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Editorial

Intercontinental and intracontinental biogeography—
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The study of biogeography has benefited from the
exponential increase of DNA sequence data from recent
molecular systematic studies, the development of ana-
lytical methods in the last decade concerning divergence
time estimation and geographic area analyses, and the
availability of large-scale distribution data of species in
many groups of organisms. The underlying principle of
divergence time estimation from DNA and protein data
is that sequence divergence depends on the product of
evolutionary rate and time. With their molecular clock
hypothesis, Zuckerkandl and Pauling (1965) separated
rates of molecular evolution from time by incorporating
fossil evidence. Originally, a constant rate of sequence
evolution was assumed, but soon it became evident that
many data sets do not obey the constant rate assumption
of a strict molecular clock. In fact, many studies have
revealed extreme heterogeneity of nucleotide substitu-
tion rates over time. To account for the heterogeneity,
relaxed molecular clock approaches have been devel-
oped (Thorne et al., 1998; Sanderson, 2002; Yang &
Yoder, 2003; Drummond et al., 2006) with the availabil-
ity of computer programs such as r8s, multidivtime, and
BEAST (Thorne & Kishino, 2002; Sanderson, 2003;
Drummond & Rambaut, 2007; see reviews by Renner,
2005 and by Rutschmann, 2006).

Area relationships were primarily inferred using
methods in phylogenetic biogeography (Brundin, 1988),
cladistic biogeography (Humphries & Parenti, 1999),
and panbiogeography (Craw et al., 1999) in the 1980’s
and 1990’s. These different biogeographic methods all
have some limitations. The cladistic biogeographic ap-
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proach emphasizes vicariance in forming biogeographic
patterns, but underestimates the impact of processes
such as dispersal and extinction (Ronquist, 1996, 1997).
Different groups of organisms may respond differently
to biogeographic barriers, which complicate the infer-
ence of general area relationship from taxon clado-
grams. In response to these limitations, Ronquist (1997)
proposed the dispersal-vicariance (DIVA) analysis as an
alternative approach of quantification of historical bio-
geography. This method reconstructs the ancestral dis-
tribution in a phylogeny using a three-dimensional step
matrix, while allowing for dispersal and extinction to
occur. The optimal ancestral distributions are inferred
by minimizing the number of dispersal and extinction
events (see review by Lamm & Redelings, this issue).
Many studies have employed DIVA for inferring histor-
ical biogeography in a wide range of organisms (e.g.,
Sanmartı́n & Ronquist, 2004; also see Harris & Xiang,
this issue). Recent advances in ancestral area recon-
struction have brought forward additional approaches,
such as the Bayes-DIVA method (Nylander et al., 2008),
as well as the dispersal-extinction-cladogenesis (DEC)
analysis (Ree et al., 2005; Ree & Smith, 2008; also
see review by Lamm & Redelings, this issue). DEC
analysis uses a phylogenetic model of geographic range
evolution to infer ancestral ranges and biogeographic
events given rates of stochastic dispersal and local ex-
tinction estimated by maximum likelihood, and can be
implemented in Lagrange version 2.0.1. (available at:
http://lagrange.googlecode.com).

The newly developed methods have stimulated
strong interests in reconstructing the intercontinen-
tal disjunctions and intracontinental patterns of bio-
geography. The results on the divergence times and
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area relationships have stimulated debates on the
significance of vicariance and dispersal. In many
cases, dispersal has been validated as an important
hypothesis of the origin of many disjunctions (De
Queiroz, 2005; Posadas et al., 2006; Wen & Ickert-
Bond, this issue). Several important biogeographic
patterns especially at the intercontinental level have
been examined and reviewed, such as the north-
ern hemisphere disjunctions (see Xiang et al., 1998;
Wen, 1999; Manos & Donoghue, 2001; Donoghue &
Smith, 2004), the tropical disjunctions (Givnish &
Renner, 2004), and the southern hemisphere patterns
(Sanmartı́n & Ronquist, 2004).

This special issue of Journal of Systematics and
Evolution includes 12 papers, which examine the cur-
rent intercontinental and intracontinental patterns and
explore new analytical methods. Specifically, Wen and
Ickert-Bond review two major patterns of intercon-
tinental disjunctions (the Madrean-Tethyan and the
North and South American amphitropical disjunctions).
Harris and Xiang propose a statistical approach
for analyses using DIVA without fully bifurcating
trees. Lamm and Redelings provide a review of
newly developed methods for reconstructing ances-
tral ranges. Milne explores the effects of taxon sam-
pling on dating within-genus divergence using deep
fossils. Yue et al. examine the geographic assem-
bly of the flora of the Hengduan Mountains us-
ing the brassicaceous genus Solms-laubachia as a
case study. Nie et al. employ Toxicodendron as a
model genus for analyzing the biogeographic inter-
action of the temperate and tropical elements. Simp-
son et al. reconstruct the biogeographic pattern in the
Andes. Ickert-Bond et al. infer the intercontinental bio-
geographic disjunctions between the Old and the New
World in Ephedra. Dillon et al. explore the biogeo-
graphic patterns and diversification of the Atacama and
the Peruvian deserts. Fiaschi and Pirani review biogeo-
graphic patterns and studies of Brazil. Heinrichs et al.
provide an updated summary of the biogeographic dis-
junctions in bryophytes and the impact of molecular
work on bryophyte taxonomy. Qian succinctly compares
the global patterns of beta diversity among mammals,
birds, reptiles and amphibians.

We hope this collection of papers will stimulate
future biogeographic analyses on intercontinental and
intracontinental patterns and facilitate collaborations of
colleagues from different continents. It is important to
explore new analytical methods, which may bring better
synthesis of data from different fields such as phyloge-
netics, paleontology and ecology (Donoghue & Moore,
2003; Crisci, 2006). More model-based techniques are
needed for rigorous statistical test of hypotheses pertain-

ing to historical biogeography (Ree & Sanmartı́n, 2009).
Robust data using multiple loci including cytoplasmic
and nuclear markers are needed in molecular biogeo-
graphic studies, especially for groups with frequent in-
terspecific hybridization (Peng & Wang, 2008). Many
intercontinental disjunct patterns are particular to either
the northern hemisphere or the southern hemisphere.
It is nevertheless important to characterize the biogeo-
graphic interactions between the northern and the south-
ern hemispheres. Comprehensive biogeographic analy-
ses at the global scale are clearly needed in the future.
Recent biogeographic analyses have provided impor-
tant insights into intercontinental patterns, yet we need
to rigorously explore the intracontinental patterns of dif-
ferent regions using comparative phylogeographic and
ecological approaches (Soltis et al., 2006). In particular,
phylogeographic studies are helpful for understanding
intracontinental disjunctions (Yang et al., 2008). It is
an exciting period for biogeography, and we hope to
see important syntheses that will lead to better under-
standing of both intracontinental and intercontinental
biogeographic dynamics.
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