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Abstract.—Public DNA databases are becoming too large and too complex for manual methods to generate phylogenetic
supermatrices from multiple gene sequences. Delineating the terminals based on taxonomic labels is no longer practical
because species identifications are frequently incomplete and gene trees are incongruent with Linnaean binomials, which
results in uncertainty about how to combine species units among unlinked loci. We developed a procedure that minimizes
the problem of forming multilocus species units in a large phylogenetic data set using algorithms from graph theory.
An initial step established sequence clusters for each locus that broadly correspond to the species level. These clusters
frequently include sequences labeled with various binomials and specimen identifiers that create multiple alternatives for
concatenation. To choose among these possibilities, we minimize taxonomic conflict among the species units globally in the
data set using a multipartite heuristic algorithm. The procedure was applied to all available GenBank data for Coleoptera
(beetles) including >10 500 taxon labels and >23 500 sequences of 4 loci, which were grouped into 11 241 clusters or divergent
singletons by the BlastClust software. Within each cluster, unidentified sequences could be assigned to a species name
through the association with fully identified sequences, resulting in 510 new identifications (13.9% of total unidentified
sequences) of which nearly half were “trans-locus” identifications by clustering of sequences at a secondary locus. The
limits of DNA-based clusters were inconsistent with the Linnaean binomials for 1518 clusters (13.5%) that contained more
than one binomial or split a single binomial among multiple clusters. By applying a scoring scheme for full and partial name
matches in pairs of clusters, a maximum weight set of 7366 global species units was produced. Varying the match weights for
partial matches had little effect on the number of units, although if partial matches were disallowed, the number increased
greatly. Trees from the resulting supermatrices generally produced tree topologies in good agreement with the higher
taxonomy of Coleoptera, with fewer terminals compared with trees generated according to standard filtering of sequences
using species labels. The study illustrates a strategy for assembling the tree-of-life from an ever more complex primary
database. [BlastClust; data mining; graph theory; incongruence; multipartite matching; species delimitation; supermatrix.]

Metadata from mining of public DNA databases are a
rapidly growing resource for molecular phylogenetics
(Driskell et al. 2004). Compilations of these data for
construction of large phylogenetic trees and multiple
gene sets are widely performed (Sanderson et al. 2008;
Goloboff et al. 2009; Peters et al. 2011) and software
for data manipulation is available (Jones et al. 2011).
Whether produced based on existing gene annotations
(Jones et al. 2011), or with similarity searches (Hunt and
Vogler 2008; Sanderson et al. 2008), the initial products
of these compilations are sets of presumed orthologous
sequences partitioned by locus. Combined data analysis
generally outperforms other methods of phylogenetic
inference such as supertrees derived from individual
gene fragments (McMahon and Sanderson 2006; de
Queiroz and Gatesy 2007; Kupczok et al. 2010; Thomson
and Shaffer 2010), and therefore sequences require
concatenation across loci to generate a “supermatrix”
or “superalignment.” There has been great interest in
the behavior of supermatrices, for example, regarding
the density of taxon sampling, the selection of loci and
the number of loci and characters required, the effects
of missing data and the optimal way in which to reduce
them (Philippe et al. 2004; Delsuc et al. 2005; Gatesy et al.
2007; Simon et al. 2009; Meusemann et al. 2010).

However, little attention has been paid to the key step
of defining the terminals for such analysis. Specifically,

it is not straightforward how to delimit the species
entities that represent the terminals at each locus, and
how to combine sequence data from various loci. In
other words, although methods have been developed
for specifying the columns in a 2-dimensional data
matrix (representing orthologous sequences), the rows
of the matrix (representing the terminals) have not been
addressed. The problem of defining species units is
complicated by the recent trend of depositing sequences
without full species identification (Ryberg et al.
2008), either labeled with incomplete taxon names or
approximate species identifiers (“sp.,” “cf.,” “aff.,” “sp.
near,” etc.), or with various alphanumerical specimen
tags referring to individuals, rather than a taxon.
Inconsistent species identifications by various authors
exacerbate the problem of name-based concatenation
across loci. In addition, the phylogenetic history of
various DNA markers may be incongruent, for example,
due to hybridization (Funk and Omland 2003; Edwards
2009). This causes different taxonomic affiliations of
gene copies depending on the locus under consideration
and results in incongruent signal in a concatenated
matrix.

This study sets out a procedure for generating a global
(multilocus) species delineation matrix by optimizing
the concatenation process. This required that multiple
exemplars of a species, for example, from population
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FIGURE 1. Building a supermatrix from species units (boxes). a) Name-based concatenation. A single exemplar sequence is selected to represent
each species to be concatenated with a sequence labeled with the same name in a second locus. Missing data are inserted into the matrix where
a species name is not represented in a locus (e.g., spD missing for Locus 1). b) Cluster-based concatenation. Clusters for each locus are produced
based on sequence similarity, but may result in ambiguity of concatenation if the molecular clusters are incongruent with the species labels. This
results in numerous combinations in which loci can be combined based on shared taxonomic labels (blue connecting lines).

analyses, are grouped to provide an estimate of species
entities independently of taxon labels or particular
identifications (Tautz et al. 2003; Brock et al. 2009; Lee
et al. 2012). These sequence clusters established for
each locus have to be combined into a supermatrix.
This is straightforward if all sequences in the clusters
are labeled with the same species name (Fig. 1a), in
which case any sequence can be picked to represent a
given locus in the supermatrix with equal justification.
However, often the sequence variation is not congruent
with the taxon assignment, that is, a name may be
associated with multiple clusters, or conversely a single
taxon label may be distributed over multiple groups.
In these cases, combining loci becomes ambiguous
(Fig. 1b). As we will show, empirical data sets are
greatly affected by complex pattern of ambiguity,
causing great difficulties to join sequences in matrix
construction.

The proposed procedure concatenates the
representatives for each locus in a way that minimizes
conflict of the taxon names (including specimen
identifiers) attached to each group. Because multiple
labels may be present in a single sequence cluster and a
single label may be distributed across multiple clusters,
there are many different ways in which to link 2 loci
(Fig. 2). The challenge of optimally linking these entities
is taken as a specific case of the general problem of
maximizing matches in graph theory (Cherkassky et al.
1996). Here, the label similarities among species units
from multiple loci are represented as a multipartite
graph, where nodes in a partite set correspond to the
labels of clusters generated in the initial clustering
step, and edges link nodes from adjacent partite sets
where species names are shared. Decomposing the

collection of edges such that nodes have no greater
than a single edge to adjacent node sets is by “graph
matching” (Fig. 2), in which the algorithm aims to
find the greatest possible number of edges or the
greatest sum of weights. Thus, the preferred global
solution is a combinatorial optimization problem on
multipartite graphs. By applying an explicit weighting
scheme for name matches and partial matches, the
linking may either be very strict, avoiding mismatches
of any kind (beyond those already contained within
a single-locus cluster), or may be more permissive by
allowing mixed clusters with multiple taxon labels. The
latter will increase the number of loci that participate
in a concatenate and so reduce the number of terminals
in the resulting supermatrix, hence increase the gene
occupancy, at the cost of greater conflict of names within
the concatenates.

We applied this procedure to a large multilocus data
set of many thousand taxa for an entire insect order, the
Coleoptera (beetles). Starting from DNA-based clusters
that were created with the rapid BlastClust procedure
for establishing the primary entities, we first assessed
which clusters are inconsistent with Linnaean names and
therefore constitute difficulties for concatenation. The
labels attached to these clusters were used to generate
a maximum matching set with the greatest number of
edges. This set links various loci in accordance with
the taxonomy to the greatest degree possible given
the inconsistencies of sequence labels in the clusters.
We also compared the outcome of the analysis with
a conventional name-based concatenation, to test the
properties of the data matrices in regard to the number of
terminals, the proportion of missing data, and potential
improvement in tree topology.
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FIGURE 2. Species-level clusters from multiple loci represented as a multipartite graph. Species names associated with hypothetical sequence
clusters at 2 loci are shown. Edges link clusters of adjacent partite where taxonomic species are shared (thin and fat lines). a) Graph is decomposed
to permit only single links (fat lines), but resulting in a suboptimal matching. No further edges may be matched due to taxonomic dissimilarity
of clusters. Matching results in a matrix of 8 global species units, with a cell density of 0.75. b) Maximum matching (fat lines), forming a matrix
of 6 global species units and cell density of 1.0. All cases shown here are for the bipartite matching of 2 loci only, which is repeated sequentially
for the multilocus (multipartite) data set.

MATERIALS AND METHODS

Data Mining and Species Clustering at Each Locus
Sequences were obtained from the NCBI database by

downloading the invertebrate release (DNA) flatfiles
from ftp://ftp.ncbi.nih.gov/genbank/. In addition,
we obtained the NCBI taxonomy database from
ftp://ftp.ncbi.nih.gov/pub/taxonomy/, from which
we built a unique name-based string for each taxon
(the “taxon identifier” or “taxon ID”) corresponding
to the taxonomic hierarchy (Hunt and Vogler 2008).
Taxon IDs were generated for every node descended
from the “Coleoptera” node (NCBI taxon number 7041),

using the Linnaean binomials and 7 hierarchical levels
of the Linnaean taxonomic system up to the species
level currently applied in this database. The taxon IDs
were assigned to DNA sequences from the flatfiles by
matching the NCBI taxon numbers. The formatdb NCBI
program (ftp://ftp.ncbi.nih.gov/toolbox/FAQ.html)
was used to generate a Blast searchable database which
was screened for partial gene sequences coding for
Cytochrome Oxidase subunit I (COI, 3′-portion), 16S
rRNA, 18S rRNA, and 28S rRNA, using multiple queries
from a phylogenetically diverse range of Coleoptera
for each locus. Sequences showing similarity above the
e-value cutoff of 1e−5 were obtained using a BioPerl
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(Stajich et al. 2002) wrapper script, in which the Fastacmd
tool (ftp://ftp.ncbi.nih.gov/toolbox/FAQ.html) was
used for trimming of sequences to the extent of the
query and obtaining the reverse complement sequence
where necessary.

The first step of the matrix building procedure was
the clustering of the DNA sequences into species-
level groups. We utilized a rapid Blast-based clustering
method implemented in NCBI’s BlastClust program
to define operational species-level units, as applied
previously to microbiological species discovery (Lee
et al. 2012). BlastClust performs all-against-all pairwise
alignment, followed by single linkage clustering
according to user-specified similarity thresholds. Rates
of sequence variation are highly locus specific (e.g.,
Rokas et al. 2002; Danforth et al. 2005), hence the degree
of sequence variation within a species is likely to differ
across the loci. We therefore assessed a range of single
linkage cutoffs for each of the 4 target loci for the highest
congruence with the Linnaean species names. For each
cutoff, we summed the number of correctly delimited
species, that is, cases in which multiple sequences
labeled as a particular taxonomic name are grouped
into a single cluster that are free of sequences identified
as belonging to other species. Unidentified sequences
(lacking assignment to Linnaean binomials in GenBank),
and sequences labeled with a given taxon name that
occurred only once, were excluded from this assessment.

Multipartite Concatenation from Ambiguously Assigned
Clusters

The set of operational units, defined as BlastClust
clusters for a locus ki, can be represented as vertices Vi, in
an undirected graph G. Relationships between vertices
are indicated by edges, where in the current instance,
relationships are established based on the sharing of
taxonomic names between units. Since units are grouped
into classes (loci), with the aim of creating a serial set of
matches (a concatenate), the graph is k-partite, where k
equals the number of loci. In a k-partite graph, edges
exist between vertex classes, but not within a vertex
class. Where 2 vertex classes are present, the graph is
bipartite. Figure 2 gives a toy example, with 2 partites
(loci), each containing 6 vertices (species units), which
are composed of one or more species labels (SpA to
SpG). Edges represent all taxonomic matches between
operational units at different loci. For example, the lower
left unit has 2 edges to the adjacent locus, one indicating
the shared presence of SpE and one for the shared
SpG. Delineation of the graph into global species units
requires decomposition so that no vertex has more than
a single edge. A suboptimal decomposition is shown in
Figure 2a, where 4 units in the first locus have been
matched to 4 units in the second locus, resulting in
8 global species units. There are no species matches
between partites in the remaining 4 units. This results
in missing cells in the resulting global species units
(a matrix density of 75%), corresponding to missing

character states in the supermatrix. In contrast, all units
are linked in the maximal cardinality matching shown
in Figure 2b, thus forming 6 global species units with a
matrix density of 100%. Finding a maximal matching in
general k-partite graphs is NP-hard (Garey and Johnson
1983), but a simple heuristic is to reduce the problem
to a series of bipartite matchings (Bandelt et al. 1994),
as maximal matching of a bipartite graph is solvable
in polynomial time (Papadimitriou and Steiglitz 1982).
Additionally, bipartite graphs are well studied, with
several algorithmic solutions. Here, we implement a
single hub heuristic (Bandelt et al. 1994), as follows: for k
loci, L1, L2, L3 … Lk, compute edge weights between L1
and L2, and find maximal matching. The resulting linked
and unlinked operational units for L1+L2 become the
vertices for a second round of graph matching, whereby
edge weights are calculated between L1+L2 and L3,
to determine the maximal bipartite matching in this
second round. Rounds continue from n=3...k−1, with
bipartite matching between L1+L2...Ln and Ln+1.
Maximal weight matches are calculated according to
Galil (1986), as implemented in the Graph::Matching
Perl module written by Joris van Rantwijk and freely
available at http://jorisvr.nl/maximummatching.html,
with the single hub multipartite heuristic implemented
in Perl (see Supplementary Material).

Weights were applied to the name matchings based
on unique taxon IDs (not individuals) matched between
units in 2 loci. As the default weights, we assigned an
arbitrary score of +2 if all members in an operational
unit (sequence cluster) obtained in one locus are the
same taxonomic species as all members in a unit from
another locus (full matches). This score is increased
by +1 for a match of a particular specimen that links
units in different loci via an alphanumerical specimen
label attached to the sequence. Specimen labels were
automatically identified by pattern matching in the
species name field, with strings containing only the
letters a–z and a single internal whitespace assumed to
be Linnaean, and specimen label otherwise. A score of
+1 is assigned to “partial” name matches, if a subset of
the sequences in a unit has at least one match to a species
name in a unit obtained for a second locus.

The global (multilocus) species units were labeled
according to the taxon ID most widely represented across
loci. This strategy would avoid that, for example, a
single mislabeled sequence would be used to label the
entire concatenate. The following algorithm was used
for assigning a taxon ID to a specific global species unit:
for each locus, obtain all unique taxon IDs, then for each
taxon ID, count the number of loci containing it. Where
sequences in a specific matching were assigned multiple
Linnaean binomials, the one with widest representation
across loci was selected, or where binomials were absent,
the most frequently non-binomial label was used. In
addition to assigning a species label to the concatenate,
this procedure was also used to choose the DNA
sequence that represents a locus in the concatenate.
Where multiple sequences for the preferred binomial
were available, the most complete sequence was used



[10:35 28/3/2013 Sysbio-syt011.tex] Page: 460 456–466

460 SYSTEMATIC BIOLOGY VOL. 62

or a sequence was chosen at random if sequences were
of equal length. A file with the matched clusters across
the 4 loci and a key to the taxon identifiers are available
as Supplementary Material (Dryad Digital Repository;
doi:10.5061/dryad.qp367).

Building Phylogenetic Trees from Concatenates
The above process of selecting taxon labels and

concatenating the labels across loci was followed to build
data matrices accordingly. In an initial step, all available
sequences from each locus were aligned using BlastAlign
(Belshaw and Katzourakis 2005), a program based on the
Blast algorithm successfully used to align large numbers
of rRNA sequences in Coleoptera (Hunt et al. 2007; Hunt
and Vogler 2008). Alignments were produced for each of
the 4 loci (COI, 16S, 18S, and 28S) and representatives for
each operational unit were selected. (Note that the above
step of clustering did not require multiple sequence
alignment because the BlastClust algorithm produces
clusters according to pairwise similarity.)

The quality of data sets generated under different edge
weighting regimes was assessed on the phylogenetic
trees inferred from the concatenated supermatrices.
Direct comparisons of trees under likelihood require that
the supermatrices obtained under the various weighting
regimes have the same number and composition of
concatenates (= terminals in the phylogenetic analysis),
whereas the heuristic matching of loci under different
weights results in matrices of variously formed
concatenates. We therefore searched the supermatrices
for concatenates which are identical between regimes.
This set of equivalent concatenates were retained both
in the trees and supermatrices, while all others were
pruned (see fig. 1 of Poe (1998) for pruning method).
Hence, the tree topology was assessed only for a core
set of concatenates recovered in all weighting schemes,
whose relationships change due to differences in the
variable concatenates (whose relationships were not
assessed). Tree searches were performed on each of the
resulting supermatrices under ML and the GTRCAT
model with RAxML v. 7.2.8 (Stamatakis 2006), and with
the NJ method implemented in Paup*4b (Swofford 2002),
using ML distances and gamma distributed rates. To
test for significance in the likelihood differences across
weighting regimes, the branch lengths of the pruned
topology were optimized first, and then the likelihood
was calculated for each site. Site likelihoods were then
bootstrapped using Consel (Shimodaira and Hasegawa
2001) to calculate approximately unbiased (AU) test
statistics. The taxonomic retention index (tRI; Hunt
and Vogler 2008) was used to assess the fit of a tree
to the Linnaean taxonomy. The tRI was obtained by
turning the taxon IDs created from the NCBI taxonomy
database (see above) for each terminal into a set of binary
pseudocharacters for various levels of the taxonomic
hierarchy. State changes in each of these characters were
scored for the trees using Paup to calculate the RI for
each character, and the ensemble tRI for all characters

in the matrix was based on taxonomic state changes
of 1376 taxonomic groups (898 genera, 161 tribes, 175
subfamilies, 120 families, and 22 superfamilies).

RESULTS

Clustering GenBank Entries and Grouping of Unidentified
Sequences

The database contained 23 555 sequences and 10 503
taxon labels, including 7712 Linnaean binomials and
2791 alphanumerical name codes (referred to as
“unidentified” in the following). The latter also
contained 180 partial identifications (“sp.,” “cf.,” “nr.,”
or “aff.”). It is not known how many species these
unidentified sequences equate to, but an estimate was
made for each locus based on the level of intraspecific
versus interspecific sequence divergence in a clustering
with the BlastClust algorithm. Using all sequences
with Linnaean taxon labels present at least twice in
the database, similarity cutoffs were varied for the
range of 90–100% in steps of 0.25%, and for each
value, the proportion of correctly recognized species
was determined (Fig. 3). Several hundred of these
clusters matched the Linnaean names in the case of
the mitochondrial markers and just over one hundred
for the nuclear markers (Table 1). The slowly evolving
loci (18S and 28S) returned a peak of correctly defined
clusters at very high sequence similarity (linkage cutoff
99.75%), that is, intraspecific variation was very low,
while the peak for the faster evolving COI and 16S was
around 96 and 98.5%, respectively, with a very broad
maximum. However, even under these optimal cutoff
values, congruence of the clusters with the established
taxonomy was low, with at most 52% (COI), 46% (16S),
37% (18S), and 69% (28S) of clusters unambiguously
associated with a single Linnaean binomial (Table 1).

We then applied these optimal values to the total
database, which returned 4760, 3260, 2092, and 1129
clusters for COI, 16S, 18S, and 28S (total 11 241
clusters; Table 2), including those sequences that
were not grouped with any others (singletons). These
clusters generated under the optimal cutoff were
considered as operational units to represent species-
level entities. These entities also contained many
unidentified sequences. For example, in the COI locus,
1282 unidentified sequences were members of 1023
units, which included 935 units (including singletons)
with all members unidentified, and 88 “mixed” units
of unidentified and identified sequences (Table 2).
Association with these units resulted in unambiguous
species identification where the identified sequences
in the cluster belong to a single species. For COI, 119
unidentified sequences were assigned species names
in this way. The proportions were similar for other
loci, with a total of 295 sequences newly identified
in this manner (Table 2). This species assignment was
improved by assignment to a name at a secondary locus if
sequences for a given unidentified specimen were part of
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FIGURE 3. Blastclust cutoff values plotted against the number of correctly delimited species, that is, the proportion of clusters that include all
sequences associated with a particular Linnaean name. The results are shown for 4 loci and all Coleoptera sequences with multiple entries per
species name. The panels are scaled to the maximum possible value of correctly defined species for each gene.

TABLE 1. Optimal BlastClust cutoffs for the 4 genetic markers and
number of species correctly delimited

Locus COI 16S 18S 28S

Optimal BlastClust cutoff (%) 96.75 98.5 99.75 99.75
Number of species tested 474 420 128 109
Clusters congruent at optimal cutoff 249 195 47 75

a mixed cluster at another locus (Fig. 4). This trans-locus
assignment increased the number of newly identified
sequences by a further 215, for a total of 13.9% of the
3658 unidentified sequences in the data set (Table 2).

Incongruence of Clustering across Loci
Given the incongruence between sequence clusters

and taxonomic species, we tested whether some of these
novel groupings were corroborated by independent
genetic loci. This test was performed on a subset of
clusters that contained sequences labeled with 2 or
more different species labels exclusively in that cluster,
where these names were also present in other loci.
These labels at a secondary locus may be consistent

TABLE 2. Species assignment to unidentified sequences via
clustering at optimal clustering cutoff

Locus COI 16S 18S 28S Total

Clustering
Sequences 13 557 5338 2486 2174 23 555
Clusters (including singletons) 4760 3260 2092 1129 11 241
Clusters all members identified 3737 2517 1366 702 8322
Clusters all members 935 688 674 399 2696

unidentified
Clusters mixed identified 88 55 52 28 223

and unidentified
Clusters with multiple binomials 243 178 95 57 573

Name assignments
Total binomials 3577 2695 1482 824 8578
Total unidentified sequences 1282 1023 800 553 3658
Non-assignable sequences 1188 987 727 499 3401
Sequences assigned to binomials 119 82 46 48 295
Trans-locus assignments 70 89 16 40 215

Concatenation
Unambiguous by string matches 4090 2783 1871 979 9723
Names dispersed among clusters 670 477 221 150 1518

Notes: The “clusters” refer to all separate entities produced in a
BlastClust analysis at the optimal value (Table 1), including a large
number of sequences not grouped with any others (singletons).
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FIGURE 4. Assignment of species names to unidentified sequences.
The figure shows a hypothetical example with 3 species units of 2 loci,
containing both identified and unidentified members (labeled with a
voucher numbers). Sequence labels as initially obtained are given in
a), and name assignments (red letters) shown in b). Species names are
assigned to the unidentified sequence by membership in a sequence
cluster of identified sequences (Unit 1 and Unit 3), or through trans-
locus assignment of a given specimen at a secondary locus (Unit 3).
Where multiple named species are present in a cluster, a name cannot
be unambiguously assigned to the unidentified sequence (Unit 2).

TABLE 3. Congruence in sequence clustering between loci

Total Identified Unidentified Mixed

Locus Cons. Incons. Cons. Incons. Cons. Incons. Cons. Incons.

COI 271 133 56 22 186 96 29 15
16S 344 190 62 18 262 160 20 12
18S 126 125 11 15 106 93 9 17
28S 146 118 25 16 112 86 9 16

Notes: The table presents the results from tests of congruence in the
associations of multiple names and/or alphanumerical codes across
loci. Tests were performed on a subset of clusters that contained
sequences labeled with 2 different taxon IDs, where these names were
not found separated in clusters elsewhere. These “uniquely clustered”
sequences are then used to assess each member for their status as being
uniquely clustered at other loci (consistent, cons.), or as members of
separate (=singleton sequence) or non-unique clusters at other loci
(inconsistent, incons.).

with the first, that is, grouping the same labels into
a single cluster, or they may be inconsistent, being
distributed among several clusters. All members of
these mixed clusters were then assessed for “consistent”
or “inconsistent” trans-locus clustering. Likewise, we
assessed the placement of unidentified sequences
(alphanumerical specimen tags) and their linkage with
clusters labeled with more than one binomial. The
number of trans-locus inconsistencies of clusters affected
between half and one-third of all sequences representing
taxa with membership in multiple clusters (Table 3).
The proportion was particularly high in the slowly

varying 18S gene, compared with the faster evolving
mitochondrial genes. For example, 125 of the 251 (49.8%)
18S clusters grouped species that were ungrouped
at other loci. This was also evident from the (much
larger) class of unidentified sequences, where trans-
locus clustering was also inconsistent (Table 3).

Search for Optimal Concatenates
The most straightforward category for concatenation

across loci were “singleton” sequences that did not
group with any others and therefore were unique in
representing this binomial. Although a large proportion
of entities in a given locus were singletons (e.g. 3655
sequences in COI, against 1105 true clusters composed of
more than one sequence), a binomial that is a singleton
in one locus was frequently linked with a cluster in
another locus. Only 1104 of minimally 7366 terminals (see
below) in the final matrix were “singleton concatenates”
composed of singletons in each locus available for
the taxon. The remainder included many clusters with
multiple taxon labels that were dispersed among several
clusters in at least one locus. This problem affected 47.5%
of all binomials represented by more than one sequence
in COI (225 of 474 binomials), 53.6% for 16S, 63.3%
for 18S, and 31.2% for 28S. Conversely, a cluster may
contain multiple binomials that were dispersed across
multiple clusters in at least one other locus. In total,
there were 1518 clusters affected by these inconsistencies,
corresponding to 13.5% of altogether 11 241 clusters.
This leaves 9723 clusters that could be concatenated
unequivocally using basic species name string matching
(see Table 2 for breakdown by locus).

Varying Edge Weighting Regimes according to Matches in
Linnaean Taxonomy

Applying the sequential bipartite matching algorithm
to the 11 241 operational units from the 4 loci, maximal
matchings were generated under a series of edge
weighting regimes. For the 2:1:1 weighting regime
(for full, partial, and specimen match; see “Material
and Methods” section), the procedure returned 7366
terminals, and this value was essentially unchanged
under different weights for partial matches (Table 4).
Likewise, the number of chimerical concatenates was
similar across weighting regimes, as was the proportion
of missing data (62%). However, if the “partial” match
score was set to 0 (weighting scheme 2:0:0), that is,
the algorithm does not consider any solution that
implements an edge between units with multiple names,
the number of terminals increased, and consequently
the resulting data matrix showed an increase in the
proportion of missing data (64.8%; Table 4, final column).
This increase in the number of terminals affected in
particular the mixed-name units, which increased to 565
over 520 units obtained with the 2:1:1 concatenation
scheme. When partial matching is permitted, these
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TABLE 4. Comparing the impact of different edge weighting
regimes on the resulting matrices and trees

Match 2 2 2 2 2
Partial match 2 1 2 1 0
Specimen match 0 0 1 1 0

Supermatrices
Number of 7367 7367 7366 7366 7955

Concatenates
Missing cells 0.620 0.620 0.620 0.620 0.648

(proportion)
Chimerical 520 520 518 518 565

concatenates
Tree statistics, ML

Ensemble tRI 0.904 0.908 0.904 0.907 0.907
−logL 1 216 096 1 216 324 1 216 531 1 216 155 1 215 679
AU statistic 0.096 0.023 0.008 0.102 0.957

Tree statistics, NJ
Ensemble tRI 0.812 0.811 0.813 0.813 0.811
−logL 1 321 219 1 321 182 1 320 998 1 320 753 1 322 788
AU statistic 0.112 0.084 0.242 0.896 <0.001

Notes: The weight for 2 species clusters paired between partites
was varied according to taxonomic match, as given at the top. The
composition of the resulting supermatrices is given in the upper rows,
whereas the lower panel provides basic tree statistics obtained from
the ML and NJ trees. Indicators of tree quality are the tRI, and the AU
statistic for comparing likelihoods.

mixed-name clusters are mostly concatenated with
mixed-name clusters in other loci, resulting in overall
fewer terminals.

The concatenates were used for phylogenetic tree
searches by retrieving the corresponding sequence
information, retaining a single DNA sequence for each
cluster for each locus, and concatenating these across
loci. For each tree, we recorded the fit to the taxonomy
(using the tRI, calculated from 1376 taxonomic groups
of 5 ranks) and the likelihood of trees, after pruning
all concatenates that are not universal to all weighting
schemes to ensure comparability (see “Materials and
Methods” section). The correspondence between lnL and
tRI was low across weighing regimes, for the ML trees.
For example, the tree attaining the highest tRI (2:1:0) was
rejected (AU<0.05) according to bootstrap analysis of
site likelihoods. The quality of NJ trees was much lower
than those obtained under ML, as indicated by the 2
measures, although a higher correspondence between
tRI and lnL is observed, with the weighting regime of
2:1:1 ranking as the most likely, and gaining the (equal)
highest tRI, and the regime 2:0:0 rejected according to
lnL and (equal) lowest tRI (Table 4).

Comparing Supermatrices from Sequence-based and
Name-based Data Sets

We also generated a concatenated supermatrix of the 4
loci based on Linnaean taxon labels (species names and
unidentified specimen labels). The original sequences
were filtered to leave a single sequence per species label,
using the most complete sequence or, where sequences
were of the same length, randomly choosing one
individual. This “name-based” supermatrix included

TABLE 5. Number of matched species units with data
present/absent for the 4 target loci, separate for the name-based and
cluster-based supermatrices

Number of Loci COI 16S 18S 28S Cluster
based

Name
based

% Reduction

4 Loci � � � � 278 404 31.2
3 Loci � � � 233 241 3.3

� � � 327 363 9.9
� � � 31 40 22.5

� � � 44 57 22.8
2 Loci � � 1085 1360 20.2

� � 132 112 −17.8
� � 158 177 10.7

� � 222 197 −12.7
� � 64 89 28.1

� � 82 91 9.9

1 Locus � 2477 2174 −13.9
� 1097 1092 −0.5

� 993 1053 5.7
� 144 155 7.1

Note: The last column gives the percentage by which the number
of cluster-based concatenates is lower than name-based concatenates
(negative values if the number of cluster-based concatenates is greater).

7605 terminals with greater intra-genus representation
compared with the cluster-based matrix, including a
few hyperdiverse genera with >200 differently named
terminals possibly derived from population studies.
The proportion of missing data at 59.7% was lower
than the cluster-based analysis (62.0%). The sequence-
based concatenation resulted in a general reduction
in concatenates, and in particular in the multilocus
concatenates (Table 5). Contrary to this trend, the
number of COI clusters was greatly increased in the
sequence-based clusters, suggesting that this fastest
diverging gene frequently split Linnaean entities, unlike
the other loci. This increase was not observed in the
multilocus concatenates of the COI gene, which suggests
that the concatenation step reduces the number of
entities, that is, clusters that split Linnaean species
are concatenated based on alternative names in mixed
clusters present at other loci.

For comparisons of the resulting tree topologies,
we pruned all terminals that were not identical in
both trees, leaving a core set of 5485 terminals. As
expected for a matrix of greater size, the search
time differed significantly for the taxon-based matrix
compared with the sequence-based matrix. Based on
the 1000 bootstrap replicates, a mean search time of
16.4±1.1 h was required for the name filtered, against
12.8±1.0 h for the cluster-based data matrix (P=0.012,
W =758 579, unpaired Wilcoxon rank sum test). After
extensive searches, the tRI was 0.890 and 0.889 for the
sequence-based and name-based data sets, respectively.
To obtain an indication of significance for these values,
the ensemble tRI was repeated for each of 1000 bootstrap
trees for both data sets, resulting in a tRI of 0.8634±
0.0002 for the sequence-based versus 0.8600±0.0002
for the name-based analysis, which was a highly
significant difference (P�0.001, W =262741, unpaired
Wilcoxon rank sum test). The tree from sequence-based
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concatenation showed a small but significantly increased
bootstrap support (0.604±0.014, vs. 0.602±0.014; P=
0.019, V =762 162, paired Wilcoxon signed rank test),
whereby searches were performed only on a set of
shared sequences to find equivalent nodes. Finally, the
likelihoods of the 2 topologies were assessed after a
round of thorough likelihood optimization. While not
significant, the tree from the cluster-based matrix ranked
as showing higher likelihood (AU=0.859, PP=1.0, SH=
0.864).

DISCUSSION

It is widely recognized that gene annotations are
insufficient and data mining therefore requires careful
partitioning of orthologous sequences (Sanderson et al.
2008; Smith et al. 2009; Peters et al. 2011), as the
first step in building a supermatrix. However, the
literature has not addressed the allied problem of
defining the terminals. Instead, virtually all recent
studies define the species axis of the matrix by using
the Linnaean names, which seems no longer adequate
given the increasing proportion of un-named sequences
and inconsistent identifications. The magnitude of the
problem is apparent from the Coleoptera database that
contains nearly 1000 “unidentified” species-level clusters
(including singleton sequences) without assignment of
Linnaean names and >1200 unidentified sequences for
the COI gene alone. Altogether some 15.5% out of
23 555 sequences are “unidentified” (Table 2). More
importantly, the names in databases do not coincide
with species-level clusters obtained from the sequences
themselves. Blast clustering produced species-level
entities containing multiple names in some 23% of
clusters with >1 sequence, even after careful selection
of the best performing cutoff values. In as many as
50% of the binomials represented by >1 sequence, a
given taxon ID was split among different clusters, that is,
the annotations contradict the sequence-based entities,
and to make matters worse, these splits frequently
are “inconsistent” between loci (Table 3). Choosing
representatives for each cluster and deciding what
annotation to use in a supermatrix therefore become
very complicated. We here developed a procedure for
consolidating these single locus species clusters into
a supermatrix. The approach maximizes the number
of matches of taxon IDs among loci globally over
the entire database, using established procedures from
graph theory. The key feature of the method is that it
matches each set of names (each cluster) with no more
than one other set, until no more matching sets are
available, to produce the maximum matching set. This
process of bipartite matching is iterated for multiple loci
to provide a heuristic solution for the NP-hard problem
of multipartite matching.

The procedure is flexible in that it can incorporate
a weighting function to reflect the greater certainty
about the link of some vertices than others. This is
particularly relevant if clusters can be linked across

loci via sequences obtained from a single individual;
in these cases, the link is unambiguous, and this gives
confidence that these clusters should be concatenated
beyond the taxon ID. We implemented this by adding
extra weight to the matching function, which was set
arbitrarily to add 50% greater weight above that for a
“specimen match” (= identical taxon ID in clusters in 2
loci). Conversely, the certainty of a match may be reduced
if certain taxon IDs differ in one or both of the clusters
(=a “partial match”), which can be given lower weight
than the match of all taxon IDs (=a “full match”). It
may also be desirable to avoid partial matches altogether,
which we implemented with the “partial match=0”
setting. In the Coleoptera data, only this latter approach
had a substantial effect on the supermatrix, showing
the greater number of terminals and more missing
data expected if partial matches are disallowed. Other
weighting schemes are conceivable. For example, the
current approach does not take into account the number
of sequences in each locus to be used in the weighting,
which may lead to an over-proportional impact of a
small number of aberrant sequences. This could be
addressed by different weighting schemes that take into
account the number of sequences supporting any one
taxon ID. Likewise, additional information associated
to particular sequences could be considered, such as
geographic provenance of sequences, to preferentially
match up clusters based on sequences from the same
collecting locality or habitat that may be indicative
of species membership. The “specimen match” could
also be implemented by using the specimen voucher
information if available on GenBank, instead of using
alphanumerical name codes to insure that unique
specimens are used, rather than unidentified entities.
It also remains to be seen to what degree other parts
of GenBank are affected by incongruence in species-
level clusters. Currently, the Coleoptera database is
well curated and consists of a majority of sequences
assigned to Linnaean binomials, for example, 3577
binomials in the database for 4760 clusters in COI (75.1%)
and a similar proportion of binomials to clusters in
the other loci (Table 2). However, the proportion of
unidentified sequences is likely to increase steeply in the
future, for example, through the rapidly growing DNA
barcodes (COI sequences) labeled by a “barcode index
number” (Ratnasingham and Hebert 2007), an arbitrary
alphanumerical code referring to DNA-based clusters
similar to the clusters created here, and the adoption
of high-throughput sequencing technologies, which
places greater demand on taxonomic identifications via
clustering.

Perhaps the greatest effect on the composition of
the supermatrix is exerted by the clustering step
preceding the concatenation. We used BlastClust as a
pragmatic approach based on similarity cutoffs in a 2-
step procedure whereby we first established the cutoff
level that is most appropriate to the specific database
by comparing clusters and Linnaean names to mirror
traditional species circumscriptions, and then applied
the preferred value to the wider database including
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“unidentified” or partially identified sequences. The
approach is simplistic, by using a similarity criterion
and universal cutoff values for species delimitation, and
assuming correct taxonomic identifications and taxon
concepts in GenBank submissions. Database entries
are notorious for a low fit of sequence clusters and
Linnaean names (Meier et al. 2006), unlike studies
based on dedicated sequencing efforts, which estimated
this discrepancy to affect at most 5% of all clusters
(Hajibabaei et al. 2006). This suggests inconsistent
naming as well as a focus on problematic groups in the
primary studies from which the database is built. The
discrepancies also differ among loci. For example, in the
slowly evolving 18S and 28S loci, we found that multiple
binomials were commonly collapsed into a single entity,
indicating over-clustering that was not observed in fast-
changing mitochondrial loci (Table 2). The specifics
of the clustering procedure may have contributed to
the high incongruence with the Linnaean binomials,
while other clustering procedures have recently been
found to perform better (Lee et al. 2012), and tree-
based procedures (Pons et al. 2006) may be preferable
on theoretical grounds.

Once loci are partitioned and species clusters are
delineated, the matrix building step has to draw on
the units as a set of fixed entities that are to be linked
in the most appropriate way. The linking parameters
affect the relative proportion of missing data and
internally conflicting terminals, which then affect tree
inferences and nodal support. However, the preferred
settings do not necessarily produce optimal conditions
for tree inference. We compared tree topologies obtained
under different parameters, by assessing only those
entities that were common to the matrices from various
weighting schemes, and pruning all other terminals.
For the ML searches, the best likelihood values were
with the 2:0:0 scheme, that is, not permitting partial
matches (AU=0.95), while in the NJ searches, the best
values were for the 2:1:1 scheme (AU=0.23). Yet, the tRI
values did not differ greatly among weighting schemes.
The weighting schemes should affect the matrices
in complex ways, resulting in different proportions
of missing data, and differences in composition of
concatenates and the labels attached to them. As we
only retain the widely uniform concatenates, that is,
a set of “core” sequences not directly affected by
differences in the weighting function, we measure
indirect effects of these parameters on the trees, which
may mask substantially greater differences between
matrices. For example, such differences are evident
from the greatly expanded number of concatenates
under the 2:0:0 weighting scheme which includes
nearly 600 additional terminals (Table 4). Although
the outcomes of these tree searches are somewhat
inconclusive, the proposed procedure will improve the
matrix by the more efficient use of the rapidly growing
sequences from incompletely identified individuals,
objective selection of exemplars for inclusion in the
supermatrix, and formal resolution of inconsistencies in
public sequence repositories. In addition, the clustering

step that precedes the concatenation also results in a
substantially greater proportion of data that bear on the
phylogeny of a focal group. Compared with conventional
name-based analyses, the use of sequence clusters
reduces the number of terminals with little phylogenetic
information content from population studies. In the case
of the Coleoptera database, this resulted in ∼300 fewer
terminals, a ∼20% faster search time and a slightly, but
significantly improved topology as measured by the tRI,
lnL, and bootstrap support.

It remains to be studied what these mixed concatenates
mean biologically. In our analysis, there are 2 layers
contributing to mixed species units, at the level of the
primary clusters and when matching clusters across loci.
Mixed sequence clusters concern tip-level incongruence
within genera, although a few clusters also included
among-genus, among-subfamily and even higher taxa
inconsistencies. The latter probably result from errors
in gene annotations or identification, while at the tip-
level true gene tree incongruence may be responsible
for the clustering of multiple names (in addition
to inappropriate clustering methods and parameter
settings).

The second layer responsible for mixed terminals
results from the locus matching step itself, which may
aggravate the problems from mixed primary clusters.
However, in the Coleoptera data set, this potentially
negative effect is offset by the overall reduced proportion
of mixed clusters. For example, under the 2:1:1 scheme
that permits partial matches the number of chimerical
concatenates was reduced by ∼10% compared with
the 2:0:0 scheme without partial matches (Table 4),
as mixed-name clusters are mostly concatenated with
mixed-name clusters in other loci. Likewise, the splitting
of COI sequence clusters compared with name-based
groups, which is evident in single-locus terminals,
is counteracted by the concatenation with other loci
(Table 5). Hence, linking partially matching clusters
reduces, rather than increases the number of mixed
terminals, by combining clusters that would otherwise
remain unmatched. Establishing the best matching of
mixed clusters may produce biologically meaningful
entities from multiple loci whose components may
deserve further investigation. The advantage of the
procedure for building supermatrices will increase with
the rapid growth of sequence-based taxonomy and the
expansion of loci available for phylogenetic analysis.

SUPPLEMENTARY MATERIAL

A Perl script implementing the multipartite matching
is available under the GNU General Public License at
http://sourceforge.net/projects/multilocusmotu/files/.
Supplementary material, including data files
and/or online-only appendices, can be found in
the Dryad data repository at http://datadryad.org
doi:10.5061/dryad.qp367.
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