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Abstract. The paper investigates the discrete frequency dynamics of
two phenotype diploid models where genotypic "tness is an exponen-
tial function of the expected payo! in the matrix game. Phenotypic and
genotypic equilibria are de"ned and their stability compared to fre-
quency-dependent selection models based on linear "tness when there
are two possible phenotypes in the population. In particular, it is
shown that stable equilibria of both types can exist in the same
nonlinear model. It is also shown that period-doubling bifurcations
emerge when there is su$cient selection in favor of interactions be-
tween di!erent phenotypes.
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1. Introduction

The matrix game model is one of the most important theoretical
models in evolutionary game theory. As pointed out by Lessard (1984),
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theoretical population biology models based on random pairwise
interactions are an important source of ideas and principles that
provide basic insights into intraspeci"c selection. The standard matrix
game model always operates on the phenotypic level. This implies an
assumption of parthenogenetic inheritance (Maynard Smith, 1982).
However, most populations of interest have sexual diploid inheritance.
Maynard Smith (1982) pointed out that if the phenotype (pure or
mixed strategy) produced by a genetic homozygote is an evolutionarily
stable strategy (ESS), then a sexual population with that genotype will
be stable against invasion by any mutant allele.

If the ESS cannot be produced by a genetic homozygote, Maynard
Smith also analyzed whether a genetically polymorphic population
with two alleles can generate the ESS proportions, and if so whether
such a population will be stable. This matrix game diploid model, but
with multi-alleles, has been investigated by many authors (Maynard
Smith, 1981, 1982; Eshel, 1982; Hofbauer et al., 1982; Hines and
Bishop, 1984a,b; Lessard, 1984; Cressman and Hines, 1984; Hofbauer
& Sigmund, 1988; Cressman, 1988ab, 1992; Gayley and Michod, 1990;
Hines, 1994a,b; Cressman et al., 1996). In particular, Lessard (1984)
analyzed a discrete time multi-allele, single-locus, two-phenotype di-
ploid viability selection model. In this model, the individual "tness is
assumed to be a linear function of phenotype frequency and can be
identi"ed with the expected payo! in a standard matrix game. Lessard
de"ned the concepts of phenotypic and genotypic equilibria:
phenotypic equilibria are characterized by equal phenotypic "tnesses
and genotypic equilibria arise from constraints inherent in the underly-
ing genetic system that are analogous to standard viability schemes
(see De"nition 1). Lessard's results (see also Cressman, 1992) show that:

(I) the mean strategy of the population evolves monotonically to
equilibrium;

(II) a phenotypic equilibrium is (locally) stable if and only if it is an
ESS of the matrix game;

(III) a genotypic equilibrium is stable if and only if its expected payo!
is higher than all nearby average population payo!s (in particu-
lar, it must correspond to a (local) extremum of the mean strategy
that is closer to the ESS than all nearby population mean strat-
egies).

Vincent and Fisher (1988) and Tao et al. (1997) also investigated
a discrete time evolutionary game model (but for a haploid species).
They suggested that the individual "tness should be an exponential
function of population density and of strategy frequency in order
guarantee that the "tness is non-negative.
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In this paper, we investigate the frequency dynamics of two discrete
time two-phenotype diploid models where genotypic "tness is given
through exponential functions of expected payo!. These two models,
introduced in Sect. 2, are the pure-strategy model and the mixed-
strategy model. They di!er only in the interpretation of the strategy
used by an individual with a given genotype. The paper compares the
resultant dynamics of these two models with each other and with
existing results for linear "tness models when the population has two
possible phenotypes. Of particular interest is the relationship between
the ESS analysis of the matrix game and the dynamic stability of
equilibria for our frequency dynamic. However, complex dynamic
behavior away from equilibrium is also exhibited through an applica-
tion of the theory of discrete time nonlinear maps to our models.

It is shown in Theorem 1 that a stable phenotypic equilibrium must
still be an ESS just as in Lessard's model (one direction of result II
above). However, the evolution of the mean strategy need not be
monotone. Furthermore, an ESS equilibrium that includes a mixture
of both phenotypes can be unstable. This is especially true if selection
pressure is su$ciently large (Theorem 1b) in which case period doubl-
ing bifurcations and chaos emerge (Example 1). The stability criterion
of monomorphic genotypic equilibria (i.e., those with only one allele
present) is given in Theorem 2a and is again the same as in Lessard's
model (result III above). It is the existence and stability of polymorphic
genotypic equilibria where the contrasts among the models is the most
pronounced as discussed in Sect. 4 (see Theorem 3 and Example 3).
However, by Theorem 2b, these can only occur when there is over or
under dominance.1 In such a case, Example 3 shows stable polymor-
phic genotypic equilibria can coexist with stable interior phenotypic
equilibria for the mixed strategy model.

2. Population dynamics, 5tness and payo4

Consider an in"nite diploid population with nonoverlapping discrete
generations in which an individual's "tness is its viability (i.e., probabil-
ity of survival to reproductive age) and this is determined at a single
autosomal locus with two possible alleles, A

1
and A

2
. Let F

AiAj
be the

average viability of individuals with genotype A
i
A

j
. When we assume

random mating, Mendelian segregation, sex-independent viabilities,

*****

1Example 2 shows a case where there is an additive e!ect between the alleles and the
dynamics resemble the haploid model of Tao et al. (1997).
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equal fecundity and sex ratio of o!spring, then

p@"p[pF
A1A1

#(1!p)F
A1A2

]/FM . (1)

Here, p and p@ are the the frequencies of allele A
1

in the current
generation and in the next generation respectively, and

FM "p2F
A1A1

#2p(1!p)F
A1A2

#(1!p)2F
A2A2

is the mean ,tness of the current population. The discrete-time dynamic
(1) is used extensively in the biological literature for models of single-
locus, two-allele, frequency-independent natural selection (e.g., Fisher,
1930; Roughgarden, 1979) where the viability constants F

AiAj
are usu-

ally written as w
ij

and also for frequency-dependent models (see Gayley
and Michod (1990) and the references therein) where F

AiAj
are functions

of p.
In this paper, our focus is on the latter model, especially when

"tness is given through payo!s generated by random interactions
between pairs of individuals who are characterized by their strategy (or
behavior) that they use in these contests } the standard assumption
underlying the matrix-game model of evolutionary game theory. We
assume throughout that, in any given contest, an individual in the
population can use one of two possible behaviors which are called the
pure strategies R

1
and R

2
. If the payo! matrix is

C
a
11

a
12

a
21

a
22
D,

where a
kl

(k, l"1, 2) is the payo! of R
k
competing against R

l
, then the

expected payo!s to R
1

and R
2

in random contests are given by

u
1
"xa

11
#(1!x)a

12
and u

2
"xa

21
#(1!x)a

22
(2)

respectively, where x is the proportion of individuals using strategy
R

1
in the current population. We say x is the mean strategy of the

population.2
We analyze the dynamic (1) in two models developed later in this

section that di!er only in how mean strategies and payo!s are related
to allele frequencies and genotypic "tnesses respectively. We are parti-
cularly interested in the resultant equilibria of (1) and their stability
properties. Since there are only two-strategies, only two classes of
equilibria are possible; namely, the phenotypic and genotypic equilib-
ria introduced by Lessard (1984).

*****

2This is a slight abuse of terminology since the mean strategy is actually (x, 1!x)
where x is the proportion using R

1
and so 1!x is the proportion using R

2
.
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De5nition 1. A phenotypic equilibrium is a population where all pure
strategies in current use have equal expected payo+. A genotypic equilib-
rium3 is a non-phenotypic equilibrium where the e+ective ,tness of all
alleles present in the current population are equal. ¹he e!ective "tness of
allele A

i
is de,ned to be pF

A1Ai
#(1!p)F

AiA2
. ¹he e+ective ,tness, also

called the 00inclusive11 or 00marginal11 ,tness in population genetics (e.g.
Ewens (1979)) is closely connected to the concept of e+ective strategy
used later in our model.

If all individuals in the population use the same pure strategy (i.e.,
x"0 or 1), we are by de"nition at a phenotypic equilibrium called
a boundary phenotypic equilibrium. On the other hand, at an interior
phenotypic equilibrium with 0(x(1, individuals using R

1
receive the

same payo! as those using R
2

in each contest and this will translate
into F

A1A1
"F

A1A2
"F

A2A2
and so p"p@ in (1). Similarly, if p"0 or 1,

the population is monomorphic and so at a genotypic equilibrium by
default (unless all these homozygotes are using the same strategy and
this corresponds to a phenotypic equilibrium). Otherwise, in a poly-
morphic population (i.e., 0(p(1), a genotypic equilibrium satis"es
pF

A1A1
#(1!p)F

A1A2
"pF

A1A2
#(1!p)F

A2A2
and so p"p@ in (1). These

are the only circumstances in which the population is in equilibrium.
There are two ways to interpret individual strategies. The "rst is the

pure-strategy model in which each individual plays the same pure
strategy in all contests throughout its lifetime. However, not all indi-
viduals of a particular genotype need play the same pure strategy. We
assume a fraction u

ij
of individuals of genotype A

i
A

j
play pure strategy

R
1

and so 1!u
ij

play R
2
.4

One possibility is that each individual plays in one contest in its
lifetime. If payo!s translate directly into individual "tness, then
F
AiAj

equals the average payo! to all individuals of genotypye A
i
A

j
given by

u
ij
u

1
#(1!u

ij
)u

2
.

This model is commonly used in the continuous-time dynamic of
frequency-dependent natural selection (Hofbauer and Sigmund, 1988;
Cressman, 1992) where F

AiAj
is considered to be the rate of change of

the number of A
i
A

j
individuals in the population (and so can be

*****

3Throughout the paper, phenotypic equilibria are denoted by p* and genotypic
equilibria by p' .
4Of course, if u

ij
"0 or 1, then all A

i
A

j
individuals play the same pure strategy. We

assume u
11

, u
12

, u
22

are not all equal throughout the paper (otherwise, the dynamics
we consider all degenerate to p@"p for all p).
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negative). It is less appropriate for our discrete-time model unless the
payo!s a

kl
are all probabilities (or at least positive).

We feel a more realistic interpretation of payo!s in the discrete
model is that each individual engages in a large but "xed number of
random contests over its lifetime. The average payo! per contest is
then u

1
and u

2
respectively for individuals using pure strategy R

1
and

R
2

respectively and the individual "tnesses are taken to be
eu

1,expMu
1
N and eu

2 respectively. Such "tness functions5 have ap-
peared elsewhere in the literature on discrete population dynamics (e.g.
May, 1973; Vincent and Fisher, 1988) where they are interpreted as per
capita growth rates as well as on frequency-dependent selection (e.g.
Tao et al., 1997) where a background "tness parameter = is often
included (i.e., "tnesses are taken to be expM=#u

1
N and expM=#u

2
N

respectively). The parameter= has no e!ect on our frequency dynamic
(1) and so will be ignored hereafter. Thus

F
AiAj

"u
ij
eu

1#(1!u
ij
)eu

2. (3)

and the dynamic (1) becomes

p@"p
p (u

11
eu

1#(1!u
11

)er2)#(1!p)(u
12

eu
1#(1!u

12
)eu

2)
FM

,

"p
(pu

11
#(1!p)u

12
)#(p(1!u

11
)#(1!p)(1!u

12
)) exp Mu

2
!u

1
N

x#(1!x) exp Mu
2
!u

1
N

"p
x
A1
#(1!x

A1
) exp Mu

2
!u

1
N

x#(1!x) exp Mu
2
!u

1
N

(4)

where x
A1
"pu

11
#(1!p)u

12
is the e+ective strategy of allele A

1
(the

e!ective strategy of allele A
2

is x
A2
"pu

12
#(1!p)u

22
). Furthermore,

FM "xeu
1#(1!x)eu

2 since

x (p)"p2u
11
#2p (1!p)u

12
#(1!p)2u

22

"px
A1
#(1!p)x

A2

*****

5An alternative justi"cation of "tness functions of this form is to assume the payo!
from each contest gives the relative change in reproductive success (e.g., an individual
who receives a payo! of ln(10) produces 10 times as many o!spring as an individual
who receives payo! 0). These "tnesses then accumulate multiplicatively over the
n contests during an individual's lifetime to yield (3) where the payo! entries a

kl
are

adjusted by the factor n. It is interesting to note that this multiplicative e!ect is similar
to assumptions in discrete-time models of two-locus natural selection (Hofbauer and
Sigmund, 1988).
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Fig. 1. The mean strategy map for a Example 1 with u
11
"u

22
"0 and u

12
"1,

b Example 2 with u
11
"1, u

12
"1

2
and u

22
"0, c Example 3 with u

11
"1/2, u

12
"1

and u
22
"0.

is the population mean strategy here and for the following mixed-
strategy model.

The second interpretation of individual strategies is the mixed-
strategy model where all individuals of the same genotype play the
same, possibly mixed, strategy. A mixed strategy is speci"ed by its
probability u that pure strategy R

1
is played in any given contest and

so R
2

is played with probability 1!u. For example, A
i
A

j
individuals

who play the strategy speci"ed by u
ij
"1/2 can be visualized as tossing

a fair coin before each contest and then using the pure strategy that
corresponds to the outcome. The average payo! per contest during the
lifetime of each A

i
A

j
individual is now u

ij
u

1
#(1!u

ij
)u

2
and so

"tness is
F
AiAj

"expMu
ij
u

1
#(1!u

ij
)u

2
N (5)

for all i, j"1, 2. The frequency dynamic (1) can be rewritten as

p@"p
U

1
pU

1
#(1!p)U

2

, (6)

where
U

1
"(1!p)#p expM(u

12
!u

11
)(u

2
!u

1
)N

U
2
"p#(1!p) expM(u

12
!u

22
)(u

2
!u

1
)N.

Both (4) and (6) are examples of nonlinear frequency-dependent
selection mechanisms. The nonlinearities enter only through the multi-
plicative e!ect that accumulated individual payo! has on lifetime
"tness since we have maintained a linear dependence of payo! on strategy
frequency due to our assumption of random pairwise interactions. This
contrasts with the usual development of nonlinear frequency-
dependent selection in the literature where nonlinear payo!s are typi-
cally introduced through playing-the-"eld assumptions (Maynard

Nonlinear frequency-dependent selection 289



Smith, 1982; Gayley and Michod, 1990). In this literature, if the
respective lifetime payo!s to R

1
and R

2
are the general nonlinear

functions t
1

and t
2

of strategy frequency x, then the frequency
dynamic has always been based on the pure-strategy scenario. Thus,
the equilibrium structure and stability results in these references are
most closely related to those of (4) with eu

1 and eu
2 replaced by t

1
and

t
2

respectively.
The nonlinear "tness functions (3) and (5) respectively, on which (4)

and (6) respectively are based, di!er mathematically only in when the
convex combination corresponding to mixed strategies is taken into
account. In (3), convex combinations of "tnesses of the pure strategies
are taken whereas, in (5), convex combinations of the payo!s of pure
strategies are taken. We will see, especially in the Section 4, that this
seemingly minor di!erence in the interpretation of mixed strategies can
have a major impact on the equilibrium and stability structure of the
dynamic.6

3. Phenotypic equilibria and ESS:s

From De"nition 1, an interior phenotypic equilibrium occurs when
u
2
"u

1
in (2). Since

u
2
!u

1
"x (a

21
!a

11
)#(1!x)(a

22
!a

12
)

"(a
12
!a

22
#a

21
!a

11
)x!(a

12
!a

22
),

when c,a
12
!a

22
#a

21
!a

11
"0, either there is no interior

phenotypic equilibrium (when a
12
!a

22
O0) or else any population

with mean strategy 0(x(1 is an interior phenotypic equilibrium. To
avoid these degeneracies, we assume hereafter that cO0. Lessard
(1984) introduced the concept of heterogeneity advantage for the case
c'0 (since a

12
#a

21
'a

11
#a

22
) and homogeneity advantage other-

wise. Then, with f,(a
12
!a

22
)/c,

u
2
!u

1
"c (x!f). (7)

The above de"nitions of c and f are closely related to the evolutionarily
stable strategy (ESS) concept of Maynard Smith (1982) for the 2]2
payo! matrix [a

kl
]
k, l/1,2

.

*****

6When "tnesses are assumed to accumulate additively over an individual's lifetime
there is no di!erence in the frequency dynamic between the pure-strategy and the
mixed-strategy models. In particular, when payo!s depend linearly on frequency, we
obtain the standard matrix-game discrete dynamic of evolutionary game theory
(Maynard Smith, 1982; Cressman, 1992).
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To summarize, when 0(f(1, x*"f is an interior ESS if and
only if c'0; both x*"0 and x*"1 are boundary ESS's if and only if
c(0. Furthermore, if f60, then x*"0 is an ESS if and only if c'0;
x*"1 is an ESS if and only if c(0. Similarly, if f71, then x*"0 is
an ESS if and only if c(0; x*"1 is an ESS if and only if c'0. It is
also well-known that, in the standard two-strategy matrix-game
haploid dynamic of evolutionary game theory (with either the discrete-
or continuous-time dynamic), population mean strategy evolves
monotonically towards an equilibrium and an equilibrium is locally
asymptotically stable if and only if it is an ESS.7

We will investigate below how these properties of ESS's generalize
to the diploid dynamics (4) and (6). In particular, the following theorem
concerns the local asymptotic stability of phenotypic equilibria.
A population at an equilibrium p* is called (locally asymptotically)
stable if, for all initial states p su$ciently close to p*, all future states
under (1) remain close to p* and eventually converge to p*.

Theorem 1. Suppose p* is a phenotypic equilibrium corresponding to the
population mean strategy x*,x (p*).

(a) Suppose p* is a boundary phenotypic equilibrium (i.e. x*"0 or
x*"1). ¹hen p* is stable if and only if x* is a ESS.

(b) Suppose p* is an interior phenotypic equilibrium (i.e., 0(x*(1).
If x* is not an ESS, then p* unstable. If x* is an ESS, then there is some
critical level of heterogeneity advantage (i.e., some c

cr
'0) such that p* is

stable for 0(c(c
cr

and unstable when c'c
cr
.8

Proof. (a) Let us "rst consider a boundary phenotypic equilibrium.
Without loss of generality, assume x*"0. For this mean strategy to be
attainable, at least one of u

11
and u

22
is 0. Let us assume u

22
"0 and so

p*"0 is a phenotypic equilibrium. Since p@ depends continuously on
p in both (4) and (6),9 p* is stable if and only if p@(p whenever p is

*****

7These dynamic results follow from the equivalent characterization (Hofbauer and
Sigmund, 1988) of an ESS in matrix games as a strategy for which payo!s (and
therefore "tnesses) are strictly greater than the average population payo! when the
population mean strategy is su$ciently close (but not equal) to the ESS. It can be
shown that attainable ESS's in our model are strategies for which "tnesses given in
either (3) or (5) are strictly greater than the average population "tness when the
population mean strategy is su$ciently close (but not equal) to the ESS.
8 In degenerate cases, c

cr
may be in"nity in which case p* is then stable for all c'0

when x* is an ESS.
9This follows since FM in (1) is always positive using either (3) or (5).
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positive and su$ciently small.

p@(p

8pF
A1A1

#(1!p)F
A1A2

(p2F
A1A1

#2p (1!p)F
A1A2

#(1!p)2F
A2A2

8pF
A1A1

#(1!2p)F
A1A2

!(1!p)F
A2A2

(0

Thus p@(p for all positive p su$ciently small if and only if either

(i) F
A1A2

(p)(F
A2A2

(p) or
(ii) F

A1A2
(p)"F

A2A2
(p) and F

A1A1
(p)(F

A1A2
(p).

For the pure-strategy model, F
AiAj

"u
ij
eu

1#(1!u
ij
)eu

2. Since
u
22
"0,

(i) holds if and only if

u
12

(eu
1!eu

2)(0. (8)

Assume u
12
O0 (i.e. u

12
'0). From (2), (i) holds for positive p su$-

ciently small (i.e., positive x (p) su$ciently close to 0) if and only if
either a

12
(a

22
or both a

12
"a

22
and a

11
(a

12
. These are the exact

conditions for x*"0 to be an ESS. Furthermore, if u
12
"0, then

F
A1A2

(p)"F
A2A2

(p) and u
11
'0. In this case, (ii) holds if and only if

u
1
(u

2
. That is, if and only if x*"0 is an ESS. The calculations for

the mixed-strategy model are identical except that, from (5), (8) is
replaced with expMu

12
(u

1
!u

2
)N(1. Since p@ depends continuously

on p and we have discarded degenerate situations where all u
ij

are
identical or where c"0, no positive p su$ciently close to p*"0 is an
equilibium and so any p* that is not stable will be unstable.

(b) For the remainder of the proof, assume that p* is an interior
phenotypic equilibrium (i.e., 0(x*"f(1). If p*"0 or 1 (i.e.,
for monomorphic populations), an argument similar10 to the
above proof shows that p* is stable if and only if x* is an ESS (and
p* is unstable otherwise). Thus, we may assume 0(p*(1. From
the theory of one-dimensional discrete-time dynamical systems,
p* is stable if Ddp{

dp
D
p/p*D(1.11 For the pure-strategy model,

*****

10Speci"cally, if p*"0 and f"x*"u
22

, then (i) holds in the pure or mixed strategy
model if and only if (u

12
!u

22
)(u

1
!u

2
)(0 if and only if (u

12
!u

22
)(u

22
!x(p))c

(0. Since x(p) is on the same side of u
22

as u
12

for positive p su$cienty small, the
result follows.
11We could also use this technique at boundary phenotypic equilibria. For instance, if
x*"0 and p*"0, then dp{

dp
D
p/0

" u12`(1~u12%91Mc(u
22~f)N

u22`(1~u22)%91 Mc(u22~f)N is positive. Since u
22
"0, if

u
12
'0, then 0(dp{

dp
D
p/0

(1 if and only if cf(0 if and only if (8) holds. If fO0, this is
the condition for x*"0 to be an ESS. If f"0, we must consider case (ii) in the above
proof.
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from (4) and u
1
(x*)"u

2
(x*),

dp@
dp K

x/x*

"1!2p*(1!p*)[x
A1

(p*)!x
A2

(p*)]2c, (9)

since u
2
!u

1
"c (x!x*) and dx

dp
"2(x

A1
!x

A2
) . A similar calculation

using (6) yields the same derivative as (9) for the mixed-strategy model
at an interior phenotypic equilibrium.

Assume x
A1

(p*)9x
A2

(p*) for now. From (9), if c(0, then we
obviously have dp{

dp
D
x/x*'1. This means p* is unstable if x* is not an

ESS. On the other hand, if x* is an ESS (i.e., c'0), let

c
cr
"

1
p*(1!p*)[x

A1
(p*)!x

A2
(p*)]2

'0. (10)

For 0(c(c
cr
, we have Ddp{

dp
D
x/x*D(1 and so p* is stable. For c'c

cr
,

we have dp{
dp

D
x/x*(!1 and so p* is unstable. Thus an interior

phenotypic equilibrium corresponding to an ESS x* can be stable or
unstable depending on the level of heterogeneity advantage.12

For the remainder of the proof, assume x
A1

(p*)"x
A2

(p*) and
0(p*(1. The local stability of p* cannot be determined by (9). In
this case, (u

11
!u

12
)(u

22
!u

12
)'0. Thus, if pOp*, x

A1
#(1!x

A1
)

exp Mu
2
!u

1
N'x

A2
#(1!x

A2
) exp Mu

2
!u

1
N if and only if

c(x
A1
!x

A2
) (x!x*)(0. For the pure-strategy model, it is then easy

to show from (4) that

c (p!p@) (p!p*)'0 for all p9p*.

If c(0, then p* must be unstable since p@ is farther from p* than p. For
c'0, p@ is closer to p* than p and, from dp{

dp
D
p/p*"1, we know that

there exists an e'0 such that

p@(p* whenp3(p*!e, p*)

p@'p* whenp3(p*, p*#e).

Thus p* is stable if and only if c'0. A similar analysis involving (6) for
the mixed-strategy model shows c(p!p@) (p!p*) '0 for all p su$-
ciently close but not equal to p*. Thus, when x

A1
(p*)"x

A2
(p*), an

interior phenotypic equilibrium is stable for all c'0 and unstable for
c(0. K

*****

12 It is easy to demonstrate that when x"x* and c"c
cr
, the dynamic (1) satis"es the

theorem of period-doubling bifurcation (Schuster, 1988; Argyris et al., 1994). This
implies that more complex dynamical behavior is possible if c'c

cr
as discussed in

Example 1 below.
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The results of Theorem 1 on the local stability of phenotypic equilib-
ria combine with similar results on genotypic equilibria in Sect. 4 be-
low to give an overall understanding of general trajectories for the
dynamic (1). As illustrated by the following example, this is especially
true when the level of heterogeneity c is below the critical level of
Theorem 1b or when c(0. On the other hand, if c is large in this
example and there is an interior phenotypic equilibrium, complex
dynamic behavior emerges including period-doubling bifurcations and
chaos.

Example 1. ¸et u
11
"u

22
"0 and u

12
"1. Since (3) is identical to (5)

for all i and j, the pure-strategy model and the mixed-strategy model
coincide in this case.13 ¹he dynamic (1) can be rewritten as p@"dc(p)
where

dc(p),p
(1!p)#p expMc(x!f)N
x#(1!x) expMc(x!f)N

. (11)

Population mean strategy x"2p (1!p) is plotted as a function of p in
Fig. 1a from which it is clear that the set of attainable mean strategies is
Mx Dx3[0, 1

2
]N. Since dc(p) is an anti-symmetric map about p"1

2
in the

open interval (0, 1) (i.e. dc(1!p)"1!dc(p)) and dc(p)3 (0, 1
2
) if p3(0, 1

2
)

and dc(p)3 (1
2
, 1) if p3 (1

2
, 1), the trajectories in these two invariant subin-

tervals are mirror images of each other re-ected in the stationary traject-
ory corresponding to the equilibrium at p"1

2
(see Fig. 3 below).

Suppose f60 or f71/2. ¹hen all interior trajectories evolve mono-
tonically to an equilibrium. Speci,cally, if x*"0 is an ESS, then all
initial states on one side of p"1

2
evolve to the closest boundary

phenotypic equilibrium p*"0 or p*"1, both of which correspond to an
ESS. On the other hand, if x*"0 is not an ESS, all interior trajectories
evolve to p"1

2
which is a polymorphic genotypic equilibrium (unless

f"1
2
in which case p*"1

2
is an interior phenotypic equilibrium correspond-

ing to an ESS). In all these cases, the population evolves to an equilibrium as
close as possible to an ESS given the fact that the genetics constrains
population mean strategy to be in Mx Dx3[0, 1

2
]N. ¹his geometric intuition

is used by Maynard Smith (1982) and by Gayley and Michod (1990).
¹he most interesting situation is when 0(f(1

2
. ¹here are then two

interior phenotypic equilibria (as well as the two boundary phenotypic
equilibria and the genotypic equilibrium at p'"1

2
); namely,

p*
1,2

"

1
2
G

J1!2f
2

.

*****

13This coincidence of models occurs if and only if all individuals use pure strategies.
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Fig. 2. The bifurcation diagram for Example 1. Here f"0.32 with p*
1
"0.2 and

p*
2
"0.8 as the interior phenotypic equilibria. For c(c

cr
K17.4, all interior trajecto-

ries converge to one of the stable equilibria indicated in the diagram (i.e., p"0, 1
2
, 1 for

c(0 and p*
1,2

for 0(c(c
cr
). As c increases beyond c

cr
, there are "rst stable

trajectories of period two, then period four around cK22 until chaos occurs before
period three at cK28.

Fig. 3. The graphs of p@ versus p for a c"4 and b c"18 in Example 1. The dynamic
equilibria correspond to the points of intersection of these graphs with the line p@"p.
Clearly, p@3(0, 1

2
) if and only if p3(0, 1

2
) for both levels of heterogeneity. For c"4, each

trajectory evolves monotonically to equilibrium whereas there are stable cycles of
period two near p*

1
and p*

2
when c"18'c

cr
.

If c(0, then x*"0 is an ESS and so p*"0 and p*"1 are both stable
by ¹heorem 1a. Furthermore, p'"1

2
is stable and p*

1,2
are both unstable.

All nonstationary interior trajectories monotonically evolve towards one
of the three stable equilibria. ¹hese stability properties are indicated
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in Fig. 2 since this bifurcation diagram shows 0, 1
2
, 1 are the stable

equilibrium values of p when the parameter c is negative. For c'0,
we have c

cr
" 2

f (1~2f) from (10). Obviously, if c( 2
f (1~2f), then both

p*
1,2

are stable by ¹heorem 1b. In particular, p*
1

attracts any initial state
p3 (0, 1

2
) and p*

2
attracts any initial state p3(1

2
, 1). On the other hand,

if c' 2
f (1~2f), then both interior phenotypic equilibria are unstable. =e

only need to consider the dynamical properties of (11) in the open interval
(0, 1

2
). It is easy to prove that the function dc(p) is a one-dimensional map

with two critical points in the open interval (0, 1
2
) for all c' 2

f (1~2f) . ¹his
implies that the dynamical properties of (11) in (0, 1

2
) are similar to the

general one-dimensional cubic map (Schuster, 1988; Argyris et al., 1994).
In particular, a period doubling bifurcation14 occurs at c

cr
. Furthermore,

when c' 2
f (1~2f), the periodic and chaotic behaviours in the interval (0, 1

2
)

are all possible with increasing c as indicated clearly in the bifurcation
diagram of Fig. 2.

4. Genotypic equilibria

The polymorphic genotypic equilibria, 0(p'(1, for the pure-strategy
model are generally di!erent from those of the mixed-strategy model.
To see this, from (4), a polymorphic population is in equilibrium for the
pure-strategy model if and only if (x

A1
!x

A2
) (1!expMc(x!f)N)"0.

Thus, p' is a polymorphic genotypic equilibrium if and only if
x',x(p' )9f and x

A1
!x

A2
"0. This can be rewritten as

x (p' )9f and
p'

1!p'
"

u
12

!u
22

u
12

!u
11

. (12)

On the other hand, from (6), a polymorphic population is in equilib-
rium for the mixed-strategy model if and only if U

1
"U

2
. Thus, p' is

a polymorphic genotypic equilibrium for the mixed-strategy model if
and only if

x (p' )9f and
p'

1!p'
"

1!expMc(u
12
!u

22
)(x!f)N

1!expMc(u
12
!u

11
) (x!f)N

. (13)

Thus, p' is a polymorphic genotypic equilibrium for both the pure-
strategy model and the mixed-strategy model if and only if

*****

14These types of bifurcations are the only interesting ones for a one-dimensional
discrete dynamic. The fold bifurcation at c"0 is not interesting since the dynamics
evolve to equilibria for all nearby parameters c.
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u
11
"u

22
, p'"1

2
and x(p' )9f as in Example 1. Although polymorphic

genotypic equilibria are the most interesting, their stability properties
are the most di$cult to analyze, especially in the mixed-strategy model
as we will see in Sect. 4.2 below. For this reason, we will begin our
analysis with monomorphic genotypic equilibria (for both the pure and
mixed strategy model) in the following theorem.

Theorem 2. (a) Suppose p'"0 or p'"1 is a genotypic equilibrium (in
particular p' is not a phenotypic equilibrium). ¹he following statements
are equivalent.

(i) p' is stable.
(ii) ¹he strategy x (p' ) has a strictly higher expected payo+ than the

average population payo+ when the population mean strategy is x (p) for
all p su.ciently close but not equal to p' .

(iii) ¹he e+ective ,tness of the monomorphic allele at p' is greater than
that of the absent allele.

(b) If there is no over or under dominance15, then there are no
polymorphic genotypic equilibria.

Proof. (a) We will only prove the result when p'"0 is a genotypic
equilibrium since the case p'"1 is analogous. The proof follows the
same steps as that of Theorem 2b. For both the pure- and mixed-
strategy model, p'"0 is stable if and only if, for all positive p su$-
ciently small, either F

A1A2
(F

A2A2
or F

A1A2
"F

A2A2
and F

A1A1
(F

A1A2
.

From (4) and (6), this is equivalent to either (u
12
!u

22
) (u

1
!u

2
)(0

or (u
12

!u
22

) (u
1
!u

2
)"0 and (u

11
!u

12
)(u

1
!u

2
)(0. From (7),

note that u
1
9u

2
at a genotypic equilibrium. When the population

mean strategy is x(p) with u
1

and u
2

given by (2), the expected payo!
to x (p'"0)"u

22
minus the expected payo! to x (p) is

p (2!p)(u
22
!u

12
) (u

1
!u

2
)#p2(u

12
!u

11
) (u

1
!u

2
).

Since u
1
9u

2
for all p su$ciently close to p' , the equivalence of (i), (ii)

and (iii) is now straightforward.
(b) If there is no over or under dominance, then u

12
!u

22
and

u
12
!u

11
have opposite sign. Thus, from both (12) and (13), p(

1~p(
would

have to be negative at a polymorphic genotypic equilibrium which is
clearly impossible. K

*****

15That is, u
12

is a convex combination of u
11

and u
22

. In this case, the expected payo!
of the heterozygote is between that of the two homozygotes. This is called semi-
dominance in Cressman and Hines (1984) and incomplete dominance in Cressman
(1992).
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Statements (ii) and (iii) of Theorem 2 are related to the e!ect of
introducing a mutant allele into a system already at equilibrium as
discussed in Lessard (1984). In this paper, p'"0 can be interpreted as
meaning that A

1
is the mutant allele and then statements (ii) and (iii)

can be interpreted as saying the mutant allele cannot invade the
current system.

Example 2. ¸et u
11
"1, u

12
"1

2
and u

22
"0. By ¹heorem 2b, there are

no polymorphic genotypic equilibria. Since it is clear that both monomor-
phic populations are phenotypic equilbria, there are no genotypic equilib-
ria. Since u

12
is the average of u

11
and u

22
, the pure-strategy model is

closely related to the discrete haploid model of ¹ao et al. (1997) who also
considered ,tness functions of the form eu. Speci,cally, if we assume
individuals in the haploid species play one of the two possible pure
strategies, the haploid dynamic is p@

H
"p

H
eu

1/(p
H
eu

1#(1!p
H
)eu

2)
where p

H
is the frequency of the pure strategy R

1
in the haploid model

and so, for our diploid dynamic (4), *p,p@!p"1
2
*p

H
. In this

sense, the diploid dynamic evolves at half the rate of the corresponding
haploid dynamic.16 ¹he stability properties of equilibria of the two
dynamics are identical except the value of c

cr
'0 where bifurcations of an

interior phenotypic equilibrium commence is smaller for the haploid
model.
=e are more interested in comparing the long-run behavior for the

two diploid models. If f60 or f71, all interior trajectories of both
dynamics evolve monotonically to the unique boundary phenotypic equi-
librium that corresponds to an ESS. Similarly, if 0(f(1 and c(0,
both boundary phenotypic equilibria correspond to ESSs and evolution is
monotonic to one of these. =ith respect to the bifurcation diagram of
Fig. 4 when 0(f(1 and c'0, it is clear that both models have the
same value of c

cr
given by (10). Furthermore, it is apparent that chaotic

behavior and stable trajectories of period three emerge in this example for
the mixed-strategy model (at cK35) before similar behavior for the
pure-strategy model.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&c
Fig. 4. The bifurcation diagram for Example 2 for a the pure-strategy model and b the
mixed-strategy model. Here f"0.7 which has p*

1
"0.7 as the only interior phenotypic

equilibrium. There are no genotypic equilibria.

*****

16The exact relationship between these discrete dynamic trajectories is quite complex.
However, the corresponding continuous-time dynamic trajectories are identical up to
a factor of 2.
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Fig. 5. The graphs of p@ versus p for c"30 in Example 2 for a the pure-strategy model
and b the mixed-strategy model. Combined with the previous bifurcation diagram, we
see that trajectories in a evolve to a cycle of period two contained in the interval
p3[0.45, 0.8] whereas in b more complex dynamic behavior emerges in the interval
p3[0.3, 1].

4.1. Polymorphic genotypic equilibria for the pure-strategy model

By Theorem 2b, we can assume in this section (and in Sect. 4.2) that
u
12
'u

11
'u

22
.17 The other situations where there is over- or under-

dominance can be treated symmetrically.
From (12), if 0(p'(1, then p'" u12~u12

(u12~u11)`(u12~u12)
and so x (p' ) is

a global extremum of the map pPx (p) as in Example 1. In particular,
there is at most one polymorphic genotypic equilibrium. This property
of the pure-strategy model is identical with Lessard's (1984) model.

For the local stability of the genotypic equilibrium, we have

dp@
dp K

p/p(
"1#p'

(u
11
!u

12
) (1!expMc[x(p' )!f]N)

x(p' )#[1!x (p' )] expMc[x(p' )!f]N
. (14)

Straightforward calculations show that dp{
dp

D
p/p(

'!1. Thus, there are
no period doubling bifurcation near p' . Since u

12
'maxMu

11
, u

22
N,

dp{
dp

D
p/pL

(1 if and only if c(x'!f)(0 if and only if the e!ective "tness
of allele A

1
is less than that of allele A

2
if the frequency of allele A

1
is

greater than p' .
These results are included in Theorem 3 below. Furthermore,

Theorems 3 and 1 combine to show that if p* is an interior phenotypic
equilibrium, then the genotypic equilibrium p' (if one exists) is stable if
and only if x (p*) is not an ESS. In other words, for the pure-strategy
model, interior phenotypic equilibria corresponding to an ESS cannot

*****

17The case u
12
'u

11
"u

22
has already been discussed (see Example 1).
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coexist with stable polymorphic genotypic equilibria. In particular, by
Theorem 1b, it is not possible to have stable interior phenotypic
equilibria and stable polymorphic genotypic equilibria in the same
pure-strategy model. We will see in the following section that this latter
possibility does arise in the mixed-strategy model.

4.2. Polymorphic genotypic equilibria for the mixed-strategy model

Recall that we have assumed u
12
'u

11
'u

22
. Let z

1
,1~ecb(x~f)

1~eca(x~f) and
z
2
, p

1~p
where a,u

12
!u

11
and b,u

12
!u

22
satisfy b'a'0.

Although z
1

is not initially de"ned at x (p)"f, it can be continued
analytically there by setting this value to be b/a. From (13), the
condition for a polymorphic genotypic equilibrium18 p, can be rewrit-
ten as x(p)9f and

z
1
"z

2
. (15)

We are thus interested in those values of p where z
1

and z
2

intersect.
De"ne p

.!9
as the interior solution of dx/dp"0.19 Then x (p

.!9
) is

the maximum of x (p) and p
.!9

'1
2
. It is also true that p

.!9
is an extreme

point of z
1
(p) since dz1

dx
'0 for all x3(0, 1). There are no polymorphic

genotypic equilibria in p3 (0, 1
2
] since z

1
'z

2
for all such p and so we

only need to consider the possibility that eqn (15) has solutions in (1
2
, 1).

Let us start by assuming c'0. Then x (p
.!9

) is a maximum of z
1
(p).

If there are interior phenotypic equilibria20 (i.e., if u
22
6f(x (p

.!9
)),

let p*
1

and p*
2

be the two possible solutions of f"p2u
11
#2p(1!p)

12
#

(1!p)2u
22

, and p*
1
(p

.!9
(p*

2
. From the properties of the functions

z
1

and z
2
, eqn (15) must have exactly one solution in (p

.!9
, p*

2
) (if

f6u
11

, then this solution must be in (p
.!9

, 1)). Furthermore, if p*
1
61

2
(i.e. f6x (1

2
)), then this solution must be the only polymorphic

genotypic equilibrium. On the other hand, if p*
1
'1

2
(i.e. f'x (1

2
)), there

must also exist solutions of eqn (15) in (1
2
, p*

1
) when c is su$ciently

large.21

*****

18Note that we often denote a polymorhic genotypic equilibria as p in this section as
opposed to our more usual notation p' .
19 p

.!9
is the polymorphic genotypic equilibrium of the pure-strategy model which,

since u
11
9u

22
, is not a polymorphic genotypic equilibrium of the mixed-strategy

model.
20 In the special case f"x(p

.!9
), although p

.!9
is a solution of eqn (15), according to

De"nition 1, p
.!9

is the interior phenotypic equilibrium and so there is no polymorphic
genotypic equilibrium p'p

.!9
. On the other hand, from the above discussions, when

c is su$ciently large, there must exist solutions of eqn (15) in (1
2
, p

.!9
).

21This follows from z
1
(1
2
)'z

2
(1
2
), lim

p?p*
1
z
1
'z

2
(p*

1
), Lz1Lc(0, and limc?=

z
1
"1 for all

p3(1
2
, p*

1
).
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Now suppose there are no interior phenotypic equilibria. When
f'x (p

.!9
), there must exist solutions of eqn (15) in (1

2
, p

.!9
) since

c'0, z
1
(1
2
) 'z

2
(1
2
) and z

1
(z

2
for all p3[p

.!9
, 1]. When f6u

22
,

eqn (15) has only one solution and it must be in (p
.!9

, 1) since c'0,
z
1
'z

2
for all p3[1

2
, p

.!9
], z

1
(1)(lim

p?1
z
2
, dz1
dp
(0 and dz2

dp
'0 for all

p3 (p
.!9

, 1).
To summarize, when c'0, there is at most one polymorphic

genotypic equilibrium in (p
.!9

, 1) and this occurs if and only if
f(x (p

.!9
). In addition, there may be other polymorphic genotypic

equilibria which must all occur in (1
2
, p

.!9
). When f'x (p

.!9
), exactly

one such equilibrium is guaranteed to occur. When f6x (1
2
), none

occur. Finally, when x (1
2
)(f(x(p

.!9
), there are no such equilibria for

low levels of heterogeneity advantage but one or more22 when c be-
comes su$ciently large. For the sake of completeness, let us note that
the description of polymorphic genotypic equilibria when c(0 is
analogous to this summary except the roles of the intervals (p

.!9
, 1)

and (1
2
, p

.!9
) are interchanged.

The stability of a polymorphic genotypic equilibrium p is given by
the following theorem. In particular, part (a) asserts that no period
doubling bifurcations occur at p.

Theorem 3. Suppose p' is a polymorphic genotypic equilibrium of the
pure-strategy model or of the mixed-strategy model. ¹hen

(a) dp{
dp

D
p/p(

'!1.
(b) p' is stable23 if and only if the e+ective ,tness of allele A

1
is less

than that of allele A
2

if the frequency of A
1

is slightly higher than at
equilibrium.

Proof. The proof for the pure-strategy model is given in Sect. 4.1.
Assume p' is a polymorphic genotypic equilibrium of the mixed-strat-
egy model.

(a) From (6) and (7), with a,u
12
!u

11
and b,u

12
!u

22
, we have

dp@
dp

"1#
p (1!p)

U
1

A
dU

1
dp

!

dU
2

dp B (16)

dU
1

dp
"!1#eca(x~f)#peca(x~f) ca

dx
dp

dU
2

dp
"1!ecb(x~f)#(1!p)ecb(x~f)cb

dx
dp

.

*****

22 In fact, it can be shown analytically by the same method used in Example 3 that
there are exactly two when c becomes su$ciently large.
23We ignore the degenerate case dp{

dp
D
p/pL

"1 here since this is a fold bifurcation.
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Since

dU
1

dp
!

dU
2

dp
"!2#eca(x~f)#ecb(x~f)

#c
dx
dp

[paeca(x~f)!(1!p)becb(x~f)],
dp@
dp

'!1

if and only if p (1!p)(dU1

dp
!dU2

dp
)'!2U

1
if and only if

0(2(1!p)2#p(3!p)eca(x~f)#p(1!p)ecb(x~f)

#cp (1!p)
dx
dp

[paeca(x~f)!(1!p)becb(x~f)].

Since z
1
"z

2
at p,

paeca(x~f)!(1!p)becb(x~f)

"(1!p)aeca(x~f)C
p

1!p
!

becb(x~f)
aeca(x~f) D

"(1!p)aeca(x~f)C
1!ecb(x~f)
1!eca(x~f)

!

becb(x~f)
aeca(x~f)D.

Since for all x9f, we have

(b!a)ec(a`b)(x~f)!becb(x~f)#aeca(x~f)'0,

1~ecb(x~f)

1~eca(x~f)!becb(x~f)

aeca(x~f)(0 and c (x!f) '0 have opposite sign. Thus, at any
polymorphic genotypic equilibria, we have

c
dx
dp

[paeca(x~f)!(1!p)becb(x~f)]'0.

and so dp{
dp

D
p/pL

'!1.
(b) By part (a), and (16), Ddp{

dp
D
p/pL

D(1 if and only if dU1

dp
!dU2

dp
(0. The

result follows from the fact U
1
(U

2
if and only if the e!ective "tness of

allele A
1

is less than that of allele A
2
. It is interesting to note that any

p' 3 (p
.!9

, 1) is unstable if c'0 and that any p' 3 (1
2
, p

.!9
) is stable if

c(0. K

Example 3. ¸et u
11
"1

2
, u

12
"1 and u

22
"0. ¹hen

x"
1
2

p2#2p (1!p) and
dx
dp

"0 when p"
2
3

.
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For interior phenotypic equilibria, we solve f"1
2
p2#2p(1!p) for p.

¹hus, p*
1,2

"2GJ4!6f

3
whenever these solutions are frequencies between

0 and 1. It is straightforward to classify the following cases.

(1) p*
1
3(0, 2

3
) if and only if f3 (0, 2

3
).

(2) p*
2
3 (2

3
, 1) if and only if f3(1

2
, 2
3
).

(3) p*
1
"p*

2
"2

3
if and only if f"2

3
.

(4) If fN(0, 2
3
), then there are no interior phenotypic equilibria.

Finally, from ¹heorem 1b, when interior phenotypic equilibria exist, there
is a c

cr
'0 such that the interior phenotypic equilibria are stable if and

only if 0(c(c
cr
.

For the pure-strategy model, there is a polymorphic genotypic equilib-
rium at p'"2

3
except in the degenerate case that f"2

3
. From Sect. 4.1,

p'"2
3

is stable if and only if c(2
3
!f)(0 since x (p' )"2

3
.

Fig. 6. The bifurcation diagram for Example 3 when 150(c(900 for the mixed-
strategy model with fK0.66. For certain values of c (say 200(c(420), stable
interior phenotypic equilibria coexist with a stable polymorphic genotypic equilib-
rium. As c increases further, the complex dynamic behavior near the interior
phenotypic equilibria disappears (at cK640 for p*

1
and cK770 for p*

2
) and almost all

interior trajectories approach p'
3
K0.5.
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¹he mixed-strategy model has the same phenotypic equilibria and
stability properties. ¹he di+erence is in the polymorphic genotypic equi-
libria. From above, p

.!9
"2

3
and x (p

.!9
)"2

3
. ¸et us assume c'0.

If f3(0, 2
3
), then there is one polymorphic genotypic equilibrium

satisfying p'
1
'2

3
which must be unstable since (U

1
(p)!U

2
(p))c(p!p'

1
)

70 for all p3(2
3
, p*

2
) with equality only at p"p'

1
. ¹his is the only

Fig. 7a, b. The graph of p@ versus p for c"300 in the mixed-strategy model of
Example 3. The two interior phenotypic equilibria p*

1
and p*

2
and the three polymor-

phic genotypic equilibria p'
1
, p'

2
, p'

3
are ordered 1

2
(p'

3
(p'

2
(p*

1
(2

3
(p'

1
(p*

2
(1.

Both p*
1

and p*
2

are stable but have small basins of attraction. On the other hand, the
other stable equilibrium, p'

3
, has a large basin of attraction including the entire interval

(0, p'
2
). b enlarges the critical region around these "ve equilibria.
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polymorphic genotypic equilibrium if p*
1
3 (0, 1/2] or if c is su.ciently

small. On the other hand, if p*
1
3 (1

2
, 2
3
) and c is su.ciently large, then

there are exactly two polymorphic genotypic equilibria satisfying
1
2
(p'

3
(p'

2
(p*

1
(2

3
. ¹o see this, note that, with our choices of

u
ij
, U

1
"(1!p)#p expMc

2
(x!f)N and U

2
"p#(1!p) expMc(x!f)N

and this implies z
1
"1#expMc

2
(x!f)N. Moreover, p'

3
is stable and p'

2
is

unstable since (U
1
(p)!U

2
(p))c (p!p'

3
) (p!p'

2
)70 for p3(1

2
, 2
3
). Since

p" z1
1`z1

at a polymorphic genotypic equilibrium and z1
1`z1

as a function of
p changes concavity at most once for p3(1

2
, p*

1
), the result follows.

5. Conclusion

As stated in the Introduction, the main purpose of this paper is to
compare our two models of nonlinear frequency-dependent selection
to results for linear "tness models when the population has two
phenotypes. There is also a substantial literature on linear frequency-
dependent selection at a single two-allele locus when there are three
phenotypes that begins in the early 1970's (e.g. Cockerham et al., 1972)
before the advent of evolutionary game theory. In these latter models,
the frequency-dependent viability of genotype A

i
A

j
can be written in

matrix form as

C
F
A1A1

(p)

F
A1A2

(p)

F
A2A2

(p) D"C
=

11
=

12
=

13
=

21
=

22
=

23
=

31
=

32
=

33
D C

p2

2p(1!p)

(1!p)2 D
and so genotypic "tness is a linear function of genotypic population
frequencies. This is equivalent to (2) where the 2]2 payo!matrix there
is replaced by the 3]3 matrix = (for three pure strategies) that has
entries =

kl
. Also, in this model, each individual with genotype A

i
A

j
uses its corresponding pure strategy (e.g. all A

1
A

1
individuals use the

"rst pure strategy). The connection with evolutionary game theory
(speci"cally, with the ESS structure of=) has been largely ignored in
this literature.

The most interesting aspect for our purposes is that these three
phenotype linear "tness models display qualitatively the same type of
dynamic behavior as our two phenotype exponential "tness models
(e.g. Altenberg, 1991; Gavrilets and Hastings, 1995). Thus, ESS theory
predicts the stability of frequency-dependent models only for two
phenotype linear "tness functions where Lessard (1984) emphasized
that the evolutionary attractive states are either ESS's (corresponding
to stable phenotypic equilibria) of the matrix game or else extrema of
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the population mean strategy that are locally as close as possible to the
ESS (corresponding to stable genotypic equilibria). However, we have
seen that these ESS and extremum criteria are also important for our
two phenotype exponential "tness models } especially for boundary
phenotypic equilibria and monomorphic genotypic equilibria. Al-
though stability at interior phenotypic equilibria is not determined
exclusively by ESS conditions, the stability at such equilibria is the
same for both our models.

In contrast, Sect. 4 shows our models are substantially di!erent
when there are polymorphic genotypic equilibria. The pure-strategy
model can have at most one such equilibrium which again must be an
extremum of the population mean strategy. In particular, a stable
interior phenotypic equilibrium and stable polymorphic genotypic
equilibrium cannot coexist in the same pure-strategy example. On the
other hand, multiple polymorphic genotypic equilibria can exist in the
mixed-strategy model, some of which can be stable at the same time as
a stable interior phenotypic equilibrium exists. These various possibili-
ties are illustrated in Example 3 at the end of Sect. 4.
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