen and temperature on incubation 
period, with clutch number as the random factor. Two-way 
mixed-model ANCOVAs were used to analyse the effects 
of oxygen and temperature on morphology and locomo-
tor performance of hatchlings, with initial egg mass as a 
covariate and clutch number as the random factor. Given 
the significant effect of the interaction between oxygen and 
temperature on incubation period and hatchling traits, we 
further ran one-way mixed-model ANOVAs or ANCOVAs 

to determine the effect of oxygen in each temperature treat-
ment. Means are presented ± one standard error and results 
were deemed to be significant if P < 0.05.

Results

Hatching success was affected by oxygen treatment at the 
critically high temperature of 34  °C, with lower hatch-
ing success for eggs exposed to 12  % oxygen than for 
eggs exposed to 22 and 30 % oxygen (G = 28.2, df = 3, 
P < 0.001). In contrast, hatchling success was not affected 
by oxygen treatment at the benign temperature of 26.5 °C 
(G = 0.72, df = 3, P > 0.05) (Fig. 1).

Incubation period was significantly affected by incu-
bation temperature (F1,89 =  9,338.9, P  <  0.0001), oxygen 
concentration (F2,89 = 26.9, P < 0.0001), and the interaction 
between them (F2,89 = 13.4, P < 0.0001). Eggs took longer 
to hatch when incubated at 26.5  °C than 34  °C (Fig.  2). 
At both temperatures, oxygen concentration significantly 
affected incubation period (26.5 °C: F2,66 = 9.2, P < 0.001; 
34  °C: F2,23 =  40.0, P  <  0.0001). Eggs exposed to 12  % 
oxygen took longer to hatch than those exposed to 22 and 
30  % oxygen, and the among-treatment difference was 
greater at 34 °C (3 days) than at 26.5 °C (1 day) (Fig. 2).

Oxygen concentration, incubation temperature and the 
interaction between them significantly affected hatchling 
locomotor performance and all morphological traits measured 
(Table 1). When incubated at 34 °C, hatchlings from the 22 
and 30  % oxygen treatments were considerably larger and 
heavier than their siblings from the 12  % oxygen treatment 
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(body mass-F2,22 = 11.5, P < 0.001; carapace length-34 °C: 
F2,22  =  29.1, P  <  0.0001; carapace width-F2,22  =  27.6, 
P < 0.0001) (Fig. 3). However, this effect was greatly reduced 
at 26.5  °C (body mass-F2,65  =  8.9, P  <  0.001; carapace 
length-F2,65 = 13.7, P < 0.0001; carapace width-F2,65 = 7.1, 
P < 0.01) (Fig. 3). Hatchlings from the 22 and 30 % oxygen 
treatments had larger heads than their siblings from the 12 % 
oxygen treatment when incubated at 34  °C (head length-
F2,22 = 16.5, P < 0.0001; head width-F2,22 = 10.9 P < 0.001). 
In contrast, this difference was only seen in head length 
(F2,65 = 3.8, P < 0.05), but not in head width (F2,65 = 0.25, 
P  =  0.78) in hatchlings from eggs incubated at 26.5  °C 
(Fig. 4). Hatchlings from the 22 % oxygen treatment crawled 
faster than their siblings from the 12 and 30 % oxygen treat-
ments when incubated at 34 °C (F2,22 = 13.6, P < 0.0001), but 
not at 26.5 °C (F2,65 = 0.09, P = 0.92) (Fig. 5).

When incubated at 34  °C, survival rate within 2  months 
was highest in hatchlings from the 22  % oxygen treatment 

(85.7 %), lowest in hatchlings from the 12 % oxygen treatment 
(25.0  %); hatchlings from the 30  % oxygen treatment were 
intermediate (65.7 %) (G = 14.0, df = 3, P < 0.01). In con-
trast, all hatchlings from eggs incubated at 26.5 °C survived to 
2 months after hatching, regardless of oxygen treatment.

Discussion

Hatching success of our turtle eggs was enhanced by 
hyperoxia and reduced by hypoxia when the eggs were 
incubated at a critically high temperature, but not when 
the eggs were incubated at a benign temperature. When 
incubated in air, P. sinensis eggs from the population used 
in this study achieve 50  % hatching success at 34  °C; 
eggs from another population averaged only 32 % hatch-
ing success (Choo and Chou 1987). Compared with those 
incubated in air, hatching success of P. sinensis eggs 
incubated in hyperoxia increased, but those incubated 
in hypoxia decreased (Fig.  1). Our results are consistent 
with previous findings from studies on embryonic and lar-
val stages of crustaceans (Storch et al. 2009; Woods and 
Hill 2004), as well as studies on the adult stage of marine 
invertebrates, some terrestrial arthropods and fish (Klok 
et  al. 2004; Pörtner 2010; Pörtner and Knust 2007; Ste-
vens et  al. 2010). Conversely, oxygen limitation of heat 
tolerance is unlikely in simple organisms such as single-
celled eukaryotes and prokaryotes (Pörtner 2001, 2002) 
and many insects (Klok et al. 2004; Stevens et al. 2010). 
Simple organisms diffuse sufficient oxygen directly into 
tissues and cells and thus have very high heat tolerance. 
In contrast, higher organisms like metazoans have com-
plex circulatory and gas exchange systems and thus much 
lower heat tolerance (Pörtner 2001, 2002). Analogously, 
oxygen limitation of heat tolerance is less prominent in 
most insects which have a primarily diffusion-driven tra-
cheal system that delivers oxygen to tissues, compared to 
terrestrial isopods in which oxygen is delivered to tissues 
primarily by a circulatory system (Klok et al. 2004; Ste-
vens et al. 2010).

Table 1   Results of ANCOVA for oxygen concentration and temperature effects on morphology and locomotor performance in hatchling  
P. sinensis

ANCOVAs were conducted on hatchling size, head size and crawl speed, with initial egg mass as a covariate on hatchling size, and body mass 
on head size and crawl speed

Oxygen Temperature Interaction

Hatchling mass F2,88 = 19.8, P < 0.0001 F1,88 = 12.2, P < 0.01 F2,88 = 7.5, P < 0.01

Carapace length F2,88 = 34.0, P < 0.0001 F1,88 = 14.7, P < 0.001 F2,88 = 24.8, P < 0.0001

Carapace width F2,88 = 41.0, P < 0.0001 F1,88 = 163.7, P < 0.0001 F2,88 = 22.9, P < 0.0001

Head length F2,88 = 23.1, P < 0.0001 F1,88 = 63.9, P < 0.0001 F2,88 = 15.2, P < 0.0001

Head width F2,88 = 13.6, P < 0.0001 F1,88 = 61.4, P < 0.0001 F2,88 = 19.9, P < 0.0001

Crawl speed F2,88 = 7.5, P < 0.01 F1,88 = 31.6, P < 0.0001 F2,88 = 6.2, P < 0.01
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Interestingly, heat tolerance (as shown by hatching suc-
cess at 34  °C) of P. sinensis embryos increased as oxy-
gen concentration increased from 12 to 22 %, but did not 

increase further when oxygen concentration increased to 
30 % (Fig. 1). This suggests that the oxygen available for 
mitochondrial aerobiosis in cells not only depends on the 
partial pressure of oxygen in the air (which may affect the 
partial pressure gradient between an organism and its envi-
ronment and in turn the diffusion efficiency of oxygen), but 
may also be limited by the efficiency of oxygen transport 
to tissues and cells. The delivery of oxygen from air to 
tissues and cells in amniotic embryos involves three pro-
cesses: diffusive gas exchange through the shell and shell 
membranes to capillaries in the chorioallantois, convective 
transport via the circulatory system, and diffusive exchange 
between the tissue capillaries and the cells (Andrews 2004; 
Burggren and Pinder 1991). In addition to oxygen trans-
port, mitochondrial function may play an important role in 
oxygen limitation of thermal tolerance. For example, warm 
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acclimation leads to a reduction in mitochondrial density, 
which may reduce oxygen demand and shift the upper criti-
cal temperature to a higher value (Pörtner 2001), whereas 
cold acclimation increases mitochondrial density or mito-
chondrial aerobic capacity (Guderley 2004). Consequently, 
temperature-induced alterations of mitochondrial densities 
and functions may shift oxygen-limited thermal tolerance 
windows (Pörtner 2001). Such mechanisms have not yet 
been explored in terrestrial vertebrates, and provide ample 
opportunities for future studies.

Rarely has the effect of the interaction between oxygen 
and temperature on embryonic development and offspring 
fitness been studied in oviparous amniotes. In the domestic 
chicken egg, there was no evidence of an interactive effect 
of oxygen and temperature on embryonic development 
(Lourens et al. 2007), but our study demonstrated that oxy-
gen and temperature interact to affect the developmental 
rate of embryos and the fitness-related phenotypes of hatch-
lings in a turtle, including body size, crawl speed and sur-
vival. At a critically high temperature, hatchlings incubated 
in hypoxia (12 %) were smaller than their siblings incubated 
in near normoxia (22  %) and hyperoxia (30  %) (Fig.  3), 
consistent with previous results from other species from 
major clade of vertebrates including fish, amphibia, reptiles, 
birds and mammals (Mills and Barnhart 1999; Nechaeva 
2011; Owerkowicz et al. 2009; Sundt-Hansen et al. 2007). 
The small body size of hypoxia hatchlings is due to the con-
straint of oxygen supply, which reduces the yolk catabo-
lism and somatic growth of embryos during development 
(Crossley and Altimiras 2005; Kam 1993; Owerkowicz 
et  al. 2009). Interestingly, the body mass (carcass plus 
residual yolk) of hypoxia hatchlings was also smaller than 

that of their siblings. A potential explanation to the smaller 
absolute mass of the hatchlings is that hypoxia may ham-
per water metabolism during development, with less water 
absorbed and incorporated by the embryos. Further studies 
on water contents of residual yolk and hatchlings are needed 
to clarify this hypothesis. Unexpectedly, however, at the 
critically high temperature, the “best” hatchlings (in terms 
of locomotor performance and survival rate) were those 
incubated in near normoxia rather than those incubated in 
hyperoxia (Fig. 5). This may be because the hatchlings were 
raised under normoxia, which may not be able to meet the 
demand of hypermetabolism induced by hyperoxia during 
embryonic development (Nechaeva 2011; Sbong and Dzi-
alowski 2007). In contrast, when eggs were incubated at 
26.5 °C, the effects of hypoxia on hatchling body size were 
small (Fig. 3), and its effect on crawl speed and hatchling 
survival rate was nearly imperceptible (Fig.  5). Why were 
the effects of hypoxia less severe at the benign temperature 
than at the critically high temperature? First, oxygen limita-
tion at the benign temperature may not be as severe as at 
the critically high temperature, because oxygen demand for 
aerobic metabolism decreases significantly at the benign 
temperature, whereas the capacity for oxygen supply is not 
reduced (Pörtner 2010). Second, embryos likely have the 
capability to maintain relatively constant internal oxygen 
levels in spite of decreased external oxygen supply, through 
compensatory developmental changes in their oxygen trans-
port cascade. Some reptile and bird embryos increase the 
efficiency of oxygen delivery to cope with hypoxic condi-
tions via facultative shifts in the morphology and physiol-
ogy of their cardiac and vascular systems, such as heart rate, 
vascular density and blood parameters (Corona and War-
burton 2000; Crossley and Altimiras 2005; Du et al. 2010; 
Miller et al. 2002; Nechaeva 2011).
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