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Abstract
Recent studies have observed that Bayesian analyses of sequence data sets using the program MrBayes sometimes generate
extremely large branch lengths, with posterior credibility intervals for the tree length (sum of branch lengths) excluding the
maximum likelihood estimates. Suggested explanations for this phenomenon include the existence of multiple local peaks in
the posterior, lack of convergence of the chain in the tail of the posterior,mixing problems, andmisspecified priors on branch
lengths. Here, we analyze the behavior of Bayesian Markov chain Monte Carlo algorithms when the chain is in the tail of the
posterior distribution and note that all these phenomena can occur. In Bayesian phylogenetics, the likelihood function ap-
proaches a constant instead of zero when the branch lengths increase to infinity. The flat tail of the likelihood can cause poor
mixing and undue influence of the prior. We suggest that the main cause of the extreme branch length estimates produced
in many Bayesian analyses is the poor choice of a default prior on branch lengths in current Bayesian phylogenetic programs.
The default prior in MrBayes assigns independent and identical distributions to branch lengths, imposing strong (and un-
reasonable) assumptions about the tree length. The problem is exacerbated by the strong correlation between the branch
lengths and parameters in models of variable rates among sites or among site partitions. To resolve the problem, we suggest
twomultivariate priors for the branch lengths (called compoundDirichlet priors) that are fairly diffuse anddemonstrate their
utility in the special case of branch length estimation on a star phylogeny. Our analysis highlights the need for careful thought
in the specification of high-dimensional priors in Bayesian analyses.

Key words: Bayesian phylogenetics, Markov chain Monte Carlo, branch lengths, identifiability, tail paradox, compound
dirichlet distribution.
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Introduction
Bayesian phylogenetics has mostly focused on the inference
of tree topologies (reviewed in Yang 2006), but branch
lengths in the tree may also be important, for example in
estimating evolutionary rates and species divergence times.
Several recent studies (e.g., Brown et al. 2010; Marshall
2010) have reported that phylogenetic analyses of real
data sets using the popular Bayesian program MrBayes
(Ronquist and Huelsenbeck 2003) sometimes produced
very large branch length estimates, with the total tree
length (sum of branch lengths) much larger than the
maximum likelihood estimate (MLE) for the same data
under the same model. In extreme cases, the credibility
interval constructed from the Bayesian analysis did not even
contain the MLE. Brown et al. (2010) and Marshall (2010)
conducted systematic investigations of this phenomenon.
Marshall (2010) focused mainly on the convergence and
mixing properties of the Markov chain Monte Carlo
(MCMC) algorithms. Brown et al. (2010) proposed three
hypotheses that may explain the observed phenomenon,
which form the focus of discussion in this paper. First,
there may exist multiple local peaks in the posterior
so that the MCMC algorithm has difficulty traversing the

space of parameters. Second, the posterior may be single
moded but large regions of the posterior have roughly equal
posterior density, so that the MCMC does not mix well.

Third, an overly informative prior favors unreasonably
large branch lengths. We have here modified Brown et al.’s
hypothesis 3; those authors also considereda high likelihood
as a possible factor (in addition to an informative prior)
that could favor unreasonably large branch lengths. How-
ever, unless the model is grossly mispecified, the likelihood
will represent information in the data and cannot support
biologically unreasonable regions of the parameter space.

Under hypotheses 1 and 2, numerical problems of the
MCMC algorithm cause an incorrect posterior density to
be generated, while under hypothesis 3, the posterior is cor-
rectly sampled but is dominated by an unreasonable prior. It
is an interestingquestion how often unreasonably large tree
lengths are caused by multiple local peaks in the posterior
(hypothesis 1). We note that multiple peaks are common
in the space of trees and may cause serious computational
problems forMCMC algorithms (Mossel and Vigoda 2005),
although they appear to be rare on the likelihood surface
when the tree topology is fixed (Rogers and Swofford 1999).
Brown et al. (2010) concluded that multiple modes do not
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appear to exist for the six data sets they analyzed and that
hypothesis 1 was probably not the major cause of branch
length overestimation. Our analysis below shows that if
the likelihood and the prior are in conflict, multiple peaks
may occur in the posterior even on a fixed tree topology
(hypothesis 1).

At any rate, the problem of unreasonable branch lengths
manifests itself even when the tree topology is fixed (Brown
et al. 2010; Marshall 2010), and the present study concerns
estimation of branch lengths (and thus tree length) on a
fixed tree.

We argue that the probable cause of the extremely large
branch lengths (or tree length) observed in previous studies
is the poor choice of a default prior on branch lengths im-
plemented in the current version of MrBayes, which assigns
independent and identical distributions for branch lengths
(hypothesis 3). This has the consequence of strongly favor-
ing unreasonably large tree lengths. Indeed, the poor choice
of prior can cause all the problems described by Brown
et al. (2010): multiple local peaks due to conflicts between
the prior and likelihood (hypothesis 1), mixing problems in
the flat tail (hypothesis 2) and unreasonably large branch
lengths in the posterior (hypothesis 3). The problem is exac-
erbated by the strong correlations between branch lengths
and parameters in models of variable rates among sites
and between parameters of the rate-variation model. We
suggest that the solution to the problem is a careful spec-
ification of the joint prior for the branch lengths and for the
rate-variation parameters. We propose two new joint pri-
ors for branch lengths that are less “informative” than priors
that are currently used, and we explore the impact of the
prior for branch lengths on the posterior of tree length us-
ing simulated and real data sets. Before presenting our new
priors, we discuss the behavior of MCMC algorithms in the
far tails of the posterior and illustrate that the rate of con-
vergence of the MCMC algorithm depends on whether the
posterior has a light or heavy tail.

Theory
Light- and Heavy-Tailed Posteriors and MCMC
Convergence
Brown et al. (2010) postulated that “the existence of a lo-
cal maximum in the posterior density at long tree lengths
entraps the MCMC chain, keeping it from sampling the pa-
rameter space in proportion to the posterior density” (hy-
pothesis 1) and that “large regions of parameter space with
roughly equal posterior density reduce the efficiency of the
MCMC search, such that it does not sample the parame-
ter space in proportion to the posterior density” (hypoth-
esis 2). The authors further suggested that if hypothesis
2 is true “the MCMC chain is wandering around a large
region of roughly equal posterior density.” These specula-
tions prompted us to study the behavior of MCMC when
the current parameter value is in the tail of the posterior
distribution.

For a smooth unimodal posterior π(x), the tail is often
the “flattest” part of the distribution in the sense that the

slope (gradient) ∇π(x) = dπ(x)/dx → 0 as x → ∞.
However, the behavior of the MCMC is not determined
by the gradient of the posterior but instead by the gra-
dient of the logarithm of the posterior ∇ logπ(x) =
d logπ(x)/dx (Mengersen and Tweedie 1996) and de-
pends on whether the posterior is light-tailed or heavy-
tailed. A distribution is light-tailed if there exists t > 0 such
that

lim
x→∞

etx (1− F (x)) <∞, (1)

where F (x) is the cumulative distribution function. Oth-
erwise, it is heavy-tailed. The exponential, normal, and
gamma are examples of light-tailed distributions while
heavy-tailed distributions include the Cauchy and inverse
gamma.Mengersen andTweedie (1996) showed that in one
dimension, the MCMC algorithm achieves geometric con-
vergence (i.e., the distance between the target distribution
π and the distribution that the MCMC reaches in n steps
decreases to 0 at least at the rate rn , where r < 1) if and
only if

lim
x→∞
∇ logπ(x) = lim

x→∞
d logπ(x)

dx
< 0, (2)

It can be shown that only a light-tailed distribution π(x)
with limx→∞∇π(x) < 0 meets this criterion. Geometric
convergence is not possible if∇ logπ(x)→ 0 as x →∞.
In high dimensions, the posterior π needs to be sufficiently
smooth in the tail, besides being light-tailed, to achieve ge-
ometric convergence (Roberts and Tweedie 1996).

Below we use specific examples to illustrate the different
behaviors of theMCMC depending on the tail of the poste-
rior density.

Case I: Tail paradox for a single-moded light-tailed
posterior. Here, we use the normal density as an example of
a light-tailed posterior to study the behavior of the MCMC
when the chain is in the right tail (table 1a). The posterior
density for parameter θ is

π(θ) =
1√
2πσ2

e−
1

2σ2
(θ−θ̃)2 , (3)

withmean θ̃ andvarianceσ2. Theposterior ratio for thepro-
posal θ′ = θ +Δθ is

R =
π(θ′)
π(θ)

= e−
1

2σ2
(2Δθ(θ−θ̃)+(Δθ)2) ≈ e−

1
2σ2

2Δθ(θ−θ̃),

(4)
since θ � |Δθ|. Note that the proposal is accepted
with probability min(1, R ). Left moves toward the mode
(Δθ < 0) are always accepted, whereas right moves away
from the mode are accepted with probability R . Far out in
the tail θ (i.e., with θ = 100σ), R is very different from 1 so
that the MCMC moves quickly toward the mode. Near the
mode (i.e., when θ = σ), R is moderate and the chain won-
ders. This behavior may appear paradoxical and we refer to
it as the “tail paradox”: the farther away from the mode, the
flatter the tail is but the faster the MCMC moves out of the
tail.

Case II: Heavy-tailed posterior density. We use the in-
verse gamma distribution as an example of a heavy-tailed
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Table 1. Acceptance Ratio (R) for Three Different Posterior Distributions.

θ Δθ π(θ) Rleft Rright ∇π ∇logπ
(a) Normal posterior θ ∼ N (0, 1)
1 1 0.24 1.65 0.22 −0.24 −1
10 1 7.69 × 10−23 1.3 × 104 2.8 × 10−5 −7.7 × 10−22 −10
100 1 1.34 × 10−2172 1.6 × 1043 2.3 × 10−44 −1.3 × 10−2170 −100
1000 1 2.29 × 10−217148 1.2 × 10434 3.1 × 10−435 −2.3 × 10−217145 −1000

(b) Inverse gamma posterior θ ∼ invG (3, 1)
0.5 0.1 1.08 1.481 0.673 −4.33 −4.00
1 0.1 0.18 1.364 0.748 −0.55 −3.00
10 0.1 4.52 × 10−5 1.040 0.962 −1.76 × 10−5 −0.39
100 0.1 4.95 × 10−9 1.004 0.996 −1.98 × 10−10 −0.0399
1000 0.1 5.00 × 10−13 1.000 1.000 −2.00 × 10−15 −0.0040

(c) JC69 distance between human–chimpanzeemitochondrial 12S rRNAs
0.01 0.001 2.07 × 10−73 2.39 × 10−5 1.38 × 104 2.084 × 10−69 1.01 × 104

0.1 0.01 6.05 0.09 3.67 1089 180
0.12046768 0.01 33.9 0.68 0.71 0.0 0.0
0.2 0.1 4.78 × 10−6 1.27 × 106 4.86 × 10−19 −0.0016 −335.6
4 0.1 1.56 × 10−365 1.47 0.81 −4.65 × 10−365 −2.98
4.204258 0.1 1.17 × 10−365 1.07 1.06 0.0 0.0
4.5 0.1 1.85 × 10−365 0.78 1.37 5.24×10−365 2.83
6 0.1 3.40 × 10−362 0.59 1.68 1.79×10−361 5.25
8 0.1 6.86 × 10−359 0.79 1.25 1.57 × 10−358 2.29
9.89311 0.1 5.26×10−358 0.995 0.995 0.0 0.0
10 0.1 5.23×10−358 1.01 0.98 −5.54 × 10−359 −0.11
12 0.1 7.40 × 10−359 1.19 0.84 −1.30 × 10−358 −1.75
14 0.1 6.47 × 10−361 1.34 0.74 −1.90 × 10−360 −2.93
100 1 7.10 × 10−650 8144 1.22 × 10−4 −6.40 × 10−649 −9.01
1000 1 1.60 × 10−4459 2.00 × 104 5.01 × 10−5 −1.58 × 10−4458 −9.90

NOTE.—R is the posterior ratio for amove of sizeΔθ to the left (toward themode) or to the right (away from themode) of the current valueθ : Rleft =
π(θ−Δθ)
π(θ)

and Rright =
π(θ+Δθ)

π(θ)
. (a) Standard normal as an example of a light-tailed posterior.

The density isπ(θ) = e−θ
2/2 , so that∇π = dπ

dθ = −θe−θ
2/2 = −θπ and∇ log π = d log π

dθ = −θ. (b) The inverse gamma as an example of a heavy-tailed posterior. The density isπ(θ) = βα

Γ(α) θ
−α−1e−β/θ , so that∇π = π ·∇ logπ

and∇ logπ = −α+1
θ + β

θ2 . (c) The posterior is given in equation (10), generated by the binomial likelihood under the JC69 model and the gamma prior G (α,β), so that∇π = π ·∇ logπ and∇ logπ =
(

x
p − n−x

1−p

)
e−4θ/3 −β+ α−1

θ .
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posterior (table 1b)

π(θ) =
βα

Γ(α)
θ−α−1e−β/θ , 0 < θ <∞, 0 < α, β <∞.

(5)
The mean is finite only ifα > 1, and the variance exists only
ifα > 2. The posterior ratio for the proposal θ′ = θ +Δθ
is

R =
π(θ′)
π(θ)

=

(
1+
Δθ

θ

)−α−1
exp

{
β

Δθ

θ(θ +Δθ)

}

≈ 1− Δθ
θ
(α+ 1)

[
1− β

(α+ 1)θ

]
, (6)

as θ � Δθ. If θ is large, R will be close to 1. Thus, the chain
will behave like a random walk in the tail and the rate of
convergence will be extremely slow.

While the gradient of the posterior density is nearly zero
far out in the tail for both the normal and inverse gamma
distributions, the behavior of the MCMC algorithm is very
different between the two. In the normal case, virtually all
moves away from the mode are rejected whereas in the in-
verse gamma case, they are nearly always accepted. The be-
havior near the mode is similar between the two types of
posterior distribution.

Case III: Flat posterior density of branch lengths under
the uniform prior. When the branch lengths are very large,
the probabilities of site patterns are approximately given by
the distribution corresponding to random sequences and
the likelihood is nearly a nonzero constant. An interesting
situation occurs when a uniform prior on branch lengths
U (0,A ) is used (the MrBayes default value is A = 100).
If the MCMC is started using very large branch lengths, the
posterior ratio of the MCMC proposal will be close to 1, as
both the likelihood ratio and prior ratio are approximately
1. Then the chain will wander in the tail of the posterior like
a random walk (hypothesis 2) and will not converge until it
approaches the mode of the likelihood. Note that even if no
mode exists in the prior of branch lengths, there is a mode
in the induced prior on tree length, at nA/2, where n is the
number of branches.

Case IV: Multimodal posterior for branch lengths. If the
prior for branch lengths has a mode that is distant from the
mode of the likelihood, it is possible for the posterior tohave
two modes, one near the mode of the likelihood and an-
other near the mode of the prior. Although the likelihood-
induced mode can be many orders of magnitude higher
than the prior-induced mode, it is possible for the MCMC
to be trapped at the smaller mode. For very large branch
lengths, the posterior ratio for the proposal θ → θ′ is

R =
f (θ′)
f (θ)

L (θ′)
L (θ)

≈ f (θ′)
f (θ)

L (∞)
L (∞) ≈

f (θ′)
f (θ)

, (7)

so that this part of the posterior is dominated by the prior.
We illustrate this scenario using the case of Bayesian esti-

mation of the distance θ between two sequences under the
JC69model (Jukes and Cantor 1969). The human and chim-
panzee12s rRNA genes from the mitochondrial genome are

used (accession numbers D38112 and NC 001643, respec-
tively, Horai et al. 1995). The original data has 953 sites. Af-
ter alignment gaps are removed, n = 946 sites remain, with
x = 11 differences. Under the JC69 model with one rate for
all sites, the likelihood is

L (θ) = px(1− p)n−x =

[
3

4
− 3

4
e−4θ/3

]x
[
1

4
+

3

4
e−4θ/3

]n−x
, (8)

where θ is the distance between the two species or the tree
length for the tree of two species. Figure 1a shows thatwhen
θ →∞, the likelihood approaches L (θ) = ( 34)

x( 14)
n−x =

3x/4n = 5.00705 × 10−565, a constant that is greater than
0. The MLE is θ̂ = 0.01172, with L (θ̂) → 9.3575 × 10−27.
Suppose we use the gamma prior

f (θ) =
βα

Γ(α)
e−βθθα−1, (9)

and let α = 100 and β = 10, with the prior mean 10 and
variance 1. The posterior is thus

π(θ) = f (θ|x) = 1

C
f (θ)L (θ), (10)

with the normalizing constant calculated to be C =
3.83834 × 10−208. This posterior is plotted in figure 1b–d,
showing two modes with a minimum in between. The ac-
ceptance (posterior) ratios for proposals at different points
of the parameter space as well as the gradient ∇π and
∇ logπ are shown in table 1c. Left of the first mode (θ �
0.1), Rleft is very small, and far off in the right tail (θ � 100),
Rright is very small, so that the chain moves out of both tails
very quickly. Between the two modes (0.2 < θ � 8), the
chainmay be attracted to eithermode, depending onwhich
side of the minimum the current state is. For example, at
θ = 6, Rleft = 0.59 and Rright = 1.68, so that the chain
is more likely to move to the second lower mode than to
the first higher mode. More extreme acceptance ratios can
be generated if the twomodes are farther apart. Our imple-
mentation of the MCMC algorithm using a sliding window
to change θ confirms the theoretical analysis: the MCMC
can easily stay around the lower peak over as many as 108

iterations. While the bump caused by the prior is tiny in
magnitude andnegligible in terms of probabilitymass in the
posterior, itmayhave important impact on the convergence
properties of the chain in this part of the parameter space.
This corresponds to a mixing problem of the type postu-
lated in hypothesis 1 of Brown et al. (2010).

The Prior on Branch Lengths and Its Impact on Tree
Length
Let t = {ti} be the vector of n = 2s − 3 branch lengths
on the unrooted tree of s species. ExistingBayesian phyloge-
netic programs that do not assume amolecular clock assign
a prior density to the branch lengths of the form

f (t |θ) =
2s−3∏
i=1

f (ti |θ), (11)
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(a)

(b)

(c)

(d)

FIG.1.Bayesianestimationof the sequencedistanceθ between thehu-
man and chimpanzee mitochondrial 12S rRNA genes under a gamma
prior θ ∼ G (100, 10). The likelihood (eq. 8) is shown in a . The pos-
terior (eq. 10) is shown in b, c, and d, using different scales for the y
axis. The posterior mean is 0.1217 with the 95% equal-tail credibil-
ity interval to be (0.0997, 0.1460). There are two modes in the pos-
terior, at θ = 0.120468 with π(θ) = 33.9 and θ = 9.89311 with
π(θ) = 5.26× 10−358. Between the two modes, there is a minimum
at θ = 4.204258 with π(θ) = 1.17 × 10−365. See table 1c for more
results about this analysis.

where f (ti |θ) is a common probability density function
(pdf) with the same parameters for all branch lengths. For
example, MrBayes uses either a uniform U (0, θ) prior,

f (ti |θ) = 1

θ
, for 0 < ti < θ, i = 1, 2, . . . , (2s − 3),

(12)
where θ is the upper bound on branch lengths so that the
mean branch length is θ/2, or an exponential prior, with

f (ti |θ) = θe−θti , i = 1, 2, . . . , (2s − 3), (13)

where 1/θ is the average branch length. In both cases, the
mean and variance of the branch lengths are completely

T
0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

s
=

66

s
=

29

s
=

92
s

= 
93

s
=

12
3

f(
T

)

FIG. 2. The induced gamma prior, T ∼ G (2s − 3, 10), on tree length
for the six data sets of Brown et al. (2010), in which the number of
sequences is s = 29, 29, 66, 93, 123, and 92.

specified by the single parameter θ. The tree length T ,

T =
2s−3∑
i=1

ti , (14)

has the expectation

E(T ) =
2s−3∑
i=1

E(ti ) = (2s − 3)E(ti ). (15)

This increases linearly with the number of taxa. The vari-
ance is

V(T ) =
2s−3∑
i=1

V(ti ) = (2s − 3)V(ti ), (16)

because of the independent and identical distribution (i.i.d.)
assumption.

In the case of the exponential prior for branch lengths,
E(T ) = (2s− 3)/θ andV(T ) = (2s− 3)/θ2. Indeed, the
induced probability density on T is known to be a gamma
distribution with shape parameter (2s − 3) and scale
parameter θ,

f (T |θ, s) = T 2s−4θ2s−3e−θT

(2s − 4)!
. (17)

For typical phylogenetic data sets, 2s − 3 � 1, and the
gamma distribution is approximately normal. The shape of
this distribution fordifferent numbers of taxa and for 1/θ =
0.1 (the default in MrBayes) is shown in figure 2. (These are
the same prior densities as shown in fig. 7 of Brown et al.
2010, although the plots for the prior in their fig. 3 do not
appear to be correct.)

The induced prior on tree length seems to have been
largely overlooked, although it may be strongly informa-
tive and contradict the likelihood. Presumably, sufficient
data could overcome this influence of the prior. However,
it is better to specify a prior on branch lengths that is
close to being “uninformative.” Belowwe explore a few pos-
sible solutions to this problem. The first is an empirical
Bayesian procedure described by Brown et al. (2010), who
used independentexponentialpriors for branch lengths but
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FIG. 3. Log likelihood (equation 44) and log posterior density (eq. 46) plotted against θ and α under the JC69+Γ model. The mitochondrial 12S
rRNA genes from the human and the chimpanzee are compared with estimate the sequence distance, using an exponential prior on θ and a
uniform prior on α. The same data are analyzed in figure 1.

used the data to estimate the parameter for the exponen-
tial, by equating the median of the exponential prior to
the estimated average branch length b̄ , leading to θ =
1/(1.4427b̄ ). The median appears to be a poor choice, as
the prior still favors large tree lengths. The mean is a better
choice. Nevertheless, both suffer from the following prob-
lems: First, they use the data to derive the prior, which is
not fully Bayesian. Second, they are very informative about
the tree length. Third, they are very informative about the
branch lengths, with a penalty on long branches, which may
not be reasonable if there is a mixture of long and short
branches on the tree.

The second is a prior suggested by Suchard et al. (2001).
As in MrBayes, the branch lengths have independent expo-
nential priors with the common mean μ,

f (ti |μ) = 1

μ
e−ti /μ, i = 1, 2, . . . , (2s − 3). (18)

However, an inverse-gamma hyperprior is assigned on μ:

f (μ|α,β) = βα

Γ(α)
μ−α−1e−β/μ. (19)

Suchard et al. (2001) recommended α = 2.1 and β = 1.1
but such a value of α is extreme and the prior mean branch
length of 1.0 seems rather large.We suggestα = 3 andβ =
0.2 instead, with the prior mean branch length of 0.1. The
joint prior on the branch lengths is thus

f (t1, · · · , tn) =
∫ ∞

0
f (t1, . . . , tn ,μ)dμ

=

∫ ∞

0

[
n∏

i=1

1

μ
e−ti /μ

]
f (μ|α,β)dμ

=
βα

Γ(α)

∫ ∞
0

(β +
∑

ti )α+n

Γ(α+ n)

μ−(α+n)−1e−(β+
∑

ti )/μdμ

× Γ(α + n)

(β +
∑

ti )α+n

=
Γ(α+ n)

Γ(α)
βα(β +

∑
ti)
−(α+n).(20)

Note that

E(ti ) = E(E(ti |μ)) = E(μ) = β/(α− 1), (21)

V(ti ) = V(E(ti |μ)) + E(V(ti |μ)) = V(μ) + E(μ2)

= 2V(μ) + (E(μ))
2
=

αβ2

(α− 1)2(α− 2)
. (22)

The induced prior on the tree length T can be derived by
noting that conditional on μ, T has a gamma distribution

f (T |μ) = f (T |n , 1/μ) = 1

μnΓ(n)
T n−1e−T/μ, (23)

so that

f (T ) =

∫ ∞
0

f (T |μ)f (μ)dμ

=

∫ ∞
0

1

μnΓ(n)
T n−1e−T/μ

βα

Γ(α)
μ−α−1e−β/μdμ

=
βα

Γ(α)Γ(n)
T n−1

∫ ∞
0

e−(T+β)/μμ−α−n−1dμ

=
Γ(α+ n)

Γ(α)Γ(n)
βαT n−1(T + β)−(α+n). (24)
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The mean and variance of T are

E(T ) = E{E(T |μ)} = nE(μ) = nβ/(α− 1),(25)

V(T ) = V{E(T |μ)}+ E{V(T |μ)}

= V(nμ) + E(nμ2)

=
n 2β2

(α− 1)2(α− 2)

+n

[
β2

(α− 1)2
+

β2

(α− 1)2(α− 2)

]

=
nβ2

(α− 1)2(α− 2)
(n + α− 1). (26)

The Compound Dirichlet Priors
We construct a prior of the 2s − 3 branch lengths by first
specifying a fairly diffuse prior on the tree length T =∑2s−3

i=1 ti and then partitioning the tree length into the
branch lengths according to a Dirichlet distribution. Let T
follow a gamma distribution

f (T ) =
βαT
T

Γ(αT )
TαT−1e−βT T , (27)

with mean T = αT /βT and variance αT/β2T . The mean T
could be assigned a hyperprior and integrated over in the
MCMC. Parameter αT can be chosen to reflect our con-
fidence in the mean T . Alternatively, both T and αT can
be varied to assess the impact of the prior on the poste-
rior estimates. As a default value, we use αT = 1 so that
sT/T = 1/

√
αT = 1, where sT is the standard devia-

tion of the tree length. We follow the suggestion of Yang
and Rannala (2005) to have different prior means for the
s − 3 internal branch lengths and the s external branch
lengths. This was suggested as a way of reducing the high
posterior probabilities for trees and clades, similar to assign-
ing nonzero probabilities tomultifurcating trees (Lewis et al.
2005). Given T , define the i th branch length to be

ti = xi T , i = 1, 2, . . . , (2s − 3), (28)

where x = {xi} has the Dirichlet distribution

f (x) =
1

B (α, c)

s∏
j=1

xα−1j

s−3∏
k=1

xαc−1k , (29)

where subscripts j and k denote internal and external
branches, respectively, with xj < 1 and xk < 1 for all j , k ,
and

∑
j xj +

∑
k xk = 1, and

B (α, c) =
Γ(α)sΓ(αc)s−3

Γ(sα + (s − 3)αc)
. (30)

Parameter c is the ratio of the mean internal/external
branch lengths. In general, c should be <1. The marginal

means and variances of tj and tk are

E(tj ) = ET [Etj (tj |T )] = ET [TExj (xj )]

= ET

[
Tα

sα+ (s − 3)αc

]
=

T

s + (s − 3)c
,

(31)

E(tk ) = ET [Etk (tk |T ) = ET [TExk (xk )]

= ET

[
Tαc

sα+ (s − 3)αc

]
=

T c

s + (s − 3)c
,

(32)

and

V(tj ) =
α(α0 − α)
α20(α0 + 1)

(
αT + α

2
T

β2T

)
+
α2αT
α20β

2
T

, (33)

V(tk ) =
αc(α0 − αc)
α20(α0 + 1)

(
αT + α

2
T

β2T

)
+
α2c 2αT
α20β

2
T

,

(34)

where α0 = sα+ (s − 3)αc .
The joint pdf of branch lengths t = {ti} conditional on

T is

f (t |T ) = 1

B (α, c)

s∏
j=1

(tj/T )
α−1

s−3∏
k=1

(tk/T )
αc−1×1/T 2s−4.

(35)
By transforming the (2s − 3) variables (x1, x2, . . . , x2s−4, T )
to the variables (t1, t2, . . . , t2s−3), we obtain the joint prior
density for the (2s − 3) branch lengths as

f (t) =
βαT
T

Γ(αT )
e−βT

∑2s−3
i=1 ti

(
2s−3∑
i=1

ti

)αT−1

× 1

B (α, c)

s∏
j=1

tα−1j

s−3∏
k=1

tαc−1k

×
(

2s−3∑
i=1

ti

)−αs−αc(s−3)+1
. (36)

In particular, if we do not distinguish between the inter-
nal and external branch lengths (so that c = 1) and
use a uniform Dirichlet distribution for the proportions
x1, x2, . . . , x2s−4 (so that α = 1), the joint prior density for
the (2s − 3) branch lengths will be

f (t) =
βαT
T

Γ(αT )
e−βT

∑
ti (
∑

ti )
αT−1

×(2s − 4)!(
∑

ti )
−2s+4. (37)

Note that this density is a function of the tree length T =∑
ti only.
As an alternative, we also consider the inverse gamma

prior on the tree length T . This is heavier tailed than the
gamma and may be useful if very little information is avail-
able about the tree length. Thus, instead of equation (27),
we have

f (T ) =
βαT
T

Γ(αT )
T−αT−1e−βT /T . (38)
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We assume αT > 2, so that E(T ) = βT/(αT − 1) and
V(T ) = β2T/((αT − 1)2(αT − 2)). Parameters αT and
βT can be varied to assess the impact of the prior on the
posterior estimates. Given T , the xi are assigned the Dirich-
let distribution, as before. The joint distribution of branch
lengths under this prior is thus

f (t) =
βαT
T

Γ(αT )
e−βT /

∑2s−3
i=1 ti

(
2s−3∑
i=1

ti

)−αT−1

× 1

B (α, c)

s∏
j=1

tα−1j

s−3∏
k=1

tαc−1k

×
(

2s−3∑
i=1

ti

)−αs−αc(s−3)+1
, (39)

in place of equation (36). If c = 1 and α = 1, the joint
prior density for the branch lengths will be

f (t) =
βαT
T

Γ(αT )
e−βT/

∑
ti (
∑

ti )
−αT−1

×(2s − 4)!(
∑

ti )
−2s+4, (40)

in place of equation (37). We recommend αT = 3 so that
sT/T =

1√
αT−2 = 1, indicating a fairy diffuse prior. The

scale parameterβT can be chosen to suit different data sets.
For the inverse gamma compound Dirichlet distribution,

themarginal means of the branch lengths are given by equa-
tions (31) and (32) as before, and the marginal variances are

V(tj ) =
β2T

(αT − 1)2(αT − 2)(
(αT − 1)

α(α0 − α)
α20(α0 + 1)

+
α2

α20

)
, (41)

V(tk ) =
β2T

(αT − 1)2(αT − 2)(
(αT − 1)

cα(α0 − cα)

α20(α0 + 1)
+

c 2α2

α20

)
,(42)

As an illustration of the differences among those priors
on branch lengths, we calculated the mean and standard
deviation of the induced prior on tree length for the six
data sets analyzed by Brown et al. (2010). We also calcu-
lated the probability that the tree length is less than itsMLE
according to the prior: Pr(T < T̂ ). When this probabil-
ity is very small, one may consider the prior to be in con-
flict with the data (the likelihood). The results are shown in
table 2. It is clear that in all these data sets the default
MrBayes prior on branch lengths (an exponential withmean
0.1) predicts unreasonably long trees compared with the
data. Use of MLEs to specify prior means helps but the pro-
cedure is non-Bayesian.The two compound Dirichlet priors
provide reasonable branch length distributions for almost
all data sets.

We leave it to future work to implement the two newpri-
ors of branch lengths in Bayesian phylogenetics programs
such as MrBayes. To illustrate the differences among the
priors discussed in this paper, we wrote a C program for
Bayesian estimation of branch lengths assuming the star
phylogeny under the JC69 and JC69+Γ5 models. We imple-
mented three moves: 1) a multidimensional slidingwindow
to modify the branch lengths, 2) a proportional scaling
which multiplies all branch lengths by a random variable
that is close to 1, and 3) a sliding window to modify the
shape parameter α in the JC69+Γ5 model.

Partial Identifiability of the Substitution Model and
Variable Rates among Sites
Both Brown et al. (2010) andMarshall (2010) observed that
unreasonable branch length estimates occurred more often
when partition models or models of variable rates among
sites (such as the Γ+I model) were used (see also table 3).
For such models, the parametersmay be only partially iden-
tifiable; there may be strong correlations between parame-
ters in the likelihood. This can lead to mixing problems in
the MCMC. Here, we present evidence for strong correla-
tions among parameters in empirical data sets. We analyze
two data sets (one real and one simulated) to explore the
correlation between the shape parameter α of the gamma
distribution for variable rates among sites (Yang 1994) and
the branch lengths.

First, we consider the estimation of the distance between
the human and chimpanzee 12S tRNA genes under the
JC69+Γmodel. Parametersθ andα are not identifiable: with
only two sequences, the likelihood L depends on only the
probability p that a site shows a difference, so that L is con-
stant for combinations of θ and α that produce the same
p .

p =
3

4
− 3

4

(
1+

4θ

3α

)−α
, (43)

L (θ,α) = px(1− p)n−x

=

[
3

4
− 3

4

(
1 +

4θ

3α

)−α]x

[
1

4
+

3

4

(
1 +

4θ

3α

)−α]n−x
. (44)

The logarithm of the likelihood is plotted in figure 3a as a
function of θ and α. An exponential prior with mean 0.1 is
assigned on θ and a uniform prior U (0, 50) onα:

f (θ) =
1

μ
e−θ/μ,

f (α) =
1

50
, 0 < θ < 50. (45)

The posterior is given as

f (θ,α|x) = 1

C
f (α)f (θ)L (θ,α) =

1

C
· 1
50
·10e−10θ·L (θ,α),

(46)
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Table 2.Characterization of the Prior Distribution of Tree Length (T ) under Different Branch Length Priors Applied to Five Data sets Analyzed by
Brown et al. (2010).

Prior Mean SD Pr{T < {T̂}}

SimulatedA (Brown and Lemmon 2007): s = 29, T̂ = 0.12
exp: G(2s - 3, 10) (2s - 3)/10 = 5.5

√
2s − 3/10 = 0.7416 5.5×10−70

Brownmedian 1.4427T̂ = 0.173 1.4427T̂/
√
2s − 3 = 0.006

G (2s − 3, (2s − 3)/1.4427T̂) 0.023
Brownmean G(2s − 3, (2s − 3)/T̂) T̂ = 0.12 T̂/

√
2s − 3 = 0.016 0.52

Suchard(2.1, 1.1) 55 175.7 2.9×10−54

Suchard(3.0, 0.2) 5.5 5.60 2.4×10−21

Gamma Dirichlet(1, 1) 1 1 0.11
invGamma Dirichlet(3, 2) 1 1 9.0×10−6

Frogs (Gamble et al. 2008) s = 66, T̂ = 0.64
exp: G(2s - 3, 10) 12.9 1.14 3.5×10−117

Brownmedian 0.923 0.081 0.000049
G (2s − 3, (2s − 3)/1.4427T̂)
Brownmean G(2s − 3, (2s − 3)/T̂) 0.64 0.056 0.51
Suchard(2.1, 1.1) 129 409.7 1.1×10−54

Suchard(3.0, 0.2) 12.9 13.0 3.0×10−13

Gamma Dirichlet(1, 1) 1 1 0.47
invGamma Dirichlet(3, 2) 1 1 0.40

Clams (Hedtke et al. 2008) s = 93, T̂ = 1.96
exp: G(2s - 3, 10) 18.3 1.35 8.6×10−109

Brownmedian 2.83 0.209 1.7×10−6

G (2s − 3, (2s − 3)/1.4427T̂)
Brownmean G(2s − 3, (2s − 3)/T̂) 1.96 0.145 0.51
Suchard(2.1, 1.1) 183 580.4 3.8×10−34

Suchard(3.0, 0.2) 18.3 18.4 3.1×10−6

Gamma Dirichlet(1, 1) 1 1 0.86
invGamma Dirichlet(3, 2) 1 1 0.92

Lizards (Leache andMulcahy 2007), s = 123, T̂ = 2.48
exp: G(2s - 3, 10) 24.3 1.56 2.3×10−148

Brownmedian 3.6 0.23 4.1×10−8

G (2s − 3, (2s − 3)/1.4427T̂)
Brownmean G(2s − 3, (2s − 3)/T̂) 2.5 0.16 0.51
Suchard(2.1, 1.1) 243 770.2 2.0×10−37

Suchard(3.0, 0.2) 24.3 24.4 1.2×10−6

Gamma Dirichlet(1, 1) 1 1 0.92
invGamma Dirichlet(3, 2) 1 1 0.95

Froglets (Symulaet al. 2008), s = 92, T̂ = 0.55
exp: G(2s - 3, 10) 18.1 1.35 1.2×10−200

Brownmedian 0.79 0.06 1.9×10−6

G (2s − 3, (2s − 3)/1.4427T̂)
Brownmean G(2s − 3, (2s − 3)/T̂) 0.55 0.041 0.51
Suchard(2.1, 1.1) 181 574.1 8.2×10−85

Suchard(3.0, 0.2) 18.1 18.2 5.1×10−22

Gamma Dirichlet(1, 1) 1 1 0.42
invGammaDirichlet(3, 2) 1 1 0.30

where the normalizing constant C = 7.39 × 10−28. The
logarithm of the posterior density is shown in figure 3b .

Second, we analyzed a data set of 200 sequences sim-
ulated on a star tree with all 200 branch lengths to be
0.01. The sequence length was 500 sites. We then ana-
lyzed the data assuming a star tree and applying both ML
and Bayesianmethods (using several different priors) under
both the JC69 and JC69+Γ5 models. Under JC69+Γ5 a uni-
form prior U (0.05, 50) was assigned on the shape parame-
ter α, which is the default prior in MrBayes. The true tree
length is 2. The MLE is T̂ = 2.13 under JC69 and 2.15 under
JC69+Γ5. The posteriormeans and 95% equal-tail credibility
intervals are shown in table 3. With the uniform and

exponential priors, which assume i.i.d. distributions for the
branch lengths, theMLE is outside the 95%confidence inter-
vals (CIs). In particular, the correlation between the gamma
shape parameter α and branch lengths θ under JC69+Γ5
(see below) has generated extremely long tree lengths under
the uniform and exponentialpriors.With the use of the two
newpriors suggested in this paper, theMLE iswell within the
95% posterior CIs under both JC69 and JC69+Γ5.

Discussion
In this paper, we have used a combination of analytical the-
ory and simulations to explore the potential causes of the
excessively long branch lengths (and tree lengths) observed
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Table 3. Posterior Means and 95% Equal-Tail Credibility Intervals of the Tree Length in the Analysis of a Simulated Data set under Different
Branch-Length Priors.

Prior Posterior Mean (95% CI) Posteriorα

JC 69(T̂ = 2.1337)

Uniform ti ∼ U(0, 100) 2.540 (2.401, 2.683)

Exponential ti ∼ E(1/μ),μ = 0.1 2.489 (2.353, 2.627)

Suchard(2.1, 1.1) ti |μ ∼, Exp(1/μ),μ ∼ invG (2.1, 1.1) 2.265 (2.136, 2.398)

Suchard(3, 0.2) ti |μ ∼ Exp(1/μ),μ ∼ invG (3, 0.2) 2.162 (2.035, 2.293)

GammaDirichlet T ∼ G (1, 1) 2.132 (2.006, 2.261)

Inverse gammaDirichlet T ∼ invG (3, 2), ti |T ∼ Dir(1, 1, . . .) 2.130 (2.002, 2.261)

JC 69+ G5(T̂ = 2.1519, α̂ = 0.4848)

Uniform ti ∼ U(0, 100) 11942 (11205, 12661) 0.077 (0.076, 0.078)

Exponential ti ∼ Exp(1/μ),μ = 0.1 11.37 (10.02, 12.80) 0.223 (0.193, 0.257)

Suchard(2.1, 1.1) ti |μ ∼ Exp(1/μ),μ ∼ invG (2.1, 1.1) 2.569 (2.315, 2.852) 0.531 (0.449, 0.623)

Suchard(3, 0.2) ti |μ ∼ Exp(1/μ),μ ∼ invG (3, 0.2) 2.247 (2.027, 2.489) 0.501 (0.421, 0.591)

GammaDirichlet T ∼ G (1, 1), ti |T ∼ Dir(1, 1, . . .) 2.151 (1.937, 2.384) 0.489 (0.409, 0.581)

Inverse gammaDirichlet T ∼ invG (3, 2), ti |T ∼ Dir(1, 1, . . .) 2.147 (1.934, 2.381) 0.489 (0.409, 0.581)

NOTE.—Data are simulated under JC 69 + Γ5 with α = 0.5 on a star tree of 200 sequences, with all 200 branch lengths to be 0.01. The sequence length is 500. The data are
analyzed assuming the star tree by ML and Bayesian methods using different priors under the JC69 and JC 69 + Γ5 models. Under JC 69 + Γ5, an uniform prior U (0.05, 50) is
assigned onα, which is the default prior used in MrBayes.

in Bayesian MCMC phylogenetic analyses (e.g., Brown et al.
2010; Marshall 2010). Our analyses indicate that the choice
of the prior and the initial branch lengths for the MCMC
may have a critical influence. The default prior in MrBayes
is exponential with mean 0.1. The default initial values of
the branch lengths for the MCMC are also 0.1. For many
data sets, these values are much greater than the mode of
the posterior distribution—thus, the prior places too much
weight on extreme branch lengths and the chain is initiated
with the branch lengths far out on the tail of the posterior
density. Thus, both the rate of convergencemay be slowand
the posteriormay be unduly influenced by the default prior
in analyses using MrBayes. Because the tree length depends
on the number of sequences sampled, the prior becomes
more unrealistic for larger data sets with more species. If
the data are not very informative or if there are strong cor-
relations in the posterior, as in the rate variation or parti-
tion models, the large prior mean of tree length can exert a
strong influence on the posterior causing overestimates of
the branch lengths even when the chain has converged.

We explore the convergence properties of the
Metropolis–Hastings MCMC algorithm for various forms
of the posterior analytically. Existing theories (Mengersen
and Tweedie 1996; Roberts and Tweedie 1996) suggest that
if the posterior is univariate and light tailed, the MCMC
is guaranteed to converge at a geometric rate. In higher
dimensions, similar geometric convergence can be achieved
if the posterior satisfies certain “smoothness” conditions in
addition. If the posterior is heavy tailed, the MCMCwill not
converge at a geometric rate and may wander in the tails of
the posterior for a very long time.

To improveMCMC convergence and to yield a prior that
is less informative, we propose a new class of “compound
Dirichlet” priors under which the branch lengths follow a
Dirichlet distribution given the tree length, while the tree
length is assigned a gamma or inverse gamma distribution.

Our calculations suggest that our new priors for branch
lengths induce reasonable priors on tree length not influ-
enced by the number of sequences sampled. Our analysis
of a simulated data set with 200 sequences on a star tree
confirms that the current exponential and uniform priors
in MrBayes can lead to gross overestimates of tree length
and branch lengths and that the problem may become
worsewhen the likelihoodmodel incorporates variable rates
among sites. In contrast, the new compoundDirichlet priors
produce reasonable posterior estimates.

We note that in general specification of multidimen-
sional priors in Bayesian inference is challenging. In this
paper, we have attempted to specify reasonable default pri-
ors that may be usable in phylogenetic analysis of all data
sets. From the subjective Bayesian viewpoint, one may ar-
gue for a careful specification of the prior to reflect one’s
personal belief for each data set being analyzed. However,
such a procedure is never practized. Neither does it seem
practicable, except for small data sets with very few species.
It is already challenging to specify the (2s − 3)-dimensional
joint prior for the branch lengths on a fixed tree topology,
and the task of doing that for each of the huge number of
possible tree topologies is simply toodaunting. Fromtheob-
jective Bayesian viewpoint, onewould use an uninformative
prior so that the posterior reflects information in the data
rather than the researcher’s personal biases. However, it is
now generally acknowledged that no prior is truly uninfor-
mative. The reference prior is a default prior that leads to
the same inference however the model is parametrized. For
the estimation of the distance between two sequences, Fer-
reira and Suchard (2008) found that the Bayesian estimate
under the reference prior had better frequentist properties
than the MLE. However, that analysis was based on the as-
sumption that one has information about the substitution
parameters, and furthermore, the likelihood function (eq.
4 in Ferreira and Suchard 2008) appears to be incorrectly
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defined, with a term of equilibrium base frequency being
missing (cf. eq. 1.65 in Yang 2006). Specification of the ref-
erence prior requires the likelihood function and the Fisher
information matrix, so that it is unclear whether the idea
can bemade towork formore than two sequences. Another
promising approach is to use relaxed-clock models to infer
both rooted and unrooted trees (Drummond et al. 2006),
with the prior for branch lengths generated by specifying
a prior on the divergence times and another prior on the
rates for branches based on a model of stochastic rate drift
(Thorne et al. 1998). This approach may create a problem
of partial unidentifiability since the sequence data provide
information about the branch lengths but not about the
times and rates individually and as a result there is no con-
vergence to the true parameter values when the amount
of sequence data approaches infinity (Yang and Rannala
2006). The approach has also been noted to generate highly
counterintuitive priors on divergence times with multiple
modes (Heled and Drummond 2011, figure 2). In summary,
those recent studies as well as the present one highlight the
complexity and importance of specifying the joint prior on
branch lengths in Bayesian phylogenetic inference.
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