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Frequency-Dependent Selection: a Two-Phenotype, Two-Allele,
Single-Locus,Two-Species Diploid Model
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The two-species matrix games developed by Cressman (1996, Theoretical Population Biology 49,
189–210) are extended to interacting diploid populations. In this paper, a simple two-phenotype,
two-allele, single-locus, two-species diploid model is investigated. The main focus of the paper is to
illustrate the local stability of all interior positive equilibrium points of the two-species diploid model
and the evolutionary significance of the stability. Results show that (i) in the two-species diploid model,
three possible types of interior positive equilibrium points can exist, phenotypic equilibrium point,
genetic equilibrium point and PG equilibrium point; (ii) if the phenotypic equilibrium point is a
two-species ESS, then it must be locally asymptotically stable; (iii) at the genetic equilibrium point, if
there are heterozygote advantages in both species, then the genetic equilibrium point is locally
asymptotically stable; (iv) at the PG equilibrium point, one species exhibiting phenotypic equilibrium
and the other genetic equilibrium, if the genetic equilibrium corresponds to heterozygote advantage and
the phenotypic equilibrium is a single-species ESS, then the PG equilibrium point must be locally
asymptotically stable.
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1. Introduction

Cressman (1996) presented the two-species frequency-
dependent model. In this model, evolutionary game
theory is extended to models of two-species
interactions where fitnesses are based on individual
characteristics (strategies) rather than on a popu-
lation dynamic that assumes homogeneous species.
His main purpose is to investigate the application of
the ESS solution concept to dynamic stability when
fitnesses are given by random interactions between
individuals as opposed to viability selection. For the
two-species frequency-dependent model, Cressman
(1996) defined the concept of two-species ESS that
asserts that, if any system near the ESS, at least one
of the species is better off if it evolves towards ESS.

The simplest two-species frequency-dependent
model is the two-species matrix game model. In this
model, Cressman (1996) assumes that: (1) the number

of the possible phenotypes (also called pure strategies)
is finite in both species; (2) the strategies are passed
on to offspring through asexual inheritance; (3) the
intra- and interspecific interactions between a pair of
individuals are completely random; (4) the density
effects are ignored and the proportion of the two
species is fixed. Obviously, Cressman’s two-species
matrix game model can also be considered to be a
natural extension of the classic matrix game models.
Cressman’s (1996) result shows that a polymorphic
two-species ESS is globally asymptotically stable in
the two-species matrix game model.

Clearly, Cressman’s (1996) two-species matrix
game model concerns the coevolution of two species
(Roughgarden, 1979). From Roughgarden’s (1979)
definition, we know that ‘‘coevolution’’ is the term
applied to the simultaneous evolution of interacting
populations. In this paper, the two-species matrix
game will be extended to the diploid model that
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assumes that the two species are Mendelian
populations. The main purpose of this paper is to
investigate the relationship between phenotypic
evolution and genetic evolution in the two-species
system. In Section 3, the necessary and sufficient
conditions for the two-species ESS in the simplest
two-phenotype, two-species haploid model will first
be discussed. In Section 4, the dynamic properties of
the two-species diploid model and the biological
significance of these dynamic properties will be-
analysed.

2. Basic Assumptions and Basic Models

In this paper, the following basic assumptions are
made:

(i) there are two interacting populations, which can
be called species 1 and species 2;

(ii) the generations of species 1 and species 2 are
continuous and overlapping;

(iii) the intra- and interspecific interactions be-
tween individuals are random pairwise contests, and
the proportion of species 1 to species 2 is 1:1
(Cressman, 1996);

(iv) let R1 and R2 denote the two pure strategies in
species 1 and S1 and S2 denote the two pure strategies
in species 2. For convenience, the individuals of
species 1 and species 2 can be called the R-strategists
and S-strategists, respectively. From Maynard
Smith’s (1982) definition for the symmetric and
asymmetric contests, we know that the pay-off
matrices of the symmetric contests between a pair of
R-strategists and between a pair of S-strategists are
given by A=[aij ]i,j=1,2 and D=[dij ]i,j=1,2, respectively,
where aij is the pay-off value of the Ri-strategist when
the Ri-strategist plays against the Rj-strategist for all
i, j=1, 2, and dij is the pay-off value of the
Si-strategist when the Si-strategist plays against the
Sj-strategist for all i, j=1, 2. The pay-off matrices of
the asymmetric pairwise contests between R-strate-
gists and S-strategists are given by B=[bij ]i,j=1,2 and
C=[cij ]i,j=1,2, respectively, where bij is the pay-off
value of the Ri-strategist when the Ri-strategist plays
against the Sj-strategist for all i, j=1, 2, and cij is the
pay-off value of the Si-strategist when the Si-strategist
plays against the Rj-strategist for all i, j=1, 2
(Cressman, 1996).

In order to obtain the necessary and sufficient
conditions for the two-species ESS developed by
Cressman (1996), we first establish the two-species
haploid model. In this model, species 1 and species 2
are assumed to be haploid populations. Let x(t) and
1− x(t) be the frequencies of the pure strategies R1

and R2 in species 1 at time t, and y(t) and 1− y(t) be

the frequencies of the pure strategies S1 and S2 in
species 2 at time t. Let 8i [x(t), y(t)] and ci [x(t), y(t)]
be the expected pay-off values of the pure strategies
Ri and Si at time t for all i, j=1, 2. Then from the
basic assumptions, we must have

8i [x(t), y(t)]= 4x(t)ai1 + [1− x(t)]ai2

+ y(t)bi1 + [1− y(t)]bi25/2,

ci [x(t), y(t)]= 4x(t)ci1 + [1− x(t)]ci2 +

y(t)di1 + [1− y(t)]di25/2. (1)

Thus the average pay-off values of species 1 and
species 2 at time t are given by

8̄(t)= x(t)81[x(t), y(t)]+ [1− x(t)]82[x(t), y(t)],

c̄(t)= y(t)c1[x(t), y(t)]+ [1− y(t)]c2[x(t), y(t)]. (2)

From eqn (1) and eqn (2), the evolutionary
dynamics of the frequency of the pure strategy R1 in
species 1 and the frequency of the pure strategy S1

inspecies 2 can be written as

dx
dt

= x[81(x, y)− 8̄]

= x(1− x)[81(x, y)−82(x, y)]

= x(1− x)(a11x+ a12y− b1)

dy
dt

= y[c1(x, y)− c̄]

= y(1− y)[c1(x, y)−c2(x, y)]

= y(1− y)(a21x+ a22y− b2), (3)

where

a11 = (a11 − a12 − a21 + a22)/2

a12 = (b11 − b12 − b21 + b22)/2

a21 = (c11 − c12 − c21 + c22)/2

a22 = (d11 − d12 − d21 + d22)/2

b1 = [(a22 − a12)+ (b22 − b12)]/2

b2 = [(c22 − c12)+ d22 − d12)]/2

(Hofbauer & Sigmund, 1988; Cressman, 1992).
Equation (3) is the standard frequency-dependent
model based on pay-off differences. In Section 3, it
will be used to determine the conditions of the
two-species ESS.

For the two-species diploid model, we need to
assume that species 1 and species 2 are diploid
populations, and that mating is completely random in
both populations. A further assumption is that
selection is only viability selection in this diploid
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model (Lessard, 1984). Let the phenotypes of
individuals in species 1 be determined by an
autosomal locus with alleles A1 and A2. In species 1,
the phenotype of individuals with genotype AiAj is
given by (Pij , 1−Pij ), where Pij is the probability of
using pure strategy R1 and 1−Pij is the complemen-
tary probability of using pure strategy R2 for all
i, j=1, 2. Similarly, let the phenotypes of individuals
in species 2 be determined by an autosomal locus with
alleles B1 and B2. In species 2, the phenotype of
individuals with genotype BiBj is given by
(Qij , 1−Qij ), where Qij is the probability of using
pure strategy S1 and 1−Qij is the complementary
probability of using pure strategy S2 for all i, j=1, 2
(Lessard, 1984).

Let p(t) and 1− p(t) be the frequencies of alleles A1

and A2 in species 1 at time t, respectively, and q(t) and
1− q(t) be the frequencies of alleles B1 and B2 in
species 2 at time t, respectively. Since the mating is
completely random in both populations, which means
that the population is approximately at any time in
Hardy–Weinberg equilibrium (Hofbauer & Sigmund,
1988), the frequencies of genotypes A1A1, A1A2 and
A2A2 in species 1 at time t are given by p(t)2,
2p(t)[1− p(t)] and [1− p(t)]2, respectively, and the
frequencies of genotypes B1B1, B1B2 and B2B2 in
species 2 at time t are given by q(t)2, 2q(t)[1− q(t)]
and [1− q(t)]2, respectively. It is necessary to point
out that the assumption of Hardy–Weinberg equi-
librium is reasonable under weak selection (Crow &
Kimura, 1970). Thus the relationships between the
frequency of allele A1 and the frequency of pure
strategy R1, and between the frequency of allele B1

and the frequency of pure strategy S1 at any time t can
be written as

x(t)= p(t)2P11 +2p(t)[1− p(t)]P12 + [1− p(t)]2P22

y(t)= q(t)2Q11 +2q(t)[1− q(t)]Q12 + [1− q(t)]2Q22.

(4)

Let fAiAj (t) and FBiBj (t) be the fitnesses of genotypes
AiAj and BiBj for all i, j=1, 2 at time t. Then from
eqn (1), we have

fAiAj (t)=Pij81[x(t), y(t)]+ (1−Pij )82[x(t), y(t)]

FBiBj (t)=Qijc1[x(t), y(t)+ (1−Qij )c2[x(t), y(t)

for all i, j=1, 2. (5)

In the two-species diploid model, let f� (t) and F� (t) be
the mean finesses of species 1 and species 2 at any time
t, then from eqn (2), we must have f� (t)= 8̄(t) and
F� (t)= c̄(t).

From the continuous selection model (Hofbauer &
Sigmund, 1988, p. 225), we know that the evolution-
ary dynamics of the gene frequencies in both
populations can be written as

dp
dt

= p( fA1 − f� )= p(1− p)( fA1 − fA2)

dq
dt

= q(FB1 −F� )= q(1− q)(FB1 −FB2), (6)

where for all i=1, 2

fAi = pfAiA1 + (1− p)fAiA2

= [pPi1 + (1− p)Pi2]81(x, y)

+ 41− [pPi1 + (1− p)Pi2]582(x, y)

FBi = qFBiB1 + (1− q)FBiB2

= [qQi1 + (1− q)Qi2]c1(x, y

+ 41− [qQi1 + (1− q)Qi2]5c2(x, y). (7)

Let mAi = pPi1 + (1− p)Pi2 and nBi = qQi1 + (1− q)Qi2

for all i=1, 2 (Lessard, 1984), then from eqn (3),
eqn(6) can be rewritten as

dp
dt

= p(1− p)(mA1 − mA2)(a11x+ a12y− b1)

dq
dt

= q(1− q)(nB1 − nB2)(a21x+ a22y− b2). (8)

Equation (8) is a two-phenotype, two-allele, single-
lcus, two-species diploid model

3. The Necessary and Sufficient Conditions for
the Two-Species ESS

3.1.       

    -,
-  

Let (x*, y*) be the interior positive equilibri-
umpoint of eqn (3), then we must have

x*=
b1a22 − b2a12

a11a22 − a12a21
$ (0, 1)

y*=
b2a11 − b1a21

a11a22 − a12a21
$ (0, 1). (9)

It is easy to obtain the Jacobian matrix of eqn (3)
at (x*, y*), which is

J=$x*(1− x*)a11 x*(1− x*)a12

y*(1− y*)a21 y*(1− y*)a22%.
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From the theory of differential equation, we
know that (x*, y*) is locally asymptotically stable if
and only if a11a22 − a12a21 q 0 and x*(1− x*)a11 +
y*(1− y*)a22 Q 0.

3.2.     - 

In this section, the conditions for (x*, y*) to be a
two-species ESS only are discussed. Since (x*, y*) is
a unique interior equilibrium point of eqn (3),
according to Cressman’s (1996) definition, we know
that (x*, y*) is a two-species ESS if, for all

(x, y)$ (x*, y*) (where x $ (0, 1) and y $ (0, 1),

x*81(x, y)+ (1− x*)82(x, y)

q x81(x, y,+ (1− x)82(x, y)

or

y*c1(x, y)+ (1− y*)c2(x, y)

q yc1(x, y,+ (1− y)c2(x, y). (10)

Let

F(x, y)= (x*− x)(a11x+ a12y− b1)
and

C(x, y)= (y*− y)(a21x+ a22y− b2),

then we have

$F(x, y)
C(x, y)%=[x− x* y− y*]·$a11 a12

a21 a22%$x*−x
y*− y%.

(11)

Inequality (10) is equivalent to F(x, y)q 0 or
C(x, y)q 0 for all (x, y)$ (x*, y*). From Hofbauer
& Sigmund (1988, p. 201), we know that F(x, y) or
C(x, y) is positive for all (x, y)$ (x*, y*) if and only
if −[aij ]i,j=1,2 is a P-matrix. Thus the necessary and
sufficient conditions for (x*, y*) to be a two-species
ESS are:

(i) a11 Q 0 and a22 Q 0;
(ii) a11a22 − a12a21 q 0.

It is necessary to point out that a11 Q 0 and a22 Q 0
are the single-species ESS conditions, respectively
(Cressman, 1996). This means that if (x*, y*) is a
two-species ESS, then when y is fixed at y*, we must
have F(x, y*)=−a11(x*− x)2 q 0 for all x$ x*,
and similarly, when x is fixed at x*, we also must have
C(x*, y)=−a22(y*− y)2 q 0 for all y$ y*.

On the other hand, from the discussion in Section
3.1, if (x*, y*) is a two-species ESS, then it must be
locally asymptotically stable in eqn (3). The more
general results for the stability of the two-species ESS
can be found in Cressman (1996).

4. The Analysis of the Two-Species Diploid Model

In this section, the local stability of all possible
interior positive equilibrium points of the two-species
diploid model are discussed. It is easy to note that in
eqn (8), three possible types of interior positive
equilibrium points can exist:

(i) if (x*, y*) satisfies eqn (9), then (x*, y*) can be
called the phenotypic equilibrium point (Lessard, 1984;
Hofbauer & Sigmund, 1988; Cressman, 1992);

(ii) if (px , qx ) satisfies mA1 − mA2 =0 and nB1 − nB2 =0,
and px $ (0, 1) and qx $ (0, 1), then (px , qx ) can be called
the genetic equilibrium point (Lessard, 1984; Hofbauer
& Sigmund, 1988; Cressman, 1992);

(iii) for px $ (0, 1) that satisfies mA1 − mA2 =0, if there
exists yx that satisfies

yx =
b2 − a21x(px )

a22
$ (0, 1), (12)

where x(px )= px 2P11 +2px (1− px )P12 + (1− px )2P22, then
(px , yx ) must be the interior positive equilibrium point
of eqn (8). Similarly, for qx $ (0, 1) that satisfies
nB1 − nB2 =0, if there exists xx that satisfies

xx =
b1 − a12y(qx )

a11
$ (0, 1), (13)

where y(qx )= qx 2Q11 +2qx (1− qx )Q12 + (1− qx )2Q22,
then (xx , qx ) also must be the interior positive
equilibrium point of eqn (8). At (px , yx ), or (xx , qx ), one
species is at the phenotypic equilibrium, but the other
one is at the genetic equilibrium. For convenience,
(px , yx ), or (xx , qx ), are defined to be the PG equilibrium
point of eqn (8).

4.1.      



The Jacobian matrix of eqn (8) at (x*, y*) is given
by

J=$J11 J12

J21 J22%,
where

J11 =2p(1− p)(mA1 − mA2)
2a11=(x*, y*)

J12 =2p(1− p)(mA1 − mA2)(nB1 − nB2)a12=(x*, y*)

J21 =2q(1− q)(mA1 − mA2)(nB1 − nB2)a21\ (x*, y*)

J22 =2q(1− q)(nB1 − nB2)
2a22 \ (x*, y*).

Obviously, (x*, y*) is locally asymptotically stable if
and only if

a11a22 − a12a21 q 0

[p(1− p)(mA1 − mA2)
2a11

+ q(1− q)(nB1 − nB2)
2a22] v(x*, y*) Q 0. (14)
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From Section 3, we obtain that if the phenotypic
equilibrium point (x*, y*), of eqn (8) is a two-species
ESS, then it must be locally asymptotically stable.

Inequality (14) shows that other phenotypic
equilibria can be asymptotically stable in eqn (8), but
we also have to note that any non-ESS phenotypic
equilibrium will be unstable for some single-
species diploid models (Maynard Smith, 1982;
Lessard, 1984;Hofbauer & Sigmund, 1988; Cressman,
1992).

4.2.      



Since we have 1(dp/dt)/1q=0 and 1(dq/dt)/1p=0
at (px , qx ), the eigenvalues of the Jacobian matrix of
eqn(8) at (px , qx ) can be given by

l1=px (1−px )(P11−2P12 +P22)[a11x(px )+ a12y(qx )− b1]

=−px (1− px )42fA1A2[x(px ), y(qx )]

− fA1A1[x(px ), y(qx )]− fA2A2[x(px ), y(qx )]5

l2 = qx (1−qx )(Q11−2Q12+Q22)[a21x(px )+a22y(qx )−b2]

= − qx (1− qx )42FB1B2[x(px ), y(qx )]

−FB1B1[x(px ), y(qx )−FB2B2[x(px ), y(qx )]5. (15)

Equation (15) shows that:
(i) at (px , qx ), if there are heterozygote advantages in

both species, then (px , qx ) must be locally asymptoti-
cally stable;

(ii) at (px , qx ), if only one species has heterozygote
advantage, but the other one has not, then (px , qx ) is an
unstable saddle point;

(iii) at (px , qx ), if there are not heterozygote
advantages in both species, then (px , qx ) must be
completely unstable.

4.3.       



Since the PG equilibrium points (px , yx ) and (xx , qx )
have identical properties on the stability, here we only
need to discuss the local stability of (px , yx ).

At (px , yx ), we still have 1(dp/dt)/1q=0 and
1(dq/dt)/1p=0. Thus the eigenvalues of the
Jacobian matrix of eqn (8) at (px , yx ) can be given by

l1 = p(1− p)(P11 −2P12 +P22)(a11x+ a12y− b1)v(px ,yx )

=−p(1−p)[2fA1A2(x,y)−fA1A1(x, y)−fA2A2(x, y)]v(px ,yx )

l2 =2q(1− q)(nB1 − nB2)
2a22 v(px ,yx ). (16)

Equation (16) shows that:
(i) if the genetic equilibrium corresponds to

heterozygote advantages and the phenotypic equi-
librium is a single-species ESS (Cressman, 1996), then
the PG equilibrium point must be locally asymptoti-
cally stable;

(ii) if the genetic equilibrium corresponds to
heterozygote advantages, but the phenotypic equi-
librium is not a single-species ESS, or if the
phenotypic equilibrium is a single-species ESS, but
the genetic equilibrium does not correspond to
heterozygote advantages, then the PG equilibrium
point is an unstable saddle point;

(iii) if the genetic equilibrium does not correspond
to heterozygote advantage and the phenotypic
equilibrium is not a single-species ESS, then the PG
equilibrium point must be completely unstable.

Summarizing the results of Sections 4.1, 4.2 and
4.3, we can note that the results of Sections 4.1 and
4.2 are very similar to Lessard’s (1984) results in the
single-species two-phenotype model [see also Hof-
bauer & Sigmund (1988) and Cressman (1992)]. The
result of Section 4.3 should be considered to be a
new result since the PG equilibrium points defined
by the author only exist in the two-species diploid
model.

5. Conclusion

Cressman (1996) first developed the two-species
matrix games model. This model should be con-
sidered to be a basic theoretical framework for the
coevolution of the multi-interacting species. The
concept of the two-species ESS developed by
Cressman (1996) is very important for understanding
the evolution of the interspecific relationship. In this
paper, Cressman’s (1996) two-species haploid model
has been extended to the diploid model. A simple
two-phenotype, two-allele, single-locus, two-species
diploid model has been investigated. In this model, it
has been assumed that the two interacting popu-
lations are Mendelian populations. In Section 3, the
necessary and sufficient conditions have been given
for a two-species ESS in the two-phenotype,
two-species haploid model, which are a11 Q 0, a22 Q 0
and a11a22 − a12a21 q 0. In Section 4, the local stability
of the interior positive equilibrium point of the
two-species diploid model has been analysed. The
results show that:

(i) in the two-species diploid model, three
possible types of interior positive equilibrium points
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can exist. These are phenotypic equilibrium points,
genetic equilibrium points and PG equilibrium
points;

(ii) at a phenotypic equilibrium point, if the
phenotypic equilibrium point is a two-species
ESS, then it must be locally asymptotically
stable;

(iii) at a genetic equilibrium point, if there are
heterozygote advantages in both species, then the
genetic equilibrium point must be locally asymptoti-
cally stable;

(iv) at a PG equilibrium point, one species
exhibiting phenotypic equilibrium and the other
one genetic equilibrium, if the genetic equilibrium
corresponds to heterozygote advantage and
the phenotypic equilibrium is a single-species
ESS (Cressman, 1996), then the PG equilibrium
point must be locally asymptotically stable.
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