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A new automatic identification system has been designed to identify insect specimen images at the order
level. Several relative features were designed according to the methods of digital image progressing, pat-
tern recognition and the theory of taxonomy. Artificial neural networks (ANNs) and a support vector
machine (SVM) are used as pattern recognition methods for the identification tests. During tests on nine
common orders and sub-orders with an artificial neural network, the system performed with good sta-
bility and accuracy reached 93%. Results from tests using the support vector machine further improved
accuracy. We also did tests on eight- and nine-orders with different features and based on these results
we compare the advantages and disadvantages of our system and provide some advice for future research
on insect image recognition.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The vast number of insect species is a challenge for insect
identification, and undermines the bases of biodiversity, conserva-
tion and related research. The intricacy of traditional insect identi-
fication methods and a declining number of insect taxonomists
seriously affect the efficiency of this task [6]. Taxonomists have been
searching for efficient methods to meet real world insect identifica-
tion requirements. Several assisted systems of insect identification
based on computer technologies have been developed and tested
in the last two decades including automatic bee identification
system (ABIS), digital automated identification system (DAISY),
BugVisux and But2fly. ABIS was constructed in 1995 and identifies
bees in the field by analyzing images of wing veins [24]. DAISY is
a prototype system applied for identifying insects using digital
images based on fingerprint identification technology and is also
being used to recognize and analyze museum collections [22,26,
27]. BugVisux can identify 40 species of insects using morphologic
features [32], and But2fly can identify 43 butterfly species through
the color features of wings [15].

Although aforementioned systems above focus on the identifica-
tion of insects at the species level, automatic insect identification at
the order level is also important, especially in popular science and
initial insect identification. A specimen usually needs to be identi-
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fied to the order level or family level before a species name can be
given by taxonomists and order level identification is of more use
to the public and junior taxonomists. Therefore Identification of
an insect at the order level is thus a key step in the entire insect iden-
tification process.

Little research about the order levels has been conducted [3]
despite the importance of insect order identification. Difficulties
surrounding insect order identification arise because of countless
species and the complex classification system of insects. Many
insect orders include thousands of species such as the Coleoptera,
which includes more than 350,000 described species. Within
each order, species may be highly different from each other,
especially at the family level, while some species in different
orders may seem similar. It is difficult to formulate taxonomic
descriptions of orders into mathematical or other descriptions easy
for computer understanding. In fact, only one study has ana-
lyzed the math-morphological features of insects at the order level
[33].

Here we present a new system which can identify insects to the
order level. To meet the public need for practical insect image
identification we collected insect images covering various species
across several common orders. For automatic insect image
identification at the order level we designed a simple and well-
performed preprocess solution, defined a range of new features
and compared two pattern recognition methods (artificial neural
networks and support vector machines). We discuss our experi-
ments and draw important conclusions on automatic insect image
identification at the order level.
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Table 1
The number of families, species and images in each order used in tests.

Orders (or sub-orders) Families Species Images

Coleoptera 4 25 25

Hemiptera
Auchenorrhyncha 5 25 25
Heteroptera 9 22 25

Hymenoptera 10 25 25
Lepidoptera 8 25 25
Megaloptera 2 25 25
Neuroptera 8 25 25
Odonata 8 24 25
Orthoptera 10 25 25
Total 64 221 225
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2. Materials and methods

2.1. Images

There are 29–38 insect orders, depending on the taxonomic sys-
tem applied to the Insecta [30]. Only less than half of these orders
are common or easy to find. We collected 225 specimen images
from nine orders or sub-orders: 25 images from each order. The list
of orders and number of images are shown in Table 1. The well
placed position of specimens in these images facilitates the auto-
matic extraction of features. However, the quality of some speci-
mens was not very good. For instance, several specimens were
incomplete or attached to objects such as pins. These factors may
disrupt the extraction of features, so we reduced such interference
via manual image processing, for example, we manually removed
the obvious attachments.
2.2. Realization of the system

Based on the theory of pattern recognition [20] and the basic
processing pathways in typical automated species identification
systems [6], we designed a system for insect image identification
at the order level (Fig. 1). The ‘‘preprocess’’ and ‘‘extraction’’ mod-
ules are shared with both the training and recognition process.
Features of training images will be used to build a model of the
classification progress pattern after feature extraction, and the fea-
tures and trained model will be recorded in files or database. The
recognition progress is then used to compute the identification re-
sult of the ‘‘test image’’; this process will use two types of data, the
model in the database, and the features extracted from recognition
files. The following sections provide implementation details for
each step in Fig. 1.

We implemented our system on .Net platform according to
Fig. 1. Therefore it must be running on the .Net Framework (version
4.0). The current desktop version of the system only uses XML files
to record the features and pattern model.
Recognition 

Pattern Trainin

Extract
Features

Preprocess
Image

Sample Image

Recognition 
Image

Fig. 1. Architectu
2.3. Image preprocess

In our system the aim of preprocessing is to acquire images
with a pure background-color. For example, Fig. 2 takes one image
(Fig. 2A) and produces an image (Fig. 2B) with the background that
we need. New image segmentation methods such as JSEG [4] and
edge flow [18] are available, but are unstable. To avoid instability,
we adopted the following two simple and effective methods to fin-
ish preprocessing.

We used manual and automatic methods to acquire a normal-
ized image whose background was set with one pure color not
appearing in the insect specimen. The whole image preprocess pro-
cedure is shown in Fig. 3. The manual method depends on a single
image processing tool such as Photoshop, while the automatic
method is more complex and combines a series of simple image
processing steps. The automatic method is suitable for processing
mass amounts of images in similar photograph environments,
but cannot meet all images. The manual method is more precise
but much slower than the automatic method.
2.4. Feature extraction

Feature extraction plays an important role in the final result of
identification. When extracting features they should represent tax-
onomic information and be feasibly acquired from given images.

The features in our system are used for automatic insect identi-
fication at the order level, and they are different from the features
referred to in other systems such as ABIS and DAISY. ABIS uses vein
features to identify bees [24], which are unsuitable for orders such
as Coleoptera and Heteroptera. DAISY adopts a principal compo-
nent analysis (PCA) method to acquire image features that contain
nearly all the information of an image. PCA features are more suit-
able for species identification because the great amount of detailed
information collected with PCA can weaken differences between
high-level categories such as orders. For the same reason, some
local features based on SIFT (scale-invariant feature transform)
[16] such as CFH (concatenated feature histogram) [13], BOW
(bag of words) [28], ScSPM (sparse coding spatial pyramid
matching) [17] that are currently used in insect species recognition
are not quite suitable in high-level insect identification.

A series of geometrical features including area, perimeter, holes’
number, eccentricity and roundness have previously been tested
[29,32]. All these features are intuitive because they can be directly
measured or simply calculated from images. However, these pre-
cisely extracted features are easily affected by factors such as the
posture of insects and shooting angle. Furthermore, it is usually
difficult to compute the real size of insects from the images be-
cause of the lack of some shooting parameters such as object dis-
tance. So based on the features introduced in BugVisux, we
carefully compared every order to find features with taxonomic
context and selected or created features that could be efficiently
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Fig. 2. Images produced in pre-processing. (A) Raw image, Neuropera, Myrmeleon
zanganus, 800px � 443px. (B) Standard image with one color in background.

Fig. 4. Hints for features.
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extracted with image processes. Before introducing the features we
designed, several special terms should be defined:

(1) Body: in this paper, the body means the head, thorax (exclud-
ing the wings) and abdomen of the insect (the grey pixels
within the white rectangle in Fig. 4). But if the wings are
not outstretched, the body in the image will include wing.

(2) Center of gravity: the center of the insect (all grey pixels in
Fig. 4), as shown in Fig. 4 by point P.

(3) Upper part of body: the upper part of body usually includes
the head and chest of the insect, and is not exactly defined.
In Fig. 4, the upper part of the body includes the grey pixels
above the center of gravity (point P) in the body rectangle.

Fig. 4 also shows our new designing features introduced below:

(1) Body area ratio (BAR)

This feature is the ratio of the area of the body to the area of the
whole insect, and can describe whether one individual has its wings
outstretched. In Fig. 4, the body area ratio is the ratio of the number
of grey pixels in Re (white rectangle) to all the grey pixels.

(2) Body eccentricity (BE)
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Fig. 3. Flow chart of i
This feature describes the shape of the body of the insect and is
defined as:

BE ¼ BW=BH ð1Þ

BW and BH are shown in Fig. 4. BW is usually shorter than BH,
but if BW is longer than BH, then BE will be set as 1.

(3) Upper body length ratio (ULR)

ULR is the ratio of the length of the upper part of the body to the
length of the whole body (BH). As shown in Fig. 4, ULR is defined as:

ULR ¼ L1=BH ð2Þ

(4) Width ratio (WR)
This feature is the ratio of the width of the insect (AW) to the

sum of the height (AH) and width (AW) of the insect. WR is defined
as:

WR ¼ AW=ðAH þ AWÞ ð3Þ

(5) Upper body area ratio (UAR)
UAR is defined with respect to Fig. 4 as the ratio of the grey area

above point P within the white rectangle to the entire grey area
within the white rectangle. According to this definition, UAR de-
scribes the relationship of the head and chest area of an insect with
the area of its tail.

(6) Body shape parameter (BSP)

We first define full body rows (FBRs) as rows that are longer
than 95% of BW (the width of Re). Then BSP can be defined as the
ratio of FBR and BH (the height of body rectangle).

(6) Color complexity (CC)

Color complexity describes the color diversity of an insect. It is
defined as the ratio of the colors of the insect contained in the
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Fig. 5. Screen shot of the user interface of feature extraction in our system. The body rectangle can be both computed automatically (select ‘‘autoCenterPoint’’ in the list box)
and selected manually (select ‘‘signBody’’ in the list box).
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image to the colors of the color model. Here, we designed a 64-
color RGB model (4 levels in each channel of R, G, and B) based
on the standard RGB model (256 levels in each channel of R, G
and B). This simple color model is more rough but also more useful
than the standard model here as it divides R, G and B more simply.

Using the above seven ratio features has two advantages.
Firstly, the features can express the structure of the insect body
which is important for identification at the order level. Secondly,
the results of the feature extraction is little affected by the image
quality. Furthermore, our features were elaborately chosen to
avoid using feature optimization methods like adapted fuzzy rea-
soning [12].

We designed and realized automatic extraction algorithms to
compute the values of these features so that all variables and fea-
tures can be calculated automatically. To correct the errors caused
with automated method, we provided user interfaces for setting
the key variables manually, which are integrated in the feature
extraction module in the system (Fig. 5). For example, the body
rectangle (Re) in Fig. 4 was corrected by manually selection
operation.

2.5. Pattern recognition methods

Pattern recognition methods are now used in so many fields
such as character recognition [1,23], face affective detect [9], leaf
recognition [31] and hyper-spectral image classification [14]. In in-
sect image identification, some of these methods such as the near-
est neighbor classifier have been used [19]. We realized several
methods in our system and chose two for experimental purposes,
artificial neural networks (ANNs) and support vector machines
(SVMs). ANNs and SVMs have been used in insect image identifica-
tion [5,21], so we provide only a brief introduction here.
2.5.1. Artificial neural network
An artificial neural network is a mathematical model inspired

by the structure of biological neural networks, and has been widely
applied in many scientific fields [7]. There are quite a few common
types of ANNs, such as feed forward network, self organizing map
(SOM) and Hopfield network, these ANNs are optimized for differ-
ent applications.

Here we implement a back-propagation neural network, a com-
mon type of supervised three layers (input layer, one hidden layer
and output layer) artificial neural networks that adopts the back-
propagation learning method to adjust the network. When training
an ANN, several functions can be used as the core function in neu-
ral nodes, and here we chose the sigmoid function, which is the
most common one:

f ðxÞ ¼ 1=ð1þ e�xÞ ð4Þ

We usually use the default or recommended values when
choosing important parameters such as alpha, moment and learning
rate. These important parameters will be given in the results
section. The random initiation process of ANNs result in differences
between two ANN models with the same parameters, therefore we
did more than one test for each group of parameters.
2.5.2. Support vector machines
Support vector machines (SVMs) are a set of supervised learning

methods that can be used for classification. They are based on the
structural risk minimization principle from computational learning
theory and are universal learners [25]. The standard SVM is a
non-probabilistic binary linear classifier and can be used like
three-layer sigmoid neural networks with the appropriate kernel
function.



Table 2
Results of ANN tests on 9 orders with 7 features.

Accuracy Images for training/recognition (percentage of recognition images)

117/108 (48%) 153/72 (32%) 171/54 (24%) 180/45 (20%)
Range 63–86% 68–93% 68–88% 64–86%
Average 75% 76% 76% 76%

Table 3
Results of ANN tests with eight orders tests with seven features.

Exclude order Accuracy

Range (%) Average (%)

Auchenorrhyncha 65–100 89
Coleoptera 83–100 94
Heteroptera 78–97 91
Hymenoptera 77–100 89
Lepidoptera 73–98 88
Megaloptera 66–97 82
Neuroptera 66–97 85
Odonata 65–100 81
Orthoptera 66–95 82
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C-Support Vector Classification (C-SVC) is one of the most
popular types of SVMs and it was usually used with the radial basis
kernel function (RBF) for classification. This kernel maps samples
into a higher dimensional space nonlinearly, and the linear kernel
is regarded as a special case of it [10]. There are two parameters
(c, g) of the combination of C-SVC and RBF. C is the penalty param-
eter which balances the structural risk and the empiric risk, while g
is the kernel parameter that defines the function range.

We used LibSVM [2] to analyze the feature data exported from
our system. LibSVM (version 2.89) supplies several types of SVMs,
and we employed the C-SVC formulation. It is important to find out
good c and g base on training dataset before prediction, so we
utilized the tool provided by LibSVM which was intended for
parameters selection with the methods of grid-search and cross-
validation to pick up a good (c, g) in our study.

3. Results

All features were extracted from images before tests according to
the methods introduced in Section 2.4. We tested different orders,
pattern recognition methods and features. The results of the main
tests with different test policies are listed below along with
some details and extra test results to be given in the discussion
section.

3.1. Results based on the ANN method

In ANN experiments all 225 images (Table 1) were divided into
two groups: images in the ‘‘training images’’ group were used for
building the classification model; the ‘‘test images’’ group was used
for the reorganization test on the existing model. We randomly se-
lected some images from each category as training images at a
fixed rate; leftover were used for the reorganization test. We did
the experiment more than ten times for each combination of train-
ing and test images to observe the stability of ANN models.

When training an ANN model, we set parameters according to
the following rules: (1) we set 0.1 as learning rate, 1.0 as alpha,
0.0 as moment, 100 000 as the least amount of training steps, and
0.00001 as convergence error; (2) we set the number of inputs to
equal the number of features, double numbers of inputs as the
nodes of hidden layer, and number of outputs to equal the number
categories (orders or sub-orders).

We first selected all nine orders (or sub-orders, listed in Table 1)
for testing. Table 2 provides the accuracy range and average accu-
racy value for each group of tests with seven features and different
image divisions (48%, 32%, 24% and 20% as the test images). The re-
sults did not have a very high average accuracy, thus we selected
eight orders at one time for tests to check whether some orders
acutely influence the results. In these tests, we took the same
parameters as the tests on all nine orders when building the
ANN model (excluding the number of output neuron nodes, which
equal the number of categories). We did nine groups of tests by
removing one order in each group, the results of which are listed
in Table 3. Each ‘‘Exclude order’’ cell in Table 3 represents the order
that is not in the eight orders of that test group. Obviously,
results from tests on eight orders were better than those on nine
orders.
3.2. Results based on the SVM method

We also used SVM to compare with ANN. In the experiments with
SVM, we conducted 10-fold cross validation (which is commonly
accepted [11]) tests for all images using the default configuration
of LibSVM. The results are listed in Table 4. Additionally, the ‘CV Rate’
column is the best result of the cross validation training, and the
‘accuracy’ column is the result of all data on the last trained model.
Like tests using the ANN method we selected different orders or fea-
tures for SVM tests, which produced results that seem much better
than those of the ANN tests.
4. Discussion

4.1. System advantages

According to suggestions from taxonomists and entomologists
the processes of preprocessing and feature extraction should be
completed both automatically and professionally. However,
realizing these processes is difficult because the features that
computers can automatically extract and those that taxonomists
describe are often quite different. Our system tried to solve this
problem by designing features with taxonomic characters that
are also easy to acquire through a computer, and the results seem
favorable.

Although the steps involved from preprocessing images to
extracting features could be finished automatically, we supplied
an interface for users to manually control each step. When design-
ing these manual operations we attempted to create a convenient
and effective system that resulted in precise feature extraction.

Our system performs with strong stability. Although we did
ANN tests with random training images each time, the average
accuracy for tests on nine orders was above 75% and the lowest
accuracy was just above 63% (Table 2). Furthermore, results of
ANN tests on eight orders shown in Table 3 were better than
those on nine orders, and the SVM tests show the same difference
(Table 4). These advantages mentioned above indicate that our
system can identify the majority of images in our tests. They also
confirm the feasibility of the idea of insect identification at the
order level, therefore prove that this system could be used more
widely in the future.



Table 4
Results of 10-fold cross validation with SVM (c-svc).

Tests and conditions CV rate (%) Accuracy (%)

Nine orders, six features (exclude CC) 81.78 95
Nine orders, seven features 84.44 92

Eight orders, seven features, without
Auchenorrhyncha 83 98
Coleoptera 89.5 96
Heteroptera 88 98
Hymenoptera 82.0 97
Lepidoptera 84 95
Megaloptera 84 97
Neuroptera 85.5 100
Odonata 83 94
Orthoptera 84 91
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4.2. Order relationships

The more categories the system contains, the poorer the test
results are. The accuracies of nine-order test results (Table 2) were
lower than those of eight orders (Table 3). Our earlier tests on Lep-
idoptera and Coleoptera actually produced perfect results (accu-
racy of 100%). Based on this evidence, we conclude that our test
results could be improved if we split the nine-order identification
system into several two-order systems. In its default configuration,
LibSVM solves multi-class problems using several two-class prob-
lems, and our test results (Table 4) further prove this conclusion.

We selected one group of tests (Table 2) with the worst results
(accuracy range 63–86%) to analyze the identification results of
each image to find out how those orders may have influenced
the test results (especially those of the ANN tests). The confusions
matrix of Table 5 shows that some images of low-accuracy orders
or suborders such as Auchenorrhyncha, Heteroptera and Hyme-
noptera were always wrongly identified as Coleoptera, and the
images of Megaloptera and Neuroptera were easily confused with
those of Lepidoptera. Then we selected some of the images that
were always not identified (Figs. 6–8). Fig. 6 shows the first situa-
tion, the images in Heteroptera that are always wrongly identified.
We found that some species indeed look like beetles in Coleoptera,
especially regarding those shape features described in Fig. 6. Mean-
while, it is evident that some members in Heteroptera are quite
different from each other. The situation concerning Auchenorrhyn-
cha is different from that of Heteroptera: most species of Auc-
henorrhyncha in tests look like Formotosena seebohmi (Fig. 7C)
and only 3–4 images such as Fig. 7A and B look more like a species
of Coleoptera or Orthoptera than Fig. 7C. Images of Hymenoptera
pose the third situation: two classes of species like Fig. 8A and B
both have quite a few images that all seem entirely different from
each other. Therefore it is difficult for classifiers such as ANN and
Table 5
Confusion matrix of detailed results of 15 tests on nine orders with seven features (using

Order (sub-order) name Actual orders

ID 1 2 3

Auchenorrhyncha 1 145 0 0
Coleoptera 2 34 180 136
Heteroptera 3 0 1 36
Hymenoptera 4 1 0 1
Lepidoptera 5 0 0 0
Megaloptera 6 0 0 0
Neuroptera 7 0 0 0
Odonata 8 0 0 0
Orthoptera 9 0 0 7
Total of test images 180 180 180
Error identified times 35 0 144
Error identified images 6 0 24
SVM to compute and provide a single pattern for this order con-
taining two diverse classes.

Biodiversity and innumerable large number of species result in
inter-class similarities and intra-class differences which commonly
occur in insect order categories. Natural phenomena bring more
difficulties for insect identification at the order level than that at
the species level. From the analysis of Figs. 6 and 7 and the results
of Table 5, we found that this nature law is just the main factor
causing those identification errors described above. The ideal
method to solve this problem is to collect all species from each or-
der, but it is impossible to implement because currently there are
immeasurable number of unknown species. Actually, it is most of-
ten found that the similarities in species within a single family and
the differences among species of separate families are prominent
enough to identification. So if we could collect enough images that
delegate all families for each order, the system would be much
more improved. Obviously realizing this aim would be much easier
than collecting all species in existence.

For future tasks, especially during data collection and tests,
greater focus on the family coverage of each order is needed. More
attention should also be given to similar orders, and to extra
images for supplementing the data of orders.

4.3. Advantages and disadvantages of features

Stable and high-accuracy test results proved that the features
we designed are effective enough to differentiate the majority im-
age members of orders in our system.

Features play different roles in identification. We conducted
experiments for each feature (or feature combinations) separately
to observe their respective performance (Table 6). We found that
all the results from tests with only one feature were very low,
but the produced accuracy order results indicated that features
could be ordered by importance. According to Table 6, we can or-
der the features as ULR, BAR, BE, UAR and WR|BSP|CC. Although
we can put features in order of importance, each of them is essen-
tial, since we found that the fusion of all seven features led to the
best result, and the results of tests with only ULR (BAR, BE or UAR)
were poor.

After analyzing the order of feature importance we found that
the four most important features ( BAR, BE, ULR and UAR) are all
related to the body of the insect. These features are designed to
reflect the relationship between the body and the whole insect,
connecting the microfeature (from body) with macrofeature (from
the whole insect), an important principle for research of feature
extraction for insect identification. In insect taxonomy a key factor
is the final ratio of the body to the wings, so features based on this
principle are supported by taxonomy and have evolutionary
grounding. However, features used in our tests only take into
117 images for training, whose accuracy range is 63–86% in Table 2).

4 5 6 7 8 9

1 0 0 0 0 0
93 0 0 5 32 10

1 0 0 0 0 0
74 0 0 0 0 0
11 180 31 40 0 3

0 0 147 0 0 0
0 0 2 130 0 0
0 0 0 5 148 0
0 0 0 0 0 173

180 180 180 180 180 180
106 0 33 20 32 3

24 0 8 10 17 1



Fig. 6. Images always wrongly identified in Heteroptera. (A) Unknown species in Gerridae. (B) Scutellera fasciata.

Fig. 7. Images always wrongly identified in Auchenorrhyncha. (A) Cosmoscarta uchidae. (B) Nephotettix bipunctatus. (C) Formotosena seebohmi.
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account some parts of the insect, so more effective features are
required.

Huang has tested many kinds of popular features on insect
identification at the species level, some of which worked [8].
We also tried a majority of those features but they did not pro-
duce favorable results during our identification tests. This was
mainly caused by the difference of test datasets and the identi-
fication level. Thus, any new features should be considered with
both the identification aim and the objects’ identification
characters. Taking insect order identification for example, we
should select features in accordance with those described in
taxonomy.



Fig. 8. Images always wrongly identified in Hymenoptera. (A) an unknown species in Formicidae. (B) Vespa ducalis.

Table 6
Results of ANN tests on nine orders with different features (accuracy is the average
accuracy of each group of tests and the full names of features are listed in Section 2.4).

Feature abbreviation Accuracy (%)

BAR 16
BE 13
ULR 22
WR 11
UAR 15
BSP 11
CC 11
BAR, BE, ULR, UAR 48
BAR, BE, ULR, WR, UAR 66
BAR, BE, WR, UAR, BSP 58
BAR, BE, ULR, WR, UAR, BSP 67
BAR, BE, ULR, WR, UAR, BSP, CC 76
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Automatic feature extraction is also an important topic. During
the long process of feature design, we found that the key to realizing
the automatic feature extraction process was to find stable and
attainable points of all images. Center of gravity is an example of
this, and some of our other features are based on this point. Because
there are only a few such points, some better systems used today are
semi-automatic.
4.4. About pattern recognition methods

The ANN method is a black-box model, meaning it is hard to
explain the result using biological theory. Unlike the ANN method,
the SVM method is based on statistical theory, allowing some re-
sults to be supported with statistical rules. However, we discuss
ANN more fully because the differences among the test results using
the SVM are too insignificant and unsuitable for deep analysis.

We note that the average accuracies of tests on different divi-
sions of the training image set barely differentiated from each
other, such as the tests with six features in Table 2: all average
accuracies are around 67%. From this we conclude that the division
of the training image set has little influence on the ANN test result,
which is also strongly supported by our other tests. We can there-
fore do tests without concern for the division of image training sets
and focus on other aspects such as the efficiency of features.

The SVM performed better than the ANN, especially in tests on
nine orders. Despite changing the parameters of ANN to improve
results, the results of the SVM were still better. We conducted
10-fold cross validations on each test, and the SVM selects best re-
sults. However, the best test results using the ANN are similar
when using the SVM.

Both of these two pattern recognition methods produced fairly
good results in tests with seven features. According to their perfor-
mance in Table 2 and 6, it would be most useful to use an ANN to test
new features and choose a SVM when deploying the system to real
applications. Actually, related researches also show that the SVM
classifier is better than some other classifiers such as 1-NN [31].
5. Conclusions

In this paper we present a new system focusing on insect image
identification at the order level. We designed seven features
following basic geometrical features for automatic identification
as well as insect taxonomy and morphology. We conducted various
experiments and found that this system performed with good sta-
bility at the order level and resulted in good user experiences.

Parts of members in each some order were always confused
with other orders, thus more research should be done on specific
features of those orders of concern. The ANN performed with good
stability but the SVM results were better. According to these con-
clusions we can improve this insect order identification system
by focusing on feature extraction and designing newer and more
effective features from the insect order. Although our system is
able to achieve automatic insect order identification of orders at
a small scale we have to test it on a dataset with more categories
of images before it is fully rolled out.

The data and software in this paper can be downloaded from
http://159.226.67.82/pubs.htm.
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