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The linear and Logan models are usually used to describe the effect of temperature on insect developmental
rate. The linear model is often used to estimate the lower developmental threshold. However, it cannot be

used to calculate the upper developmental threshold. Additionally, it fails to describe developmental rates
near, at, and above the optimal developmental temperature. The Logan model can reflect temperature-
dependent developmental rates from the lower to upper developmental thresholds. It is often used to
compute the optimal developmental temperature and the upper developmental threshold, but it is not used
to compute the lower developmental threshold. To avoid the disadvantages of these two models, we develop
a new model, the ‘performance model’ on the basis of the impact of increasing temperature on enzyme
activity and denaturation. The performance model was first used by Huey and Stevenson (Amer. Zool. 19,
357–366) to provide a statistical description of the impact of body temperature on performance, but they did
not provide underlying physiological mechanisms. Few studies have used the performance model to analyze
the temperature-dependent developmental rates of insects, perhaps because of the lack of a theoretical
justification. Here, we provide a theoretical justification to use the model and we use the performance model
to evaluate the developmental rate data of two insect species. We found that the performance model has
advantages over the linear and Logan models, and that the lower and upper developmental thresholds can be
simultaneously obtained from this model.
© Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection

Society, 2010. Published by Elsevier B.V. All rights reserved.
Introduction

Temperature plays a crucial role in development time of insects
(Taylor, 1981). Developmental rate (i.e., the reciprocal of develop-
mental time) is usually used to quantify the effect of temperature. In
general, developmental rate gradually rises to an optimal develop-
mental temperature and then drops rapidly at higher temperatures.

Many relevant models have been built to describe the effect of
temperature on developmental rate (e.g., Janisch, 1932; Davidson,
1944; Stinner et al., 1974; Logan et al., 1976; Sharpe and DeMichele,
1977; Whalon and Smilowitz, 1979; Schoolfield et al., 1981; Taylor,
1981; Wang et al., 1982; Ryoo and Cho, 1988; van der Have, 2002;
Ikemoto, 2005). However, the linear and Logan models are probably
the most widely employed examples. The linear model is effective in
describing developmental rate below the optimal developmental
temperature and has three advantages: its goodness-of-fit is satisfac-
tory at below-optimal developmental temperatures; it yields a lower
thermal threshold below which developmental rate equals zero; and
it is simple to estimate. However, the linear model is not applicable to
temperatures approaching or exceeding the optimum. Because the
linear model assumes that developmental rate is an increasing
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function of temperature, the upper developmental threshold does
not exist. However, this assumption holds only in the mid-
temperature range (Campbell et al., 1974). Using the linear model
to predict developmental rates beyond the optimal developmental
temperature will lead to larger differences between the observed and
theoretical values.

Logan et al. (1976) built an analytic model to quantify the
temperature-dependent rate phenomena in arthropods. They devel-
oped two different models to quantify rates below and above the
optimum temperature. They then combined the two models into a
single analytic solution, which we refer to as the Logan model. The use
of the Logan model has two advantages: it covers temperatures above
and below the optimum, and it can be used to estimate the upper
developmental threshold. However, the lower developmental thresh-
old cannot be obtained because the curve of the Loganmodel does not
cross the x-axis. Thus, the linear model is needed for calculating the
lower developmental threshold. The theoretical values of develop-
mental rates near the lower developmental threshold calculated by
the Logan model are apparently larger than those estimated by the
linear model.

In the current study, we build a new model to eliminate the
disadvantages of the linear and Logan models. This model is the same
as the product of two exponential equations proposed by Huey and
Stevenson (1979), which we refer to as the ‘performance model.’
Huey and Stevenson (1979) used this model to explore the effect of
gical Society and Malaysian Plant Protection Society, 2010. Published by Elsevier B.V.
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body temperature on specific performance parameters, such as the
jumped distance of frogs, but few studies (e.g., Shi and Ge, 2010) have
applied this model to describe the effect of temperature on insect
developmental rate. In addition, we utilize the developmental rate
data of two insect species to test the applicability of the performance
model.

Models

Logan model

According to the study of Logan et al. (1976), developmental rate
(r) is a piecewise function of temperature:

r Tð Þ = ψ exp ρTð Þ for T in Phase I
C0 1− exp −τð Þ½ � for T in Phase II

;

�
ð1Þ

where ψ is developmental rate at a base temperature above the lower
developmental threshold (T1); ρ is the increase rate to the optimal
developmental temperature (To); T is an ambient temperature
variable above the lower developmental threshold; C0 is a constant;
τ=(T2 − T)/ΔT; T2 is the upper developmental threshold; ΔT is the
width of the high temperature boundary layer, which can be regarded
as a constant z for simplicity in the non-linear fitting; T in Phase I
denotes T ∈[Τ1,Το]; T in Phase II denotes T∈[Το,Τ2]. Logan et al. (1976)
proved that Eq. (1) during the entire interval [T1, T2] could be
described as

r Tð Þ = ψ exp ρTð Þ− exp ρT2−
T2−T

z

� �� �
: ð2Þ

When dr/dT=0, we can estimate the optimal developmental
temperature,

To = T2−
z log ρzð Þ
ρz−1

: ð3Þ

It is necessary to point out that T1 could not be included by the
original Logan model although Drost et al. (1998) and Bonato et al.
(2007) introduced it into the Logan model

r Tð Þ = a exp −ρT1ð Þ exp ρTð Þ− exp ρT2−
T2−T

z

� �� �
; ð4Þ

where a is constant. In fact, their expression only increases the possible
error of parameter estimations because it requires five rather than four
parameters (namely letting one estimation of ψ become two estima-
tions of a and T1). Accurate T1 cannot be obtained, and the modified
Loganmodelmay increase the Akaike information criterion (AIC) due to
an additional parameter (Angilletta, 2006). AIC=−2L+2K, where K is
the number of parameters including the error and L denotes the
maximized log-likelihood value. To add an additional parameter will
increase the AIC. A higher AIC usually indicates a worse model fitting.
Hence, we use the original Logan model to fit the data in the current
study.

Performance model

We assume the effect of temperature on developmental rate has
two parts: positive effect and negative effect. There is

r = cf y1; y2ð Þ: ð5Þ

where c is a constant; f(.) is enzyme contribution function, which
represents the integrated effect of enzyme activity change and
enzyme conformation change due to increasing temperature on
developmental rate; y1 is the contribution function of enzyme activity
change; y2 is the contribution function of enzyme conformation
change (i.e., enzyme denaturation). A simple but practical formulation
of f(.) is

f y1; y2ð Þ = y1 × y2 ð6Þ

Let y1(T) be an increasing function of temperature, and let y2(T) be
a decreasing function of temperature. Eq. (6) can reflect the tradeoff
between the positive contribution to developmental rate due to
enzyme activity increase and the negative contribution to develop-
mental rate because of enzyme conformation change with increasing
temperature.

Like most chemical reactions, enzyme activity increases with
increasing temperature. Higher temperature increases the chance of a
successful collision of reacting molecules resulting in an increased
reaction rate (Bennett and Frieden, 1969). An increase of 10 °C will
enhance the activity of most enzymes by 50–100%. At low tempera-
tures, enzyme denaturation can happen, though only rarely. At high
temperatures, however, enzyme denaturation is common. As a
consequence, a simple assumption is that y1(T) and y2(T) are both
linear functions of temperature. Then we have

dy1
dT

= K1

dy2
dT

= −K2

;

8>><
>>: ð7Þ

where K1 is the increase rate and K2 is the decrease rate. Eq. (7) has a
solution

y1 Tð Þ = K1T + C1
y2 Tð Þ = −K2T + C2

;

�
ð8Þ

where C1 and C2 are both constants. Then we have

r Tð Þ = c K1T + C1ð Þ −K2T + C2ð Þ; ð9Þ

If the negative contribution to developmental rate due to enzyme
conformation change with increasing temperature is neglected (i.e.,
y2=1) developmental rate is actually a linear function of tempera-
ture. We refer to Eq. (9) as the simplified performance model. When dr/
dT=0, we have the theoretical value of the optimal developmental
temperature based on Eq. (9):

To =
K1C2−K2C1

2K1K2
: ð10Þ

Firstly, excessive products may be made by the rapid reaction
between enzymes and substrates and may burden organism metab-
olism. As a result, development will be influenced due to the
inordinate metabolism. Secondly, if substrate concentration is fixed
before the reaction, the increased reaction due to increasing
temperature will gradually reduce substrate concentration, further
slowing enzyme activity. That is, development will be also influenced
by the decrease of necessary substrate. With temperature increasing,
one possible result is the faster reduction of necessary substrates and
accumulation of excessive products at higher temperatures than at
lower temperatures. These two factors (i.e., the fast reduction of
necessary substrates and accumulation of excessive products) may
form a negative feedback of enzyme activity increase. At the same
time, the positive feedback to enzyme conformation change also
exists. For example, although enzyme structure is vulnerable to
hyperthermia, it can be protected by heat-shock proteins (HSPs)
(Hartl and Hayer-Hartl, 2002). Induced thermo-tolerance is mediated
by increased expression of HSPs, which help direct the folding of
polypeptides into functional proteins and maintain the functional
structure of enzymes by increasing the time to break down and
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decreasing the time to recover (Feder and Hoffmann, 1999). Hence,
the positive feedback of temperature on HSPs can be indispensable for
survival in stressful environments. A more reasonable assumption is
to include the two feedbacks caused by the fast reduction of necessary
substrates and accumulation of excessive products. Therefore, a new
differential equation is as follows

dy1
dT

= K1 1−y1ð Þ = K1−K1y1

dy2
dT

= −K2 1−y2ð Þ = −K2 + K2y2

y1 T1ð Þ = 0; y2 T2ð Þ = 0

:

8>>>>><
>>>>>:

ð11Þ

See Fig. 1 for a heuristic model of the process. It has the solution
(see Appendix 1)

y1 Tð Þ = 1− exp −K1T + K1T1ð Þ
y2 Tð Þ = 1− exp −K2T2 + K2Tð Þ :

�
ð12Þ

Substituting Eq. (12) to Eq. (5), a function of developmental rate
can be obtained

r Tð Þ = c 1− exp −K1 T−T1ð Þ½ �ð Þ 1− exp K2 T−T2ð Þ½ �ð Þ: ð13Þ

which is the same as the performance equation which is made up of
the two exponential equations proposed by Huey and Stevenson
(1979). The equation proposed by Huey and Stevenson (1979) has
been long neglected in the study of the effect of temperature on insect
developmental rate because it was not developed from first principles.
It was reported as a statistical formula that quantified the effect of
temperature on performance parameters of ecototherms, such as the
jumped distance of Rana clamitans (Huey, 1975; Huey and Stevenson,
1979). We refer to Eq. (13) as the performance model for simplicity.

Optimal developmental temperature cannot be obtained directly
from Eq. (13) but can easily be computed via software such as
MATLAB 6.5 (MathWorks, 2002, URL: www.mathworks.com). First,
we need to calculate the derivative of Eq. (13).

dr
dT

= cK1e
−K1 T−T1ð Þ 1−eK2 T−T2ð Þ� �

−cK2e
K2 T−T2ð Þ 1−e−K1 T−T1ð Þ� �

: ð14Þ

Second, g(T)=cK1e
−K1(T−T1) (1− eK2(T−T2)) and h(T)=cK2e

−K2(T−T2)

(1− e−K1(T−T1)) aredefined, thendr/dT=g(T)−h(T). Third, if the curves
of g(T) and h(T) are simultaneously drawn in a plane via software, the
temperature at which the two curves intersect is the optimal
developmental temperature of Eq. (13), i.e., the numerical solution of
dr/dT=0. In MATLAB 6.5, it is easy to obtain the numerical solution of
the optimal developmental temperature (see Appendix 2).
Contribution of enzyme activity

Increasing temperature

Neg

Contribution of enzyme
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Fig. 1. Illustration of the model's underlying hypothesis for
Application

In this section, we use these models to analyze the effect of
temperature on developmental rate from egg to adult of Bemisia
tabaci, a significant agricultural pest, reared on three species of host
plants. The original data are from the studies of Qiu et al. (2003), Xiang
et al. (2007) and Bonato et al. (2007). To determine whether the
models could be applied to other species, we also used the data of
Axinoscymnus cardilobus (Huang et al., 2008). We used the temper-
ature and developmental rate data from these papers, and then used
the NLINFIT (non-linear least-squares data fitting by the Gauss–
Newtonmethod) function of MATLAB 6.5 to fit the non-linear models.

Fig. 2 displays the fitted results using the performance model. The
fitted lower and upper developmental thresholds and the shortest
developmental durations at the optimal developmental temperatures
are shown in Table 1. The estimated lower developmental tempera-
tures using the linear and performance models are approximate, and
the estimated upper developmental temperatures and optimal
developmental temperatures using the Logan and performance
models are approximate.

There are several other non-linear models to describe the
temperature-dependent developmental rates. The performance
model still shows advantages relative to these non-linear models
(Shi and Ge, 2010). Please see the work of Shi and Ge (2010) for a
complete discussion of these advantages.

Discussion

Why can the Logan model reflect the effect of temperature on
insect developmental rate? If we relax the restriction of f(y1, y2)=
y1×y1, the question is easy to answer. Assume f(y1, y2)=(1 − y2) −
1/(1 − y1) with y1 and y2 substituted by Eq. (12), then an expression
similar to the Logan model can be obtained:

r Tð Þ = c exp −K2T2ð Þ exp K2Tð Þ− exp K1T−K1T1 + K2T2ð Þ½ � ð15Þ

which can be described as

r Tð Þ = p1 exp p2Tð Þ− exp p3T + p4ð Þ½ � ð16Þ

Here p1, p2, p3 and p4 are the model parameters. In fact, the Logan
model can be also written as this simplified formula. y1(T) is an
increasing function of T and y2(T) is a decreasing function of T, the
difference of (1 − y2) − 1/(1 − y1) is capable of exhibiting the
tradeoff between the influence due to enzyme activity increase and
the influence due to enzyme formation change with increasing
temperature. Another competitive assumption of the enzyme
DR

ative feedback

sitive feedback

the effect of temperature on developmental rate (DR).

http://www.mathworks.com


Fig. 2. Influence of temperature on developmental rate: (a) Bemisia tabaci biotype B reared on eggplant; (b) Bemisia tabaci biotype B reared on cucumber; (c) Bemisia tabaci biotype B
reared on tomato; (d) Axinoscymnus cardilobus reared on Bemisia tabaci. The solid lines denote the performance model; the dashed lines denote the first-order Taylor series
expansion of the performance model at T1+10; the closed circles denote the observed data.
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contribution function f(.) can follow: f(y1, y2)=y1 − 1/y2, which can
be further described as

r Tð Þ
c

= 1− exp −K1T + K1T1ð Þ− 1
1− exp K2T−K2T2ð Þ: ð17Þ

because f(y1, y2)=y1 − 1/y2 can reflect the tradeoff between two
effects with increasing temperature as well. However, we did not try
to use Eq. (17) to fit the data of developmental rate. An important
reason is that the Loganmodel has an obvious disadvantage relative to
Table 1
Comparison among three models.

Object Model R2 T1
(°C)

To
(°C)

T2
(°C)

⁎D (To)
(days)

B. tabaci reared
on eggplant

Linear 0.9982 12.2 – – –

Logan 0.9886 – 31.0 37.0 13.7
Performance 0.9923 12.6 31.0 36.9 14.0

B. tabaci reared
on cucumber

Linear 0.9952 8.6 – – –

Logan 0.9961 – 32.0 37.7 14.3
Performance 0.9972 9.0 32.4 37.3 14.3

B. tabaci reared
on tomato

Linear 0.9870 10.2 – – –

Logan 0.9928 – 32.5 39.4 18.8
Performance 0.9909 10.5 32.9 38.2 18.8

A. cardilobus reared
on B. tabaci

Linear 0.9795 9.3 – – –

Logan 0.9783 – 30.4 36.7 15.0
Performance 0.9854 9.8 30.9 37.1 15.3

⁎ D (To) denotes the developmental time from egg to adult at the optimal temperature.
the performance model. Hence, it is unnecessary to use Eq. (17) again,
which is similar to the Logan model.

Wang et al. (1982) built a model analogous to the performance
model:

r Tð Þ = K 1− exp −K1 T−T1ð Þ½ �ð Þ 1− exp K2 T−T2ð �½ �ð Þ
1 + exp −κ T−Toð Þ½ � : ð18Þ

where K and κ are both constants. They used a different method to
build this model. We must admit that this model shows better
flexibility while fitting the observed data relative to Eq. (13) due to an
additional denominator 1+exp[− κ(T− To)]. If we set κ=0, Eq. (18)
is the same as Eq. (13), namely the performance equation. According
to the definition of the optimal developmental temperature, the
derivative of r(T) at the optimal developmental temperature should
equal zero, namely r'(To)=0. However, Eq. (18) does not meet the
condition. Despite the disadvantage, Wang et al.'s model can fit the
observed data very well because of the similarity to the performance
model.

The performance and Logan models are superior to the linear
model in the curve fitting when all the data are included. We can
obtain a satisfactory goodness-of-fit via the performance model
relative to the linear model. Even so, the linear model is still attractive
for its simplicity. In addition, the linear model can be fitted without
specifying the preliminary values of parameters which are required
for the non-linear models. If we can accept the Logan model for
exploring the effect of temperature on developmental rate in spite of
the difficulty in choosing the preliminary values of parameters for the
non-linear fitting, accepting the performance model for the same
purpose seems to be reasonable. As shown in Fig. 2, the performance
model has a shape similar to the line before the optimal developmental
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temperature. This indicates a close relationship between the linear and
performance models. For displaying the relationship more clearly, we
derived the first-order Taylor series expansion of the performance at
T=x,

rx Tð Þ = c 1−e−K1 x−T1ð Þ� �
1−eK2 x−T2ð Þ� �

−c K1e
−K1 x−T1ð Þ 1−eK2 x−T2ð Þ� �

−K2e
K2 x−T2ð Þ 1−e−K1 x−T1ð Þ� �h i

x−Tð Þ:
ð19Þ

Charnov and Gillooly (2003) found that the lower developmental
threshold (i.e., T1) is about 10 °C below the mean developmental
temperature for ectotherms in nature (‘10 °C’ rule). Thus, the first-
order Taylor series expansion of the performance model agrees with
the linear model when x=T1+10. Fig. 2 also shows the comparison
between the first-order Taylor series expansion of the performance
model and the observed data. Let f(y1, y2)=(y1×y2)2 and replace y1
with the first-order Taylor series expansion of y1 at T1. Substituting
the result to Eq. (5), we have

ffiffiffiffiffiffiffiffiffi
r Tð Þ

p
=

ffiffiffi
c

p
K1 T−T1ð Þ 1− exp K2 T−T2ð Þ½ �ð Þ: ð20Þ

which becomes the Ratkowsky model (Ratkowsky et al., 1983). This
equation is used mainly to describe the temperature-dependent
developmental rates of microorganisms. The Ratkowsky model can be
modified slightly to describe the temperature-dependent develop-
mental rates of insects:

r Tð Þ = ffiffiffi
c

p
K1 T−T1ð Þ 1− exp K2 T−T2ð Þ½ �ð Þ: ð21Þ

That is, the square root effect is neglected. This equation can be
regarded as a related model of the performance model because they
have the similar shapes.

Although we prefer the performance model because of the
underlying physiological considerations, the evidence from the
experimental data at low temperatures near the true developmental
threshold is lacking. Hence it is difficult to accurately estimate the
lower developmental threshold. In a sense, the precise lower
developmental threshold merely exists in theory. The difference
between the estimated values of the lower developmental threshold
from the linear model and the performance model does not exceed
0.5 °C. Distinguishing such small differences will not be easy in
environmental chambers, where the variation in temperature is often
great. In conclusion, results from the linear fitting may be adequate,
even though we prefer the performance model.
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Appendix 1(
dy1 = K 1−yð Þ

(
d 1−y1ð Þ

= −K1dT

dT 1 1

dy2
dT

= −K2 1−y2ð Þ
y1 T1ð Þ = 0; y2 T2ð Þ = 0

⇔

1−y1
d 1−y2ð Þ
1−y2

= K2dT

y1 T1ð Þ = 0; y2 T2ð Þ = 0

⇔

(
ln 1−y1ð Þ = −K1T + s1

ln 1−y2ð Þ = K2T + s2

y1 T1ð Þ = 0; y2 T2ð Þ = 0

⇔

( y1 Tð Þ = 1− exp −K1T + s1ð Þ
y2 Tð Þ = 1− exp K2T + s2ð Þ
y1 T1ð Þ = 0; y2 T2ð Þ = 0

ðA1Þ

where s1 and s2 are constants. Then we have

y1 T1ð Þ = 1− exp −K1T1 + s1ð Þ = 0
y2 T2ð Þ = 1− exp K2T2 + s2ð Þ = 0 ;

�
ðA2Þ

which means that the developmental rates at the lower and upper
developmental thresholds both equal zero. s1 and s2 are known from
Eq. (A2),

s1 = K1T1
s2 = −K2T2

:

�
ðA3Þ

Now substitute Eq. (A3) to the last item of Eq. (A1), we can obtain
Eq. (12).

Appendix 2

Two functions, ‘performance.m’ and ‘deri.m,’ are needed. The latter
is the derivative of the former.
(1) Peformance.m:

function r=performance(par, T)
c=par(1);
K1=par(2);
T1=par(3);
K2=par(4);
T2=par(5);
r=c*(1 − exp(-K1*(T-T1))) .*(1 − exp(K2 *(T − T2)));

(2) Deri.m:

function rx=deri(par,T)
c=par(1);
K1=par(2);
T1=par(3);
K2=par(4);
T2=par(5);
x=par(6);
rx=c .*(1-exp(-K1 .*(x-T1))) .*(1-exp(K2 .*(x-T2)))-c .*(K1 .*exp

(-K1 .*(x-T1))
.*(1-exp(K2 .*(x-T2)))-K2 .*exp(K2 .*(x-T2)) .*(1-exp(-K1 .*(x-T1))))

.*(x-T);
Then,we enter the following codes in CommandWindowofMALAB6.5:
T=[17 20 23 26 29 32 35];
D=[48.71 30.33 21.67 17.57 13.93 14.44 20.67];
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r=1./D;
parhat=nlinfit(T, r, ‘performance’, [30 0.005 10 0.5 40])
Tvalue=parhat(3): 0.001: parhat(5);
Theor=performance(parhat, Tvalue);
optimum=find(Theor == max(Theor));
To=Tvalue(optimum)
ro=Theor(optimum)
Do=1/ro
Rsquare=1-sum((performance(parhat, T)-r) .^2)/sum((r-mean(r)) .^2)
plot(Tvalue, Theor, ‘k’, T, r, ‘k.’, ‘MarkerSize’, 28, ‘LineWidth’, 2.0)
hold on
plot(Tvalue, deri([parhat; parhat(3)+10], Tvalue), ‘k–’, ‘LineWidth’, 2.0)
xlabel(‘Temperature (°C)’, ‘fontsize’, 14)
ylabel(‘Developmental rate (1/days)’, ‘fontsize’, 14)
set(gca, ‘fontsize’, 14);

Here, we take the data set from B. tabaci reared on eggplant from
egg to adult (Qiu et al., 2003). ‘T’ and ‘D’ represent the experimental
temperature and developmental time, respectively. ‘parhat’ is an array
used to save the model parameters, namely [c, K1, T1, K2, T2] of the
performance model; ‘To’ is the optimal developmental temperature;
‘ro’ is the developmental rate at the optimal developmental temper-
ature; ‘Do’ is the developmental duration at the optimal developmen-
tal temperature; ‘Rsquare’ is the coefficient of determination, namely
R2; ‘Tvalue’ is an arraymadeup of a series of temperatures between the
lower and upper developmental thresholds with an increment of
0.001; ‘Theor’ is an array used to save the theoretical values of
developmental rates estimated by the performance model.
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