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Abstract

The steady-state statistics of a single gene auto-regulatory genetic network with the additive external Gaussian white noises is

investigated. The main result shows that the negative feedback will result in that the mRNA noise has a positive contribution to the

protein noise, but the positive feedback will result in that the mRNA noise has a negative contribution to the protein noise. If there is no

feed back, then the contribution of mRNA noise to protein noise is always positive. On the other hand, the analysis and numerical

simulations of linear and nonlinear feedback show that it is possible that the negative feedback increases, but the positive feedback

decreases, the protein noise.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Auto-regulation is a ubiquitous motif in biochemical
pathway, essential in the management of protein and
chemical concentrations through feedback, i.e. the expres-
sion level of a gene is regulated negatively or positively by
its own production (Keller, 1995; Smolen et al., 1998;
Becskei and Serrano, 2000; Becskei et al., 2001; Cinquin
and Demongeot, 2002; Hasty et al., 2000; Thattai and van
Oudenaarden, 2001; Isaacs et al., 2003; Simpson et al.,
2003). The fundamental importance of stochastic noise in
gene expression has been realized by many authors (Hasty
et al., 2000; Thattai and van Oudenaarden, 2001, 2002;
Isaacs et al., 2003; Simpson et al., 2003; MacAdams and
Arkin, 1997; Arkin et al., 1998; Paulsson et al., 2000;
Paulsson and Ehrenberg, 2000; Berg et al., 2000; Kepler
and Elston, 2001; Hasty and Collings, 2002; Ozbudak et
al., 2002; Swain et al., 2002; Sasai and Wolynes, 2003;
Paulsson, 2004). In general, the stochastic noise arises in
gene expression in one of two ways. The internal noise is
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inherent in the biochemical reactions, i.e. it is determined
by the structure, reaction rates, and species concentrations
of the underlying biochemical networks (Hasty et al., 2000;
Thattai and van Oudenaarden, 2001; MacAdams and
Arkin, 1997). Its magnitude is proportional to the inverse
of the system size, and its origin is often thermal. A more
precise illustration is that internal noise is due to the fact
that system itself consists of discrete particles. It is inherent
in the very mechanism by which the state of the system
evolves and cannot be divorced from its equations of
motion Van Kampen (1992). Paulsson (2004) pointed out
that random fluctuations in genetic networks are inevitable
as chemical reactions are probabilistic and many genes,
RNAs and proteins are present in low numbers per cell,
and presented a simple equation that unifies and extends
both the mathematical and biological perspectives. Raser
and O’Shea (2005) summarized the origins, consequences
and control of noise in gene expression. Arias and
Hayward (2005) considered the implication of transcrip-
tional noise for development and suggested the existence of
molecular devices that are dedicated to filtering noise.
The external noise originates in the random variation of

one or more of the externally set control parameters (Hasty
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et al., 2000), i.e. the external noise denotes fluctuation
created in an otherwise deterministic system by the
application of a random force, whose stochastic properties
are supposed to be known (Van Kampen, 1992). Hasty
et al. (2000) and Isaacs et al. (2003) investigated a single
gene auto-regulatory network and demonstrated how
external noise can be used to control the network in the
concentration of protein. Their results suggested that an
external noise source could be used as a switch and/or
amplifier for gene expression. Recently, Becskei et al.
(2005) developed a noise amplifier that detects fluctuations
in the level of low-abundance mRNAs in yeast, and found
that the observed fluctuations are not due to the low
number of molecules expressed from a gene per se but
originate in the random, rare events of gene activation. The
frequency of these events and the correlation between
stochastic expressions of genes in a single cell depend on
the positioning of the genes along the chromosomes. These
results imply that external noise turned out to be the
dominant noise source in eukaryotic gene regulation at the
promoter level. Paulsson (2005) pointed out that study of
Becskei et al. shows how noise propagate through gene
expression in yeast and shows that chromosomal position
has a more central role than previously thought.

In this paper, a single gene auto-regulatory genetic
network is investigated. Our main goal is to show that
when the Gaussian noise sources are introduced into this
system, how the feedback regulation influences the effect of
the white noise, i.e. how the feedback regulation influences
the statistical properties of the system. This paper is
organized as follows. In Section 2.1 we present the general
form of the auto-regulatory system, Section 2.2 shows the
asymptotical stability and stationary-state statistics, the
external noise analysis is given in Section 2.3, in Section 2.4
we discuss the linear and nonlinear feedback regulations,
and the numerical simulations are presented in Section 2.5.
The conclusions are given in Section 3.

2. Model and analysis

2.1. Network model

Consider a single gene auto-regulatory genetic network.
Let rðtÞ and pðtÞ be the concentrations of mRNA and
protein at time t, respectively. The rate equation of rðtÞ and
pðtÞ originates as a first approximation. It describes the
evolution of the averages of concentrations of mRNA and
protein:

dr

dt
¼ �grþ f ðpÞ,

dp

dt
¼ k0rþ g0p, (1)

where the parameters g and g0 are the decay rates of mRNA
and protein, respectively, k0 is the translation rate, and the
function f ðpÞ represents the feedback regulation of the
protein on the transcription with f ðpÞ40 for all possible
values of p where f ð0Þ40 is called the fundamental
transcription rate (Thattai and van Oudenaarden, 2001;
Simpson et al., 2003; Cherry and Adler, 2000). For
convenience, we assume that the feedback regulation
function f ðpÞ is monotonic, i.e. df ðpÞ=dpÞ40 (or df ðpÞ=
dpo0). The feedback is positive if df ðpÞ=dp40, conversely,
it is negative if df ðpÞ=dpo0.
In order to investigate how the feedback regulation acts

on the external noise, the Gaussian white noise sources are
incorporated:

dr

dt
¼ �grþ f ðpÞ þ oðtÞ,

dp

dt
¼ k0r� g0pþ xðtÞ, (2)

where both oðtÞ and xðtÞ are the white noises with
hoðtÞi ¼ hxðtÞi ¼ 0, hoðtÞoðsÞi ¼ 2Dodðt� sÞ, hxðtÞxðsÞi ¼
2Dxdðt� sÞ, hoðtÞxðsÞi ¼ 0 (i.e. we assume that oðtÞ and
xðtÞ are independent of each other), where dðÞ is the Dirac
function. In general, this stochastic differential equation is
called the Langevin equation.

2.2. Steady-state statistics of Eq. (2)

Let us first consider the stability of the deterministic
dynamics Eq. (1). Let ðr�; p�Þ be the equilibrium of Eq. (1),
i.e. it is the solution of equation

�grþ f ðpÞ ¼ 0,

k0r� g0p ¼ 0.

From the differential equation theory, the equilibrium
ðr�; p�Þ is locally asymptotically stable if the term gg0 �
k0f 0ðp�Þ is positive where f 0ðp�Þ ¼ df ðpÞ=dpjp¼p� (proof is in
Appendix A). Obviously, if the feedback is negative, then
ðr�; p�Þ must be asymptotically stable. On the other hand,
for the positive feedback, ðr�; p�Þ is asymptotically stable if
and only if gg0 � k0f 0ðp�Þ40. In this paper, we always
assume that ðr�; p�Þ is asymptotically stable.
For Eq. (2), we consider only its steady-state statistics,

i.e. the statistics of Eq. (2) when the system state ðrðtÞ; pðtÞÞ
is near the stable equilibrium ðr�; p�Þ (Thattai and van
Oudenaarden, 2001; Van Kampen, 1992; Tao et al., 2005).
Let fðr; p; tÞ be the joint probability density function of
mRNA and protein. The Fokker–Planck equation of
fðr; p; tÞ (Van Kampen, 1992; Soong, 1973) is

qfðr; p; tÞ
qt

¼ �
q
qr
ð�grþ f ðpÞÞf�

q
qp
ðk0r� g0pÞf

þDo
q2f
qr2
þDx

q2f
qp2

. ð3Þ

Thus, for the steady-state statistics, this Fokker–Planck
equation implies that when the system state is near the
stable equilibrium ðr�; p�Þ, for large time t, the expectations
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of mRNA and protein concentrations are

hri ¼ lim
t!1
hrðtÞi ¼ r�,

hpi ¼ lim
t!1
hopðtÞi ¼ p�, (4)

the variances of mRNA and protein concentrations,
denoted by s2r ðtÞ and s2pðtÞ, are

s2r ¼ lim
t!1

s2r ðtÞ ¼
g0ðgþ g0ÞDo þ f 0ðp�Þ2Dx � k0f 0ðp�ÞDo

ðgþ g0Þðgg0 � k0f 0ðp�Þ

¼
1

gg0 � k0f 0ðp�Þ
g0Do þ

f 0ðp�Þ2Dx � k0f 0ðp�ÞDo

gþ g0

� �
,

s2p ¼ lim
t!1

s2pðtÞ ¼
gðgþ g0ÞDx þ k0

2
Do � k0f 0ðp�ÞDx

ðgþ g0Þðgg0 � k0f 0ðp�ÞÞ

¼
1

gg0 � k0f 0ðp�Þ
gDx þ

k0
2
Do � k0f 0ðp�ÞDx

gþ g0

 !
, ð5Þ

and the covariance of rðtÞ and pðtÞ, denoted by
CovðrðtÞ; pðtÞÞ, is

Covðr; pÞ ¼ lim
t!1

CovðrðtÞ; pðtÞÞ ¼
g0k0Do þ gf 0ðp�ÞDx

ðgþ g0Þðgg0 � k0f 0ðp�ÞÞ

(6)

(proof is in Appendix B).

2.3. External noise in gene expression

Similarly to Paulsson (2004), in general Eq. (2) can be
expressed as
dr

dt
¼ Rþr ðr; pÞ � R�r ðr; pÞ þ oðtÞ,

dp

dt
¼ Rþp ðr; pÞ � R�p ðr; pÞ þ xðtÞ, (7)

where Rþr ðr; pÞ ¼ f ðpÞ, R�r ðr; pÞ ¼ gr, Rþp ðr; pÞ ¼ k0r and
R�p ðr; pÞ ¼ g0p. Use Hr;r ¼ q lnðR�r =Rþr Þ=q lnðrÞ to measure
how the balance between production and elimination of
mRNA is affected by itself (Paulsson, 2004). Similarly, we
have also Hr;p, Hp;r and Hp;p. Thus, the variances s2r and s2p
around the stable equilibrium ðr�; p�Þ can be also expressed as
s2r ¼
1

Hr;rHp;p �Hr;pHp;p

� Dot1Hp;p þ
hri2t2Hr;pððDx=hpi

2Þ � ðHr;p=t1Þ � ðDo=hri
2Þ � ðHp;r=t2ÞÞ

Hr;r=t1 þHp;p=t2

� �
,

s2p ¼
1

Hr;rHp;p �Hr;pHp;p

� Dxt2Hr;r þ
hpi2t1Hp;rððDo=hri

2Þ � ðHp;r=t2Þ � ðDx=hpi
2Þ � ðHr;p=t1ÞÞ

Hr;r=t1 þHp;p=t2

� �
ð8Þ
with Hr;rHp;p �Hr;pHp;r40 that is equivalent to the
asymptotical stability conditions of the equilibrium
ðr�; p�Þ, where t1 ¼ 1=g and t2 ¼ 1=g0 are average lifetimes
of mRNA and protein molecules, respectively. Eq. (8)
implies also that if Hr;pa0, i.e. there is positive or negative
feedback, then the variance of protein concentration, s2p,
can be rewritten as

s2p ¼
Dxt2Hr;r þDob2t2ðHp;rHp;p=Hr;pÞ

Hr;rHp;p �Hr;pHp;r
� hpi2

s2r
hri2
�
t1
t2
�

Hp;r

Hr;p
,

(9)

where b ¼ k0=g is the average number of proteins produced
per transcript (Thattai and van Oudenaarden, 2001).
Similarly, if Hr;p ¼ 0, i.e. there is no feedback, then s2p is

s2p ¼
Dx

Hp;p=t2
þ hpi2

s2r
hri2
�

H2
p;r

H2
p;p

�
Hp;p=t2

Hr;r=t1 þHp;p=t2
, (10)

where the variance of mRNA is s2r ¼
Dx

Hr;r=t1
.

From Paulsson (2004), we here use also the ratios s2r=hri
2

and s2p=hpi
2 to measure the external noise in gene

expression. Thus, the protein noise is

s2p
hpi2
¼

Dxt2Hr;r þDob2t2ðHp;rHp;p=Hr;pÞ

ðHr;rHp;p �Hr;pHp;rÞhpi
2

�
s2r
hri2
�
t1
t2
�

Hp;r

Hr;p

(11)

if Hr;pa0, and

s2p
hpi2
¼

Dx

Hp;p=t2
hpi�2 þ

s2r
hri2
�

H2
p;r

H2
p;p

�
Hp;p=t2

Hr;r=t1 þHp;p=t2
(12)

if Hr;p ¼ 0. Obviously, Eq. (11) reveals an important
property: if the feedback is positive, then the effect of
mRNA noise on the protein noise is negative; conversely, if
the feedback is negative, then the effect of mRNA noise on
the protein noise is positive. Eq. (12) is very similar to
Paulsson’s analysis for intrinsic and extrinsic noises in gene
expression (Paulsson, 2004), i.e. if there is no feedback, the
effect of mRNA noise on the protein noise is always
positive, and the term ðDx=Hp;p=t2Þhpi�2 should represent
the noise due to the births and deaths of protein molecules
because of the white noise xðtÞ, and the term s2r=hri
2 �

H2
p;r=H2

p;p � ðHp;p=t2Þ=ðHr;r=t1 þHp;p=t2Þ the noise due to
the fluctuations in reaction rates (Paulsson, 2004).
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2.4. Linear and nonlinear auto-regulatory network

Case I: Linear auto-regulatory network. In this case, the
feedback regulation f ðpÞ is assumed to be a linear function
defined as f ðpÞ ¼ kpþ K where k ¼ 0, o0 and 40
correspond to the no feedback, negative feedback and
positive feedback, respectively, and the parameter K is the
fundamental transcriptional rate. The stable equilibrium
point is ðr�; p�Þ ¼ ðKg0;Kk0Þ=ðgg0 � kk0Þ with gg0 � kk040,
and the expectations are hri ¼ r� and hpi ¼ p� around
ðr�; p�Þ. From Eq. (5), the protein noise is given by

s2p
hpi2
¼
hpi�1

Kk0
gDx þ k0

k0Do þ kDx

gþ g0

� �
. (13)

Notice that qðs2p=hpi
2Þ=qko0 for all �1okogg0=k0. Thus,

for the linear feedback regulation f ðpÞ ¼ kpþ K , if the
fundamental transcriptional rate is fixed, then we must
have that the positive feedback decreases, but negative
feedback increases, the protein noise, i.e.

s2p
hpi2

�����
k40

o
s2p
hpi2

�����
k¼0

o
s2p
hpi2

�����
ko0

. (14)

In the above analysis, if Dx ¼ 0, i.e. the protein noise is
only due to the random fluctuations of mRNA, or mRNA
provides the randomly fluctuating environment for protein,
as mRNA fluctuations randomize protein synthesis (Pauls-
son, 2004), then the noise of protein can be rewritten as

s2p
hpi2
¼

k0Do

Kðgþ g0Þhpi
¼

gg0 � kk0

gþ g0
�

Do

K2
, (15)

i.e. if protein noise come entirely from few transcripts, it
should decrease with the rate of transcription (increasing
mRNA numbers) but not with the rate of translation
(increasing only protein numbers) (Paulsson, 2005).

Case II. Nonlinear auto-regulatory network. In this case,
for convenience both the positive and negative feedback
are taken as the Hill-type functions (Cherry and Adler,
2000; Kaern, 2003). The feedback is defined as f ðpÞ ¼

pa=ðbþ paÞ þ y for positive, and f ðpÞ ¼ b=ðbþ paÞ for
negative, with a40, b40 and y40, where y is the
fundamental transcription rate for positive feedback. From
Eq. (5), the protein noise around a stable equilibrium
ðr�; p�Þ is given by

s2p
hpi2
¼

gDx þ g0k0Do=f 0ðp�Þ

gg0 � k0f 0ðp�Þ
hpi�2 �

g02

k0f 0ðp�Þ
�
s2r
hri2

, (16)

where

f 0ðp�Þ ¼
df ðpÞ

dp

����
p¼p�
¼

abpa�1

ðbþ paÞ
2

����
p¼p�

40

for positive feedback and

f 0ðp�Þ ¼
df ðpÞ

dp

����
p¼p�
¼ �

abpa�1

ðbþ paÞ
2

����
p¼p�

o0
for negative feedback. This result can be explained using
Eq. (13), i.e. the negative feedback will lead that the
mRNA noise has a positive contribution to the protein
noise, and the positive feedback will lead that the mRNA
noise has a negative contribution to the protein noise.

2.5. Numerical simulation

For the numerical simulation, without loss of generality,
we consider only a stochastic difference equation that
corresponds to Eq. (2):

rtþ1 ¼ ð1� gÞrt þ f ðptÞ þ ot,

ptþ1 ¼ k0rt þ ð1� g0Þpt þ xt, (17)

where both ot and xt are random variables with
ot�Nð0;s2oÞ and xt�Nð0;s2xÞ for t ¼ 1; 2; . . . ; hotosi ¼ 0
and hxtxsi ¼ 0 if tas, and hotxsi ¼ 0 for all possible t and
s. Similarly to the analysis in above, both the linear and
nonlinear feedback regulations will be simulated.
The linear feedback f ðptÞ is given by f ðptÞ ¼ kpt þ K

where, similarly to above analysis about the linear auto-
regulatory network, the parameter k ¼ 0, o0 and 40
correspond to the no feedback, negative feedback and
positive feedback, respectively, and the parameter K is a
constant for all three possible situations. It is easy to know
that the equilibrium point of the deterministic difference
dynamics

rtþ1 ¼ ð1� gÞrt þ kpt þ K ,

ptþ1 ¼ k0rt þ ð1� g0Þpt

is ðr�; p�Þ ¼ ðKg0;Kk0Þ=ðgg0 � kk0Þ with gg0 � kk040. The
simulation is completed using MATLAB where the
parameters are taken as g ¼ 0:9, g0 ¼ 0:1, a ¼ 10,
k0 ¼ 0:1, s2o ¼ s2x ¼ 1, and k ¼ �0:8;�0:7; . . . ;�0:1; 0;
0:1; . . . ; 0:7; 0:8. The statistics of the simulation results for
different k values are plotted in Figs. 1 and 2, where the
statistics of mRNA concentration is plotted in Fig. 1, and
the statistics of protein concentration is plotted in Fig. 2.
These simulation results support strongly the theoretical
analysis.
For the nonlinear feedback simulation, the positive

feedback is f ðptÞ ¼ pa
t =ðbþ pa

t Þ þ y, and the negative feed-
back f ðptÞ ¼ b=ðbþ pa

t Þ (Hill-type functions). For both the
positive and negative feedback, i.e.

rtþ1 ¼ ð1� gÞrt þ
pa

t

bþ pa
t

þ yþ ot,

ptþ1 ¼ k0rt þ ð1� g0Þpt þ xt

and

rtþ1 ¼ ð1� gÞrt þ
b

bþ pa
t

þ ot,

ptþ1 ¼ k0rt þ ð1� g0Þpt þ xt,
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Fig. 1. For the linear feedback, the statistics of mRNA concentration for different k values are plotted: (a) expectation hri; (b) variance s2r ; (c) mRNA

noise s2r=hri
2.

Fig. 2. For the linear feedback, the statistics of protein concentration for different k values are plotted: (a) expectation hpi; (b) variance s2p; (c) protein
noise s2p=hpi

2 that decreases with increasing of k values.

B.-L. Xu, Y. Tao / Journal of Theoretical Biology 243 (2006) 214–221218
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Fig. 3. For the nonlinear feedback, the statistics of mRNA concentration for different k0 values are plotted where blue line corresponds the positive

feedback, and red line the negative feedback: (a) expectation hri; (b) variance s2r ; (c) mRNA noise s2r=hri
2.

Fig. 4. For the nonlinear feedback, the statistics of protein concentration for different k0 values are plotted where blue line corresponds to the positive

feedback, and red line the negative feedback: (a) expectation hpi; (b) variance s2p; (c) protein noise s2p=hpi
2 that shows also that for the nonlinear feedback,

it is still possible that the negative feedback increases, but the positive feedback reduces, the protein noise.

B.-L. Xu, Y. Tao / Journal of Theoretical Biology 243 (2006) 214–221 219
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we take the parameters a ¼ 0:5, b ¼ 5, g ¼ g0 ¼ 0:5,
y ¼ 0:2, and k0 ¼ 4þ 0:2� i for i ¼ 1; 2; . . . ; 30, and for
simplicity we let s2o ¼ 0 and s2x ¼ 1. The simulation results
for different k0 values are plotted in Figs. 3 and 4, where the
statistics of mRNA concentration is plotted in Fig. 3, and
the statistics of protein concentration is plotted in Fig. 4.
3. Conclusion

In this paper, the steady-state statistics of a single gene
auto-regulatory genetic network with the additive external
Gaussian white noises is investigated. We here accept
Paulsson’s (2004) suggestion using square of standard
deviation to measure the mRNA and protein noises.
Similar to Paulsson (2004), the protein noise can be also
decomposed into two parts: the central finding is that the
negative feedback will result in that mRNA noise has a
positive contribution to the protein noise, but the positive
feedback will result in that the mRNA noise has a negative
contribution to the protein noise. It is necessary to point
out that if there is no feedback, the mRNA noise has
always a positive contribution to the protein noise. The
analysis of linear and nonlinear feedback and the results of
numerical simulations show also that it is possible that the
negative feedback increases, but the positive feedback
decreases, the protein noise. However, it is important to
note that the negative (or positive) feedback makes an
mRNA-independent contribution to the total noise (see
Eq. (16)). This result provides an important theoretical
intuition for understanding the stochastic fluctuation in
gene expression and gene regulation in the real living
system.
Appendix A

The Jacobian matrix of Eq. (1) at the equilibrium ðr�; p�Þ
is

J ¼
�g f 0ðp�Þ

k0 �g0

 !
,

where f ðp�Þ ¼ df ðp�Þ=dp, and the eigenvalues of J are

l1;2 ¼
ðgþ g0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ g0Þ2 � 4ðgg0 � k0f 0ðp�ÞÞ

q
2

.

Thus, the equilibrium ðr�; p�Þ is locally asymptotically
stable if and only is the term gg0 � k0f 0ðp�Þ is positive, i.e.
the real parts of the eigenvalues l1 and l2 are negative.
Appendix B

In order to obtain the steady-state statistics of Eq. (2), let
x ¼ r� r� and y ¼ p� p�, substitute these in Eq. (3),
expand the coefficients in x and y and retain only the
lowest non-zero terms:

qfðx; y; tÞ
qt

¼ �
q
qx
ð�gxþ f 0ðp�ÞyÞf�

q
qy
ðk0x� g0yÞ

þDo
q2f
qx2
þDx

q2f
qy2

. ð18Þ

Using boundary conditions limx!�1 fðx; y; tÞ ¼ 0,
limy!�1 fðx; y; tÞ ¼ 0, limx!�1 qfðx; y; tÞ=qx ¼ 0 and
limy!1 qfðx; y; tÞ=qy ¼ 0, we have

dhxðtÞi

dt
¼

Z 1
�1

Z 1
�1

x
qf
qt

dxdy

¼ � ghxðtÞi þ f 0ðp�ÞhyðtÞi,

dhyðtÞi

dt
¼

Z 1
�1

Z 1
�1

y
qf
qt

dxdy

¼ k0hxðtÞi � g0hyðtÞi, ð19Þ

and

dhxðtÞ2i

dt
¼

Z 1
1

Z 1
�1

x2 qf
qt

dxdy

¼ � 2ghxðtÞ2i þ 2f 0ðp�ÞhxðtÞyðtÞi þ 2Do,

dhxðtÞyðyÞi

dt
¼

Z 1
1

Z 1
�1

xy
qf
qt

dxdy

¼ k0hxðtÞ2i � ðgþ g0ÞhxðtÞyðtÞi þ f 0ðp�ÞhyðtÞ2i,

dhyðtÞ2i

dt
¼

Z 1
1

Z 1
�1

y2 qf
qt

dxdy

¼ 2k0hxðtÞyðtÞi � 2g0hyðtÞ2i þ 2Dx. ð20Þ

For Eq. (19), it is easy to see that the origin ð0; 0Þ is its
globally asymptotically stable equilibrium, that corre-
sponds to

d

dt

hxðtÞi

hyðtÞi

 !
¼ 0,

since the stability of Eq. (19) is identical with the stability
of Eq. (1). This shows that the expectations of the mRNA
and protein concentrations are hri ¼ limt!1 ¼ r� and
hpi ¼ limt!1 ¼ p�, respectively.
Similarly, for Eq. (20), its asymptotically stable equili-

brium is

hx2i ¼ lim
t!1
hxðtÞ2i

¼
g0ðgþ g0ÞDo þ k2Dx � k0f 0ðp�ÞDo

ðgþ g0Þðgg0 � k0f 0ðp�ÞÞ
,

hxyi ¼ lim
t!1
hxðtÞyðtÞi

¼
g0k0Do þ gf 0ðp�ÞDx

ðgþ g0Þðgg0 � k0f 0ðp�ÞÞ
,
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hy2i ¼ lim
t!1
hyðtÞ2i

¼
gðgþ g0ÞDx þ k0

2
Do � k0f 0ðp�ÞDx

ðgþ g0Þðgg0 � k0f 0ðp�ÞÞ
, ð21Þ

that corresponds to

d

dt

hxðtÞ2i

hxðtÞyðtÞi

hyðtÞ2i

0
B@

1
CA ¼ 0,

since the Jacobian matrix of Eq. (20) at the equilibrium is

�2g 2f 0ðp�Þ 0

k0 �ðgþ g0Þ f 0ðp�Þ

0 2k0 �2g0

0
B@

1
CA,

and the eigenvalues of the Jacobian matrix are

l1 ¼ �ðgþ g0Þ,

l1;2 ¼ �ðgþ g0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþ g0Þ2 � 4ðgg0 � k0f 0ðp�ÞÞ

q
.

This means that if the origin ð0; 0Þ of Eq. (19) is globally
asymptotically stable, then the equilibrium of Eq. (20)
given by Eq. (21) must be also asymptotically stable.
Notice that x ¼ r� r� and y ¼ p� p�. Thus, for large time
t, we must have s2r ¼ hx

2i, s2p ¼ hy
2i and Covðr; pÞ ¼ hxyi.

References

Arias, A.M., Hayward, P., 2005. Nature Rev. Genetics 7, 34–44.

Arkin, A., Ross, J., McAdams, H.H., 1998. Genetics 149, 1633–1648.

Becskei, A., Serrano, L., 2000. Nature 405, 590–593.

Becskei, A., Seraphin, B., Serrano, L., 2001. EMBO J. 20, 2528–2535.

Becskei, A., Kaufmann, B.B., van Oudenaarden, A., 2005. Natural

Genetics 37, 973–1044.
Berg, O.G., Paulsson, J., Ehrenberg, M., 2000. Biophys. J. 79, 2944–2953.

Cherry, J.L., Adler, F.R., 2000. J. Theor. Biol. 203, 117–133.

Cinquin, O., Demongeot, J., 2002. J. Theor. Biol. 216, 229–241.

Hasty, J., Collings, J.J., 2002. Nature Genetics 31, 13–14.

Hasty, J., Pradines, J., Dolink, M., Collins, J.J., 2000. Proc. Natl Acad.

Sci. 97, 2075–2080.

Isaacs, F.J., Hasty, J., Cantor, C.R., Collins, J.J., 2003. Proc. Natl Acad.

Sci. 100, 7714–7719.

Kaern, M., 2003. Regulatory dynamics in engineered gene networks—the

physico-chemical foundation of transcriptional regulation with appli-

cation to systems biology, ICBS 2003, Fourth International Con-

ference on Systems Biology.

Keller, A.D., 1995. J. Theor. Biol. 172, 169–185.

Kepler, T.B., Elston, T.C., 2001. Biophys. J. 81, 3116–3136.

MacAdams, H.H., Arkin, A., 1997. Proc. Natl Acad. Sci. 94, 814–819.

Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., van

Oudenaarden, A., 2002. Nature Genetics 31, 69–73.

Paulsson, J., 2004. Nature 427, 415–418.

Paulsson, J., 2005. Natural Genetics 37, 923–926.

Paulsson, J., Ehrenberg, M., 2000. Phys. Rev. Lett. 84, 5447–5450.

Paulsson, J., Berg, O.G., Ehrenberg, M., 2000. Proc. Natl Acad. Sci. 97,

7148–7153.

Raser, J.M., O’Shea, E.K., 2005. Science 309, 2010–2013.

Sasai, M., Wolynes, P.G., 2003. Proc. Natl Acad. Sci. 100, 2374–2379.

Simpson, M.L., Cox, C.D., Sayler, G.S., 2003. Proc. Natl Acad. Sci. 100,

4551–4556.

Smolen, P., Baxter, D.A., Byrne, J.H., 1998. Am. J. Cell Physiol. 274,

531–542.

Soong, T.T., 1973. Random Differential Equations in Science and

Engineering. Academic Press, New York and London.

Swain, P.S., Elowitz, M.B., Siggia, E.D., 2002. Proc. Natl Acad. Sci. 99,

12795–12800.

Tao, Y., Jia, Y.T., Dewey, T.G., 2005. J. Chem. Phys. 122, 124108.

Thattai, M., van Oudenaarden, A., 2001. Proc. Natl Acad. Sci. 98,

8614–8619.

Thattai, M., van Oudenaarden, A., 2002. Biophys. J. 82, 2943–2950.

Van Kampen, N.G., 1992. Stochastic Process Theory in Physics and

Chemistry. North-Holland, Amsterdam.


	External noise and feedback regulation: Steady-state statistics �of auto-regulatory genetic network
	Introduction
	Model and analysis
	Network model
	Steady-state statistics of Eq. (2)
	External noise in gene expression
	Linear and nonlinear auto-regulatory network
	Numerical simulation

	Conclusion
	References


