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Abstract

In common with human speech, song is culturally inherited in oscine pas-

serine birds (‘songbirds’). Intraspecific divergence in birdsong, such as devel-

opment of local dialects, might be an important early step in the speciation

process. It is therefore vital to understand how songs diverge, especially in

founding populations. The northward expansion of the Light-vented Bulbul

Pycnonotus sinensis (J. F. Gmelin, 1789) into north China in the last 30 years

provides an excellent opportunity to study birdsong evolution. We com-

pared ~4400 songs from newly established northern populations with ~2900
songs from southern populations to evaluate song divergence after recent

expansion. The total pool of syllables and especially song types was consid-

erably smaller in the north than in the south, indicating ‘founder effects’ in

the new population. The ancestral pattern of mosaic song dialects changed

into a pattern of wide geographical sharing of a few song types and syllables,

likely the result of fewer geographical barriers to ‘meme flow’, and the

recent spread across a large area in the north. Our results suggest that song

evolution and vocal trait shifts can arise rapidly after range expansion, and

that in the Light-vented Bulbul ‘founder effects’, geographical isolation, and

recent rapid expansions played important roles in the evolution of song

dialects.

Introduction

Cultural evolution is the change in behavioural traits

transmitted through social learning (Whiten et al.,

1999; Freeberg, 2000; Krutzen et al., 2005; Bluff et al.,

2010; Cardoso & Atwell, 2011). Song in oscine passe-

rines, parrots and hummingbirds is a classic example of

a cultural trait (Baptista & Schuchmann, 1990; Pepper-

berg, 1994; Catchpole & Slater, 2008a). Selective pres-

sures and stochastic factors are considered to be key

drivers of song evolution, although the relative impor-

tance and interplay among these processes are poorly

understood. For example, songs have been suggested to

change in response to (i) environmental conditions

affecting sound transmission (Morton, 1975; Wiley,

1991; Badyaev & Leaf, 1997; Slabbekoorn & Peet, 2003;

Seddon, 2005); (ii) morphological adaptations influenc-

ing vocalizations, e.g. bill size/shape and overall body

size (Podos, 2001; Laiolo & Rolando, 2003; Seddon,

2005; Huber & Podos, 2006); (iii) interspecific interac-

tions, such as maladaptive hybridization (‘reproductive

character displacement’) (Seddon, 2005) or competition

for sound space (Grant & Grant, 2010); (iv) female

choice based on various song attributes (Searcy &

Andersson, 1986; Hasselquist et al., 1996); (v) male-

male competition, e.g. for efficient territorial defence

(Beecher et al., 2000; Cate et al., 2002; Ellers & Slab-

bekoorn, 2003); (vi) stochastic factors, e.g. ‘cultural

mutation’ caused by copying errors or improvisation,

and ‘cultural drift’ (Lemon, 1975; Baker & Jenkins,

1987; Lynch & Baker, 1993; Lynch, 1996; Martens,

1996; Payne, 1996; Baker et al., 2003; Lachlan &
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Feldman, 2003; Parker et al., 2010; Cardoso & Atwell,

2011); or (vii) changes in the balance between natural

and sexual selection (Irwin, 2000). Song divergence as

a result of cultural evolution might cause reproductive

isolation and hence promote speciation (Grant & Grant,

1996; Slabbekoorn & Smith, 2002; Brambilla et al.,

2008; Kirschel et al., 2009), and it has been suggested

that song learning might accelerate the rate of specia-

tion (Lachlan & Servedio, 2004; Edwards et al., 2005).

Comparing song variation over time and geographical

space is one of the best methods to understand vocal

cultural evolution (Podos & Warren, 2007). A rare

opportunity is provided by recent range expansions.

Some studies have focused on populations introduced

by humans, such as North Island Saddlebacks Philestur-

nus rufusater in New Zealand (Parker et al., 2012),

House Finch Carpodacus mexicanus (Mundinger, 1975;

Pytte, 1997) and Eurasian Tree Sparrow Passer montanus

(Lang & Barlow, 1997) in eastern USA, and Common

Chaffinch Fringilla coelebs in New Zealand (Jenkins &

Baker, 1984), whereas others have examined natural

range expansions, such as Common Chaffinch in Chat-

ham Island (Baker & Jenkins, 1987), Dark-eyed Junco

Junco hyemalis in California (Newman et al., 2008),

Western Gerygone Gerygone fusca on an Australian

off-shore island (Baker et al., 2003), and two species of

Darwin’s finches (latter in response to colonization of a

third Darwin’s finch species) (Grant & Grant, 2010).

Several of these studies, as well as comparisons of

songs in island and mainland populations of unknown

age, have found depauperate pools of syllables or song

types in the isolated populations as a whole, and sug-

gested ‘founder effects’ after colonization as a likely

explanation for this pattern (Lack & Southern, 1949;

Mundinger, 1975; Mirsky, 1976; Baptista & Johnson,

1982; Baker & Jenkins, 1987; Baker, 1996; Baker et al.,

2006). However, conversely, a few studies have

reported high vocal diversity among newly established

populations, and linked this to a relatively high number

of founders, subsequent immigration, or high rates of

‘cultural mutation’ (Lynch & Baker, 1994; Lang & Bar-

low, 1997; Pytte, 1997; Kroodsma et al., 1999; Hamao

& Ueda, 2000; Baker et al., 2003). Different results may

arise at different levels of song structure, as has been

shown in studies of Common Chaffinches in New Zea-

land vs. the UK (Jenkins & Baker, 1984) and Iberia vs.

the Canary Islands (Lynch & Baker, 1993). In the

former study, one part of the song was more complex

whereas another part was simpler in the introduced

population compared with the source population.

Geographical variation in vocalizations has long been

classified into macro and micro, based on geographical

scale. The former is the variation found among geo-

graphically widely separated populations that are unlikely

to meet, whereas the latter refers to variation among

neighbouring groups of birds that might interact with

each other. Dialects are a type of micro-geographical

variation with sharp boundaries among populations

within species (Catchpole & Slater, 2008b). Besides

humans (Nettle, 1999), bats (Davidson & Wilkinson,

2002), primates (Mitani et al., 1992; de la Torre &

Snowdon, 2009), cetaceans (Weilgart & Whitehead,

1997) and a few sub-oscine passerine birds (Noad et al.,

2000; Saranathan et al., 2007; Fitzsimmons et al., 2008),

vocal dialects have been widely documented in the

groups of birds with learned vocalizations, i.e. oscine

passerines (Kroodsma, 2004), hummingbirds (Gaunt

et al., 1994) and parrots (Baker, 2000). Many hypothe-

ses have been proposed to explain how dialects are

formed (Lemon, 1975; Baker & Cunningham, 1985;

Podos, 2001) and maintained (Harbison et al., 1999).

As song is believed to be an important reproductive

isolating barrier in birds (Grant & Grant, 1997; Edwards

et al., 2005), it is relevant to understand how songs

evolve, especially in newly established populations,

which often represent the first step in the speciation

process (Mayr, 1942; Grant & Grant, 2008a,b; Price,

2008). Few of the previous studies on bird song dialects

uncovered how these changed after successful coloniza-

tion of new areas. In this study, we compared song dif-

ferentiation between founding and source populations

in the Light-vented Bulbul Pycnonotus sinensis, with the

aim to investigate if and how a recent range expansion

has affected song evolution in this species.

Materials and methods

The light-vented bulbul

The Light-vented Bulbul is a medium-sized (19 cm)

oscine passerine bird in the widespread Old World bulbul

family (Pycnonotidae). It is near-endemic to China,

where it was previously resident south of the Yangtze

River, in the Oriental region. However, it began expand-

ing northward in the 1930s, and now occupies the wide

Palearctic ecozone of northeast China (Cheng, 1976;

Zhang et al., 2003; Fishpool & Tobias, 2005; Wang et al.,

2005; Fig. 1). The expansion has been rapid: in the 1980s

and 1990s, numbers were small in northeast China

(Williams et al., 1992), but now it is locally common

(Zhang et al., 2003; Wang et al., 2005). It occurs in open

habitats with scrub and trees, including human-made

environments, such as orchards, campuses and parks. It

has various vocalizations, including several types of sin-

gle-syllable call, and more musical, complex multiple-

syllable songs (Fishpool & Tobias, 2005). Song dialects

have been noted in its southern distribution area (Jiang

et al., 1996; Ding & Jiang, 2005; Yang & Lei, 2008).

Song recording

The Light-vented Bulbul is commonly distributed south

of Yangtze River, China (red dotted line in Fig. 1;

(Fishpool & Tobias, 2005)), which we defined as the
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boundary between southern and northern populations,

as that was previously its northern limit. We chose 12

cities south of the Yangtze River to represent 12 south-

ern populations. Ten cities north of the Yangtze River

were chosen to represent the recently established

northern populations. Within each southern or north-

ern city, we recorded bulbuls at several sites, such as

parks, campuses etcetera. At each site, we recorded

birds that were sufficiently widely spaced to be consid-

ered different individuals, and each site was visited only

once to avoid the risk of recording the same individual

more than once. In the south, two persons recorded in

different places at the same time. To obtain a represen-

tative sample of each male’s repertoire, we recorded

each male for as long time as possible, usually until it

stopped singing or flew away. For each northern indi-

vidual, we recorded 27.2 � 32.8 songs (range: 1–222;
for only 3 of 162 northern individuals only one song

was recorded; see Definitions of terms, below), and for

each southern individual 18.6 � 20.8 songs (range:

1–172; for only 12 of 167 southern individuals only

one song was recorded). Songs were recorded during

the breeding season (March–June) from 2005 to 2011,

from 6 AM to 9 AM, using a TASCAM DA-P1 portable

tape recorder and Sennheiser MKH 416 directional

microphone. Recordings from Taiwan were downloaded

from the Macaulay Library, Cornell Lab of Ornithology

and http://www.xeno-canto.org/.

Definitions of terms

See Fig. 2. Song:A series of syllables (see below) sepa-

rated from other songs by distinct pauses (usually at

least 2 s in the Light-vented Bulbul). Syllable: Smallest

song unit used here. It may contain one or more

elements (i.e. unbroken patterns in a sonogram)

which appear together in a fixed sequence. There are

obvious ‘blank spaces’ between different syllables in a

sonogram. Song type: Contains specific syllable types

given in a specific sequence. Variant: song types have

one or more of these syllables deleted or repeated.

Accordingly, differences between variants of the same

song type are considerably smaller than differences

between different song types. Repertoire (song/variant/

syllable): Number of different types recorded in one

individual.

Song type 7 Song type 2

Song type 123 Song type 128

Altitude

Low: -263m

High: 8233m

kHz

kHz

kHz

kHz

2

8

0.5 1.0 0.5

0.50.5

1.0

1.0 1.0s s

s s

2

8

88

22

Fig. 1 Recording localities and

distribution of song types in Light-

vented Bulbul. Abbreviations of

localities explained in Table S1.

Northern and southern populations

indicated by green dots and red

triangles respectively. Years and red

dotted line indicate the distribution

boundary between northern and

southern populations and time of

colonization. Blue figures and letters

indicate the seven song types sung by

northern populations (cf. Fig. 3). Seven

of the ten northern populations

encircling Bohai Bay and TY sung song

types 1 and 2 (DL also had a unique

song type, 3); TY, ZZ and BJ sung song

type 4 (ZZ sang only this song type; just

few individuals of TY and BJ sung song

type 4); and XA had three unique song

types, 5, 6 and 7 (one individual also

sang song type 1). Spectrograms show

examples of different song types.
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Song analysis

Although our sampling was uneven across populations

(Table 1), to some degree this reflected the population

densities at different sites. The northern populations

TY and TJ and the southern populations HN and NN

(cf. Fig. 1) were excluded from the statistical analyses

as only 1, 5, 1 and 2 individuals, respectively, were

recorded at each of these sites. However, these small-

sample populations were included in the qualitative

(song type distribution) analyses, as they were consid-

ered to provide some useful information despite the

small sample sizes. For example, although only one

individual was recorded at TY, its 81 songs were

classified into three song types, whereas the 437 songs

recorded from 11 individuals in another northern

population (ZZ) all belong to the same song type.

Using Avisoft-SAS Lab Pro 4.52 (Avisoft Bioacous-

tics, Berlin, Germany), we digitized song recordings

with a sampling rate of 22 050 Hz, and made spectro-

grams with frequency resolution of 56 Hz and tempo-

ral resolution of 2.90 ms (spectrogram settings: Flat

Top window, overlap 87.5%, FFT length 512 points).

Syllable types and song types were classified by visual

inspection of these spectrograms. Different syllable

types and song types differed clearly in spectrograms

(see examples in Figs. 1 and 2) and audibly. Although

there were minor differences among individuals in the

detailed appearance of syllables, classification was usu-

ally unambiguous after examination of a large sample

of recordings. As there were many more syllables and

song types in the south than in the north, two observ-

ers (X.Y.X. and X.J.Y.) classified the southern songs

independently, whereas all of the northern songs were

classified by one of these persons (X.Y.X.). Syllables

and song types were assigned numbers. For example,

syllable sequence 1-2-3 was denoted as song type 1-0,

which means the basic, most common, variant of ‘song

type 1’, in which the syllables are given in the order

syllable 1, syllable 2, syllable 3; and syllable sequence

1-1-1-2-3 was denoted as song type 1-11, which is

variant type number 11 of song type 1 in which sylla-

ble 1 is given three times, followed by syllable 2 and

syllable 3 (Fig. 2). Each syllable and song type was

coded to create a song library for all the 329 individu-

als from 22 populations.

We performed Bivariate Correlation Analysis and

made a cumulative curve to evaluate whether the sam-

pling of song, variant and syllable pools was sufficient

in the north and south. The cumulative curve was plot-

ted with the number of individuals recorded against the

number of different song/variant/syllable types found.

As more and more songs were recorded, fewer and

fewer new ones were found, and eventually, the curve

would become horizontal when all of the types have

been recorded would be expected to plateau when rep-

ertoires were well sampled (Catchpole & Slater, 2008c;

Baker, 2012).

To evaluate the similarity of the pools of song types

across population, and relate it to geographical

distances between these populations statistically, we

did a Mantel test (Payne et al., 2000; Slabbekoorn

0.5 1.0

(a) (b)

(C)

kHz kHz

Song type  1–11: 1–1–1–2–3

Song type 1–4: 2–3Song type  1–0: 1–2–3

Syllable 1 Syllable 2Syllable 2 Syllable 3Syllable 3

10

8

6

4

2

0
s 0.5 s

Syllable 1 Syllable 2 Syllable 3

0.5 1.0 1.5 s

10

10

kHz

8

8

6

6

4

4

2

2

0

0

Fig. 2 Definitions of song type and syllable. Song type 1-0 (1-2-3)

is the basic, commonest variant of song type 1 with a whole

version of syllable types, and has three different syllable types

arranged in a fixed order. Song type 1-4 is variant 4 of song type

1, which lacks syllable 1, and song type 1-11 is variant 11 of song

type 1, which gives syllable 1 three times in a sequence.

Table 1 Sample sizes and numbers of song, variant and syllable

types in the southern and northern populations; values per

individual were based only on a sub-sample of 18 extensively

recorded birds from each region.

Southern populations Northern populations

Total sampling

No. of songs 2922 4406

No. of individuals 167 162

No. of populations 12 10

No. of song types 118 7

No. of variant types 508 273

No. of syllable types 131 36

Re-sampling

No. of song types 23 4

No. of variant types 130 82

No. of syllable types 55 22

No. of song types

per individual

1.8 � 0.6

(range: 1–3)

1.7 � 0.8

(range: 1–3)

No. of variant types

per individual

7.6 � 6.4

(range: 2–28)

7.8 � 3.3

(range: 3–14)

No. of syllable types

per individual

7.7 � 3.0

(range: 4–14)

6.5 � 3.0

(range: 2–13)
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et al., 2003; Peakall & Smouse, 2006), as implemented

in GenALEx 6.5 based on 1000 permutations. Mantel

test is a nonparametric test that assesses the relation-

ship between the elements of any two matrices with

matching entries (Peakall & Smouse, 2006, 2012). It

uses multiple random permutations of the observed

data to generate the chance expectation and produces

an r value between �1 and +1 that can be interpreted

like a correlation coefficient of the two matrices (Mol-

les & Vehrencamp, 1999). Its null hypothesis is that

the two matrixes have no significant correlation. The

Mantel statistic was evaluated with the distribution of

values permuted randomly and the probability that two

matrices were more similar than expected by chance

(Payne et al., 2000). In this study, the first matrix of

population song similarity was calculated using Jac-

card’s similarity coefficient, and the second matrix was

produced using geographical distances (km) between

each two populations. The test was procedured in

northern and southern areas, respectively, both for

song type and syllable type. Significant negative r-value

means that the song similarity tended to decline with

distance increase – nearby populations had more simi-

lar songs, whereas the positive r-value means oppo-

sitely. Jaccard’s coefficient (Sj) was calculated as the

number of song types common to both populations

divided by the total number of song types across both

populations (Podos et al., 1992; Tracy & Baker, 1999).

Considering differences in individual sample sizes,

and as the Bivariate Correlation Analysis and cumula-

tive curve (Figure S1) indicated that southern sampling

were not sufficiently well sampled, we re-sampled a

subset of well-recorded individuals from the total data-

set, to evaluate whether the number of song, variant

and syllable types differ between northern and south-

ern populations, both at the individual level and at the

whole ancestral and colonial population level. Among

167 southern individuals, � 40 songs were recorded

for 18 individuals, and among 162 northern individu-

als, � 40 songs were recorded for 33 individuals. These

18 southern individual and 18 of the northern ones

(randomly chosen) were selected. For individuals with

more than 40 songs, we picked up 40 songs randomly

from song repertoire of each individual. T-test and

Mann–Whitney U test were used to investigate differ-

ences at the individual level between north and south.

Chi-Square test was used to compare differences

between the whole northern and southern populations.

All data were tested for normality by One-sample Kol-

mogorov-Smirnov test before t-tests were performed.

These statistical analyses were conducted using SPSS

16.0 (SPSS Inc., Chicago, IL, USA).

Results

According to the Bivariate Correlation Analysis

(Table 2), in the north the number of song types and

syllable types were not correlated with the number of

recorded songs or individuals (all P values > 0.05),

whereas the number of variant song types was corre-

lated with the number of songs (r = 0.953, P < 0.01)

and individuals (r = 0.868, P < 0.01) recorded. In the

south, the number of song types and syllable types

were not correlated with the number of recorded songs

or individuals too (all P values > 0.05), but the number

of variant type was correlated significantly with the

number of songs recorded (r = 0.748, P < 0.05). The

cumulative curves of northern song and syllable types

became approximately asymptotic with increasing num-

ber of individuals sampled, whereas the northern curve

for number of variants and all three southern curves

did not approach the asymptote (Figure S1). These two

methods both suggested that northern populations were

well sampled with respect to song and syllable types,

whereas repertoire sizes for southern populations and

northern variant song types were insufficiently sam-

pled. For these reasons, a comparable subsample of

extensively recorded individuals was selected from the

total dataset for additional comparisons (see Materials

and methods).

In the total dataset, the newly established northern

populations had much smaller pools of song, variant or

syllable types than the combined southern source pop-

ulations (Tables 1 and 3 and Figure S1). In total, seven

song types, 273 variant types and 36 syllable types were

recorded in the north, whereas southern populations

Table 2 Results of bivariate correlation analysis.

Correlations

No. of songs

recorded

No. of individuals

recorded

Northern populations

No. of song type r 0.295 0.183

P 0.477 0.664

N 8 8

No. of syllable type r 0.635 0.527

P 0.091 0.180

N 8 8

No. of variant type r 0.953* 0.868*

P < 0.001 0.005

N 8 8

Southern populations

No. of song type r 0.403 0.188

P 0.248 0.603

N 10 10

No. of syllable type r 0.534 0.561

P 0.112 0.092

N 10 10

No. of variant type r 0.748† 0.33

P 0.013 0.352

N 10 10

N stands for the number of populations.

*Correlation is significant at the 0.01 level (2-tailed).

†Correlation is significant at the 0.05 level (2-tailed).
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had a total of 118 song types, 508 variant types and

131 syllable types. For the re-sampled dataset compris-

ing 18 northern individuals and 18 southern individu-

als, the numbers of song/variant/syllable types were 4/

82/22 and 23/130/55 respectively. Despite more songs

having been recorded in northern populations

(Table 1), they had significantly smaller pools of song

types, variants and syllable types (all v2 > 54, all

P < 0.001; Table 3). The same conclusion is reached

using only the subsample of extensively recorded indi-

viduals (all v2 > 10, all P < 0.001; Table 3). The num-

bers of song type, variant or syllable types sung per

individual did not differ between northern and south-

ern populations (subsample of extensively recorded

individuals: t-tests, all |t| < 1.2, all d.f. = 17, all

P > 0.25; Table 4).

In the north, a small number of song types and sylla-

ble types were widespread, and nearby localities

showed a high degree of similarity in song and syllable

type composition (Fig. 3). In contrast in the south, few

song types and syllable types were recorded at more

than one locality, even in geographically closely related

populations (three populations in Sichuan Basin: DJY,

CD, YA).The results of Mantel tests confirmed these dif-

ferences (Fig. 4). In northern populations, there was a

significant negative correlation between song/syllable

type similarity and geographical distance (for song type,

r = �0.637, P < 0.05; syllable type, r = �0.653,

P < 0.05), meaning that song/syllable type similarity

decreased significantly with increasing geographical dis-

tance, that is geographically closer populations had

more similar song types and syllable types. But this

pattern was not observed in southern populations:

there was no association between song/syllable type

and geographical distance was apparent (for song type:

r = �0.218, P = 0.110; syllable type: r = 0.128,

P = 0.842). Accordingly, northern populations showed

evidence of divergence by distance, whereas the low

level of common song types among southern popula-

tions suggested a mosaic pattern of song dialects across

the southern distribution.

On the basis of song type distributions (Figs. 1 and

3), we divided the 10 northern populations into three

dialect regions (Fig. 1): (i) seven populations around

Bohai Bay and another population (TY, nindividuals = 1)

sung song types 1 and 2; the most northeastern popula-

tion (DL) had a unique song type, number 3; (ii) ZZ

had only one song type, number 4, which was also

sung by a few individuals in BJ and TY; (iii) XA had

three unique song types, numbers 5, 6 and 7, and one

individual also sang the variant type 1-7.

Only three song types (2.4%) were sung both in the

north and in the south. The northern common song

types 1 and 2 were recorded in only one individual in

one southern population (GL). The third shared song

type, 3, was recorded in northern population DL (in 14

of 52 individuals) and in southern population DJY (in 6

of 12 individuals). Twenty-three syllable types were

sung both in the north and south, representing 63.9%

in the north (n = 36) and 17.6% in the south (n = 131)

of the total syllable types respectively.

Discussion

Very few song types were common to northern and

southern populations of bulbuls. In contrast, 63.9%

(n = 36) of the northern syllable types were also found

in the south. This suggests that the syllable is a more

conservative unit than song type in the vocal evolution

Table 3 Song comparisons between the whole north and the

whole south.

Chi-Square test

v2 d.f. P

Total sampling

No. of song types 98.568 1 0.000

No. of variant types 70.711 1 0.000

No. of syllable types 54.042 1 0.000

Re-sampling

No. of song types 13.370 1 0.000

No. of variant types 10.868 1 0.001

No. of syllable types 14.143 1 0.000

Table 4 Song comparisons of southern and northern individuals.

t-test

t d.f. P

No. of song types Z = �0.609 17 0.542

No. of variant types 0.13 17 0.897

No. of syllable types �1.166 17 0.252

Northern population

N
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Fig. 3 Song types in ten northern populations (arranged from

north to south on x axis). Song types 1 and 2 are widespread in

the seven populations encircling Bohai Bay (DL, BDH, BJ, TJ, JN,

WH and QD) and TY (latter just one individual with three song

types). See Fig. 1 and Table S1 for explanation of locality codes.
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of the Light-vented Bulbul, in agreement with some

studies on other birds (Lynch et al., 1989; Burnell,

1998; Nelson et al., 2004).

Newly established northern populations only retained

a small subset of the total syllable pool of the ancestral

southern populations. In the north, we did not hear any

other song types in addition to the seven types that we

classified. Although we cannot be sure that we covered

each individual male’s full repertoire (in some cases we

almost certainly did not do that), we are confident that

our sampling is sufficient to broadly represent the north-

ern populations. Despite the cumulative curve for the

south (Figure S1) was still growing which suggested

the south not being sampled as exhaustively as the

north, the results still show higher diversity in the south.

So the interpretation of results is unaffected.

According to founder effect/cultural drift theory in

birdsong studies (Baker & Jenkins, 1987; Lachlan &

Slater, 2003; Huber & Podos, 2006), founders would

only sing a small subset of source populations’ song

types and syllables, thereby decreasing the total varia-

tion. This has previously been found in some founding

populations of birds (Bitterbaum & Baptista, 1979;

Baker & Jenkins, 1987; Baker et al., 2001; White,

2012). In addition, the low density of pioneers and the

concomitant small number of learning models would

probably further decrease the vocal diversity and

increase stereotypy (Bitterbaum & Baptista, 1979; Pytte,

1997; Matthysen et al., 2002). Our results agree with

these predictions. However, as there was hardly any

song type sung both in northern and southern bulbuls,

it is uncertain to what degree original southern song

types were retained in the newly colonized populations.

Alternatively, the song types might have diverged

quickly after the new colonization, as has been sug-

gested for some other birds (Jenkins & Baker, 1984;

Baker et al., 2003; F€orschler & Kalko, 2007; Parker

et al., 2012).

The wider geographical distribution of a few song

types in the north could have at least two, nonexclu-

sive explanations. One of these is that it might result

from the fewer geographical barriers and hence, more

‘meme flow’ than in the south. Several of the southern

populations are isolated by topographical barriers, such

as mountainous areas or water bodies (Fig. 1), whereas

the northern Bohai Bay populations inhabit a topo-

graphically rather homogeneous region. The northern

ZZ and especially, XA populations, which are the most

isolated ones of the northern populations, also have

the most distinct (divergent) songs. Moreover, the

northern DL population, which is the most remote of

the seven Bohai populations, is the only one of these

in which a unique song type was recorded. The differ-

ences between the southern CD, DJY and YA, which

are in close proximity and not separated by any appar-

ent geographical barriers, are more difficult to explain.

Similar microdialects have been observed in other spe-

cies (Leader et al., 2000; Baker, 2003; Slabbekoorn

et al., 2003; Podos & Warren, 2007). It is possible that

the southern populations are more resident than the

northern ones, which would further contribute to the

observed differences. This has been noted in the

White-crowned Sparrow, in which northern, migratory,

populations have been found to have more widely dis-

tributed dialects than southern populations (Baptista,

1977; Kroodsma et al., 1984; Austen & Handford, 1991;

Chilton et al., 2002). However, the statement that

northern populations of the Light-vented Bulbul are

migratory, unlike southern ones (Fishpool & Tobias,

2005), is not correct, as good numbers winter in the

north (personal observations; P. Holt and J. Hornskov

in litt.).
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Another plausible explanation for the wider geo-

graphical distribution of song types in the north is that

the recent spread across a large area might have con-

tributed to the homogenization of the northern songs.

As a result of the rapid expansion, local song types may

not have had sufficient time to form. In agreement

with this is the observation that the XA population,

which is the southernmost and hence, possibly the

oldest one, had the most unique song of the northern

populations.

Conclusions

We found that compared with southern source popula-

tions, the northern, recently established populations (i)

had depauperate song type and syllable type pools, but

did not differ in repertoire size of individual birds; and

(ii) had altered the geographical distribution of song

types from mosaic to a few wide-spread song types. A

combination of ‘founder effect’, fewer geographical bar-

riers to ‘meme flow’ and the recent spread across a

large area in the north are likely explanations for these

differences. Our results show that founding populations

can change their pools of acoustic signals rapidly after

range expansion.
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Supporting information

Additional Supporting Information may be found in the

online version of this article:

Figure S1 Cumulative curves of song/variant/syllable

types for northern and southern populations. The trend

of curve showing how the number of new types found

rises as the number of individuals recorded increased,

indicating finite pools of northern song and syllable

types, but the other four seemed like not.

Table S1 Song sampling information for Light-vented

Bulbuls.

Data deposited at Dryad: doi: 10.5061/dryad.dm821

Received 20 September 2012; revised 30 November 2012; accepted 7

December 2012

ª 2 01 3 THE AUTHORS . J . E VOL . B I OL . 2 6 ( 2 0 1 3 ) 8 6 7 – 87 7

JOURNAL OF EVOLUT IONARY B IO LOGY ª 20 1 3 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

Birdsong evolution after recent expansion 877


