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Abstract

Stability of a simple two-species system is investigated. This model assumes that the kind of inter-specific interactions is not fixed, and

that it depends on the system state, i.e., undergoes transitions between different population interactions due to variation in population

densities. The main goal is to show the effects of the transitions between different population interactions on the two-species coexistence,

and on the stability conditions of multiple equilibria.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

As pointed out by Murray (1993), for inter-specific
interactions, there are three main types, i.e., host–parasite
(or predator–prey), competition, and mutualism (or symbio-
sis). The classical two-species Lotka–Volterra equation pro-
vides a basic model to understand inter-specific interactions. In
general, the standard two-species Lotka–Volterra equation is
given by

dN1

dt
¼ N1ðb1 � a11N1 � a12N2Þ,

dN2

dt
¼ N2ðb2 � a21N1 � a22N2Þ,

where N1 and N2 denote the population densities of species 1
and species 2, respectively, and the parameters a12 and a21 are
the coefficients of inter-specific interactions, i.e., if both a12 and
a21 are positive then the populations are in a competition
situation; if both a12 and a21 are negative then the populations
are in a mutualism (or symbiosis) situation; and if a12 is
e front matter r 2007 Elsevier Ltd. All rights reserved.
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positive and a21 negative, or a12 is negative and a21 positive,
then the populations are in a predator–prey situation.
Hernandez (1998) pointed out that the theoretical

models about the populations showing one kind of
interaction at one moment of time and then switching to
another, i.e., undergoing transitions between different
interactions, are very rare. But in nature this occurs often.
Hernandez (1998) reviewed also some interesting instances
for this phenomenon. Gibert (1983) showed that at low
densities, interactions between Mullerian mimics are
mutualistic as they facilitate the training of predators in
recognizing unpalatable prey, and that at high densities
they become competitors because they share resources. The
interactions between some ant and aphid species can be
beneficial at low aphid densities, but either detrimental or
just neutral as this density increases (Addicott, 1979;
Cushman and Addicott, 1991). Wahl and Hay (1995)
investigated the epibiotic associations between host sea-
weed and some plant and animal epibionts, and showed
that associations included both positive and negative
effects. The outcome, ‘associated resistance’ or ‘shared
doom’, was highly influenced by the relative densities of the
species involved. Phillips et al. (1995) reported that
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Fig. 1. Four possible kinds of population interactions are shown on the

x–y phase plane.
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seaweed flies, Coelopa frigida and C. pilipes, can interact
either as competitors or as amensalists, etc.

Hernandez (1998) developed a theoretical model to study
the stability properties of a two-species system that
undergoes transitions between different population inter-
actions. In this model, the inter-specific interaction is
defined as a nonlinear function, called the a-function.
Recently, Zhang (2003) presented a similar model to
explain the effect of mutualism on coexistence among the
competitors. In fact, there are many theoretical models for
the inter-specific interactions that are mostly based on the
modified Lotka–Volterra equations (May, 1981; Gillman
and Hails, 1997). Addicott (1981) and Wolin and Lawor
(1984) considered the variation in the outcome of the inter-
specific interaction. Addicott (1981) compared three
different mutualistic models, and studied the stability
properties after perturbations on the equilibrium. Wolin
and Lawor (1984) investigated the density-dependent
effects on mutualistic interaction. It is different from the
models that are concerned mainly with only one kind of
inter-specific interaction, Hernandez’s (1998) model as-
sumes that the inter-specific relationship depends on the
system state, i.e., the inter-specific interaction coefficients
aij (iaj) in the Lotka–Volterra equations are reinterpreted
as nonlinear functions of population densities modulated
by environmental parameters, which offer the possibility of
a change in sign of aij due to the variation in population
densities. Using a graphical stability analysis, Hernandez’s
(1998) results show that multiple equilibria are possible.
Zhang (2003) considered a theoretical model that is based
on the classical Lotka–Volterra competition model, where
he assumed that the interaction of one species to the other
is flexible instead of always negative. Similarly to
Hernandez (1998), Zhang (2003) used also the graphical
stability analysis to emphasize that mutualism or coopera-
tion among competitors promotes coexistence and compe-
titive ability. Recently, Neuhauser and Fargione (2004)
considered interactions between a symbiont and its host in
the framework of the familiar Lotka–Volterra predator–
prey model, modified to allow the symbiont to benefit the
host. This model includes both benefits and costs to the
interaction and spans the mutualism–parasitism conti-
nuum. Neuhauser and Fargione (2004) used this model
to explore the shift from mutualism to parasitism in
plant–mycorrhizae interactions across gradients of soil
fertility.

In this paper, following Hernandez (1998) and Zhang
(2003), a simple two-species system based on the classical
Lotka–Volterra competition model is investigated. In this
model, we assume that transitions between different
population interactions are possible due to variation in
population densities. We mainly focus our attention on the
dynamical stability of the system in general, and we
provide a complete stability analysis. Our main goal is to
show the effects of transitions between different population
interactions on the two-species coexistence, and on the
stability of multiple equilibria.
2. Model and analysis

2.1. Basic model

Let us consider a simple two-species system,

dx

dt
¼ xðr� kxþ ða� cyÞyÞ,

dy

dt
¼ yðR� Kyþ ðb� dxÞxÞ, ð1Þ

where xðtÞ and yðtÞ denote the population densities of
species 1 and species 2 at time t, respectively; the
parameters r and R are the intrinsic growth rates of species
1 and species 2, respectively; k and K the coefficients of
intra-specific competition of species 1 and species 2,
respectively; and the term a� cy represents the inter-
specific interaction of species 2 to species 1; similarly, the
term b� dx the inter-specific interaction of species 1 to
species 2. We also assume that the parameters a2d are
non-negative, i.e., a; b; c; dX0. This implies that mutualism
will happen at low density, but competition will happen at
high density (Wolin and Lawor, 1984; Hernandez, 1998;
Zhang, 2003).
Biologically, similarly to Hernandez (1998) and Zhang

(2003), Eq. (1) is an expansion of the classic Lotka–Volterra
competition equation, and we assume that both intrinsic
growth rates R and r are positive, i.e., Eq. (1) can be not
used to represent exactly a real prey–predator system. In this
model, the kind of inter-specific interaction is assumed to be
not fixed, and it depends on the system state (system state-
dependent), i.e., the term a� cy is positive if yoa

c
and

negative if y4a
c
; and the term b� dx is positive if xob

d
and

negative if x4b
d
. Three possible situations for the inter-

specific relationship can be shown easily on the x–y phase
plane (see Fig. 1), where the inter-specific relationship is
called competition if y4a

c
and x4b

d
, denoted by ‘‘ð�;�Þ’’;

mutualism if yoa
c
and xob

d
, denoted by ‘‘ðþ;þÞ’’; and

host–parasite (prey–predator) if yoa
c
and x4b

d
, denoted by

‘‘ðþ;�Þ’’, or if y4a
c
and xob

d
, denoted by ‘‘ð�;þÞ’’.
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As mentioned in Section 1, a similar model was
developed by Hernandez (1998), where the inter-specific
interaction is defined as a nonlinear function of the system
state, called the a-function. Recently, Zhang (2003) used
also a similar model to emphasize the effects of mutualism
or cooperation among the competitors on the coexistence
and competitive ability. But, it is necessary to point out
that both Hernandez’s (1998) and Zhang’s (2003) results
are based only on a graphic stability analysis.

2.2. Boundary equilibria

It is easy to see that in Eq. (1) three possible boundary
equilibria are ð0; 0Þ, ðr

k
; 0Þ and ð0; R

K
Þ, respectively, where

ð0; 0Þ is called the trivial boundary.

Theorem 1. For the stabilities of the boundary equilibria in

Eq. (1): (i) the trivial boundary equilibrium ð0; 0Þ must be

unstable; (ii) the boundary equilibrium ðr
k
; 0Þ is locally

asymptotically stable if and only if Rþ r
k
ðb� rd

k
Þo0;

and, similarly, (iii) the boundary equilibrium ð0; R
K
Þ is locally

asymptotically stable if and only if rþ R
K
ða� Rc

K
Þo0.

Proof. (i) Note that the Jacobian matrix of Eq. (1) about
ð0; 0Þ is r

0
0
R

� �
with positive eigenvalues r and R. Thus, the

trivial boundary equilibrium ð0; 0Þ must be unstable. (ii)
The Jacobian matrix of Eq. (1) about the boundary
equilibrium ðr

k
; 0Þ is

�r
ra

k

0 Rþ
r

k
b�

rd

k

� �
0
BB@

1
CCA

with eigenvalues �r and Rþ r
k
ðb� rd

k
Þ. Obviously, if

Rþ r
k
ðb� rd

k
Þ40, then ðr

k
; 0Þ must be unstable and if the

inequality is reversed, then r
k
; 0

� �
is stable. On the other

hand, for the situation with Rþ r
k
ðb� rd

k
Þ ¼ 0, the bound-

ary equilibrium ðr
k
; 0Þ is unstable (see Appendix A). (iii) For

the stability of the boundary equilibrium ð0; R
K
Þ, the proof is

similar to (ii). &

The stability conditions for the non-trivial boundary
equilibria provide a basic insight for the two-species
coexistence, i.e., if both the boundary equilibria ðr

k
; 0Þ and

ð0; R
K
Þ are unstable, then the coexistence will be always

possible when the initial values of xðtÞ and yðtÞ, denoted by
x0 and y0, are positive, i.e., x040 and y040.

2.3. Interior equilibria

Clearly, an interior equilibrium of Eq. (1), denoted by
ðx�; y�Þ with x�40 and y�40, is the solution of the
equations

r� kxþ ða� cyÞy ¼ 0,

R� Kyþ ðb� dxÞx ¼ 0. ð2Þ

On the x–y phase plane, the curve determined by the
equation r� kxþ ða� cyÞy ¼ 0 is the zero isocline for
dx=dt ¼ 0, denoted by L1, and the curve determined by the
equation R� Kyþ ðb� dxÞx ¼ 0 the zero isoline for
dy=dt ¼ 0, denoted by L2. For convenience, the slopes of
two zero isoclines L1 and L2 at an interior equilibrium
ðx�; y�Þ are denoted by dy

dxðL�
1
Þ
and dy

dxðL�
2
Þ
, respectively, i.e.,

dy

dxðL�
1
Þ
¼

k

a� 2cy�
,

dy

dxðL�
2
Þ
¼

b� 2dx�

K
. ð3Þ

According to the signs of dy
dxðL�

1
Þ
and dy

dxðL�
2
Þ
, three possible

types of the interior equilibria are defined.

Definition. (i) ðx�; y�Þ is a competitive equilibrium, denoted

by CP, if dy
dxðL�

1
Þ
o0 and dy

dxðL�
2
Þ
o0; (ii) ðx�; y�Þ is a mutualistic

equilibrium, denoted by MP, if dy
dxðL�

1
Þ
40 and dy

dxðL�
2
Þ
40; and

(iii) ðx�; y�Þ is a host–parasite (predator–prey) equilibrium,

denoted by HP, if dy
dxðL�

1
Þ
40 and dy

dxðL�
2
Þ
p0, or if dy

dxðL�
1
Þ
o0

and dy
dxðL�

2
Þ
X0 (see Fig. 2a–c).

Notice that for the curve L1 the solutions of the equation
rþ ða� cyÞy ¼ 0 are

y0 ¼
1

2c
ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4cr

p
Þ40,

y00 ¼
1

2c
ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4cr

p
Þo0,

and the point ðx1; y1Þ with x1 ¼
1
k
ðrþ a2

4c
Þ and y1 ¼

a
2c

corresponds to the maximum of the parabola

x ¼
rþ ða� cyÞy

k
3 r� kxþ ða� cyÞy ¼ 0.

Similarly, for the curve L2 the solutions of equation Rþ

ðb� dxÞx ¼ 0 are

x0 ¼
1

2d
ðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ 4dR

p
Þ40,

x00 ¼
1

2d
ðb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ 4dR

p
Þo0,

and the point ðx2; y2Þ with x2 ¼
b
2d

and y2 ¼
1
K
ðRþ b2

4d
Þ

corresponds to the maximum of the parabola

y ¼
Rþ ðb� dxÞx

K
3 R� Kyþ ðb� dxÞx ¼ 0.

This implies that at most three interior equilibria can
exist in Eq. (1), i.e., if x04r

k
and y04R

K
, then at least one,

and at most three interior equilibria exist; if x0or
k
and

y0oR
K
, then there must be a unique interior equilibrium;

and if x04r
k
and y0oR

K
, or x0or

k
and y04R

K
, then there is no

interior equilibrium, or there are one or two interior
equilibria. From theorem 1, the boundary equilibrium ðr

k
; 0Þ

is locally asymptotically stable if and only if r
k
ox0; the
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Fig. 2. Three types of interior equilibria are defined: (a) for dy
dxðL%

1
Þ
o0 and dy

dxðL%
2
Þ
o0, the interior equilibrium is CP; (b) for dy

dxðL%
1
Þ
40 and dy

dxðL%
2
Þ
40, the

interior equilibrium is MP; and (c) for dy
dxðL%

1
Þ
o0 and dy

dxðL%
2
Þ
40, or dy

dxðL%
1
Þ
40 and dy

dxðL%
2
Þ
o0, the interior equilibrium is HP.
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boundary equilibrium ð0; R
K
Þ is locally asymptotically stable

if and only if R
K
oy0. On the other hand, from Eq. (3), we

know also that dy
dxðL�

1
Þ
40 if y�oy1ð¼

a
2c
Þ and dy

dxðL�
1
Þ
o0 if

y�4y1, and that d
dxðL�

2
Þ
40 if x�ox2ð¼

b
2d
Þ and dy

dxðL�
2
Þ
o0 if

x�4x2. We will show that this result provides a basic
relationship between the position of an interior equilibrium
ðx�; y�Þ and its stability.

In order to determine analytically the existence of an
interior equilibrium, let

x̂ ¼ x�
b

2d
; ŷ ¼ y�

a

2c
. (4)

Then, Eq. (2) can be expressed equivalently as

x̂4
þ px̂2

þ qx̂þ g ¼ 0, (5)

where

p ¼
2K

d

a

2c
�

R

K
�

b2

4dK

� �
,

q ¼
K2k

cd2
40,

g ¼ q
b

2d
�

r

k
�

a2

4ck

� �
þ

c

k

a

2c
�

R

K
�

b2

4dK

� �2
" #

. ð6Þ

Let x̂1, x̂2, x̂3 and x̂4 denote the four possible roots of
Eq. (5). Then, we must have

P4
i¼1 x̂i ¼ 0 and

Q4
i¼1 x̂i ¼ g.

Eq. (10) can be factorized as

ðx̂2
þ a1x̂þ b1Þðx̂

2
þ a2x̂þ b2Þ ¼ 0, (7)

where a1 þ a2 ¼ 0, a1a2 þ b1 þ b2 ¼ p, a1b2 þ a2b1 ¼ q,
and b1b2 ¼ g, i.e.,

a2 ¼ � a1,

b1 ¼
1

2
pþ a2

1 �
q

a1

� �
,

b2 ¼
1

2
pþ a2

1 þ
q

a1

� �
ð8Þ
and

a6
1 þ 2pa4

1 þ ðp
2 � 4gÞa2

1 � q2 ¼ 0. (9)

It is easy to see that Eq. (9) has at least two real roots about
a1. Let a ¼ a2

1 þ
2p
3
. Then, Eq. (9) can be rewritten as

a3 þ ~paþ ~q ¼ 0, (10)

where

~p ¼ �
1

3
p2 � 4g,

~q ¼ �
2

27
p3 þ

8

3
pg� q2. ð11Þ

Eq. (10) has three roots, denoted by a1, a2 and a3 with

a1 ¼ ðx̂1 þ x̂2Þ
2
þ

2p

3
,

a2 ¼ ðx̂1 þ x̂3Þ
2
þ

2p

3
,

a3 ¼ ðx̂1 þ x̂4Þ
2
þ

2p

3
.

Clearly, Eq. (10) has one real root if D40; it has two
different real roots if D ¼ 0; and it has three different real
roots if Do0, where

D ¼
~q

2

� �2

þ
~p

3

� �3

. (12)

This implies that Eq. (5) has at most two real roots if D40;
it has one or three real roots if D ¼ 0; and it has no real
root or four real roots if Do0. Thus, for the existence of
interior equilibria in Eq. (1), we have the following result:

Result 1. (i) For D40, there is one interior equilibrium if
both boundary equilibria ðr

k
; 0Þ and ð0; R

K
Þ are unstable (see

Fig. 3d–f), or no interior equilibrium can exist if either ðr
k
; 0Þ

or ð0; R
K
Þ is stable but the other unstable; (ii) for D ¼ 0, there

are two interior equilibria if both ðr
k
; 0Þ and ð0; R

K
Þ are

unstable (see Fig. 4c, d), or there is one interior equilibrium
if either ðr

k
; 0Þ or ð0; R

K
Þ is stable but the other unstable (see

Fig. 3b, c), or no interior equilibrium can exist if both ðr
k
; 0Þ

and ð0; R
K
Þ are stable; and (iii) for Do0, there are three

interior equilibria if both ðr
k
; 0Þ and ð0; R

K
Þ are unstable (see

Fig. 5), or there are two interior equilibria if either ðr
k
; 0Þ or
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Fig. 3. The situation with only one interior equilibrium: (a)–(c) for r
k
4x0 and R

K
4y0, or r

k
4x0 and R

K
oy0, or r

k
ox0 and R

K
4y0, the interior equilibrium is an

unstable CP. (d)–(f); for r
k
ox0 and R

K
oy0, the interior equilibrium is a stable HP, or CP, or MP.

Fig. 4. The situation with two interior equilibria: (a)–(d) for r
k
4x0 and

R
K
oy0, or r

k
ox0 and R

K
4y0, or r

k
ox0 and R

K
oy0, one of the two interior

equilibria is a stable HP, and other a unstable CP.
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ð0; R
K
Þ is stable but the other unstable (see Fig. 4a, b), or

there is one interior equilibrium if both ðr
k
; 0Þ and ð0; R

K
Þ are

stable (see Fig. 3a).
For the local asymptotic stability of an interior
equilibrium ðx�; y�Þ, and the existence of the periodic
solutions, we have the following two theorems:

Theorem 2. An interior equilibrium of Eq. (1), ðx�; y�Þ, is

locally asymptotically stable if and only if

dy

dxðL�
1
Þ

 !�1
dy

dxðL�
2
Þ
o1. (13)

Proof. The Jacobian matrix of Eq. (1) about an interior
equilibrium ðx�; y�Þ, denoted by J, is given by

J ¼
�kx� x�ða� 2cy�Þ

y�ðb� 2dx�Þ �Ky�

 !

¼

�kx� kx�
dy

dxðL�
1
Þ

 !�1

Ky�
dy

dxðL�
2
Þ

�Ky�

0
BBBBB@

1
CCCCCA. ð14Þ

Since the eigenvalues of the Jacobian matrix J are

l1;2 ¼
1

2
� ðkx� þ Ky�Þ

2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx� þ Ky�Þ2 � 4kKx�y� 1�

dy

dxðL�
1
Þ

 !�1
dy

dxðL�
2
Þ

0
@

1
A

vuuut
3
75,
ð15Þ
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Fig. 5. The situation with three interior equilibria. Two of the interior

equilibria are stable HPs, and other one an unstable CP.
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the interior equilibrium ðx�; y�Þ is locally asymptotically
stable if

dy

dxðL�
1
Þ

 !�1
dy

dxðL�
2
Þ
o1. (16)

For the situation with

dy

dxðL�
1
Þ

 !�1
dy

dxðL�
2
Þ
¼ 1, (17)

i.e., one of the eigenvalues of the Jacobian matrix J is zero
and the other one negative, the interior equilibrium ðx�; y�Þ
must be unstable (see Appendix B). &

Theorem 3. For the dynamics given by Eq. (1), the existence

of periodic solutions is impossible.

Proof. Let cðx; yÞ ¼ 1
xy
, which is called the Dulac function.

Notice that

@ðcPÞ

@x
þ
@ðcQÞ

@y
¼ �

k

y
�

K

x
o0 (18)

for all possible x40 and y40, where P ¼ dx
dt

and Q ¼ dy
dt
.

Thus, from the Bendixson–Dulac theorem, no periodic
solutions can exist in Eq. (1). &

Theorem 3 implies that if there is only one interior
equilibrium in Eq. (1) and it is locally asymptotically
stable, then it must be globally asymptotically stable. It is
necessary to point out that if more than one interior
equilibria exist but only one interior equilibrium is locally
asymptotically stable, then Theorem 3 does not mean that
this locally stable equilibrium must be also globally stable.

According to the definition about the types of interior
equilibria, it is easy to see that if an interior equilibrium
ðx�; y�Þ is a HP, then it must be locally asymptotically
stable. In general, three possible situations have to be
considered. Firstly, for the situation with only one interior
equilibrium, we have the result:

Result 2. (i) For r
k
4x0 and R

K
4y0, only one interior

equilibrium must exist, and it is unstable since it is a CP
with ðdy
dxðL�

1
Þ
Þ
�1dy

dxðL�
2
Þ
41 (see Fig. 3a); (ii) for r

k
4x0 and R

K
oy0,

or r
k
ox0 and R

K
4y0, if there is only one interior equilibrium,

then, about this interior equilibrium, we must have
dy
dxðL�

1
Þ
¼

dy
dxðL�

2
Þ
, i.e., it must be unstable (see Fig. 3b, 3c);

and (iii) for r
k
ox0 and R

K
oy0, if only one interior equilibrium

exists, then it must be globally asymptotically stable since

at this interior equilibrium we must have ðdy
dxðL�

1
Þ
Þ
�1 dy

dxðL�
2
Þ
o1

(see Fig. 3d–f). It is necessary to point out that if a MP
exists, then it must be unique and must be asymptotically
stable since a MP satisfies x�o b

2d
and y�o a

2c
, and the two

non-trivial boundaries are unstable if MP exists.

Secondly, for the situation with two interior equilibria,
we have the result:

Result 3. (i) For r
k
4x0 and R

K
oy0, or r

k
ox0 and R

K
4y0, if there

are two interior equilibria, then one of the interior equilibria
is a HP and the other one a CP, where the HP is locally
asymptotically stable, but the CP is unstable since at the CP

the inequality ðdy
dxðL�

1
Þ
Þ
�1 dy

dxðL�
2
Þ
41 holds (see Fig. 4a, b); and

(ii) for r
k
ox0 and R

K
oy0, if there two interior equilibria, then

one of the interior equilibria is a HP and the other one the

interior equilibrium with ðdy
dxðL�

1
Þ
Þ
�1 dy

dxðL�
2
Þ
¼ 1, where the HP is

globally asymptotically stable, but the later is unstable (see
Fig. 4c, 4d).

Finally, for the situation with three interior equilibria,
we have the result:

Result 4. For r
k
ox0 and R

K
oy0, if there exist three interior

equilibria, then two of them are HPs, and another one a
CP, where the HPs must be locally asymptotically stable
but the CP is unstable since at the CP the inequality
ð
dy
dxðL%

1
Þ
Þ
�1 dy

dxðL%

2
Þ
41 holds (see Fig. 5).

The above results show that if an interior equilibrium is a
HP or a MP, then it must be locally asymptotically stable;
and if an interior equilibrium is a CP, then it can be stable
or unstable.

3. Summary

May (1973) pointed out that for population models in
deterministic environments, with the environmental para-
meters all well-defined constants, one is interested in the
community equilibria where all the species’ populations
have time-independent values, that is where all net growth
rates are zero. Such an equilibrium may be called stable if,
when the populations are perturbed, they in time return to
their equilibrium values; the return may be achieved either
as damped oscillations or monotonically. In this paper,
following Hernandez (1998) and Zhang (2003), the stability
of a simple two-species system with transitions between
population interactions is investigated. Our main goal is to
show the effects of transitions between different population
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interactions on the two-species coexistence, and on the
stability conditions of the multiple equilibria.

In Eq. (1), the inter-specific interactions are dependent of
the system state, and it offers the possibility of a change in
the kind of inter-specific interactions due to the variation in
population densities, i.e., a� cy40 (a� cyo0) if yoa

c

(y4a
c
), and b� dx40 (b� dxo0) if xob

d
(x4b

d
). Three

possible kinds of inter-specific interactions are defined as:

(i) competition if y4a
c
and x4b

d
, ‘‘ð�;�Þ’’; (ii) mutualism if

yoa
c
and xob

d
, ‘‘ðþ;þÞ’’; and (iii) host–parasite (prey–

predator) if yoa
c
and x4b

d
, ‘‘ðþ;�Þ’’, or if y4a

c
and xob

d
,

‘‘ð�;þÞ’’.
Eq. (1) has three boundary equilibria, which are ð0; 0Þ,
ðr
k
; 0Þ and ð0; R

K
Þ, where ð0; 0Þ is called the trivial boundary

equilibrium and it must be unstable. For the non-trivial
boundary equilibria ðr

k
; 0Þ and ð0; R

K
Þ, Theorem 1 shows that

ðr
k
; 0Þ is locally asymptotically stable if and only if

Rþ r
k
ðb� rd

k
Þo0, and, similarly, ð0; R

K
Þ is locally asymptoti-

cally stable if and only if rþ R
K
ða� Rc

K
Þo0. Obviously, if

cpðK
R
Þ
2
ðrþ Ra

K
Þ and dpðk

r
Þ
2
ðRþ rb

k
Þ, then both two non-

trivial boundary equilibria must be unstable. As a
special case, if c ¼ 0 and d ¼ 0, then the inter-specific
relationship is mutualistic symbiosis, ‘‘ðþ;þÞ’’, for all
possible x40 and y40. This implies that when one of
two populations is at low density but the other at high
density, i.e., when the system state is near a non-trivial
boundary equilibrium, mutualism will be useful for
preventing the exclusion of the rare species. But this does
not mean that the stability of a two-species coexistence
equilibrium depends only on the stability of the non-trivial
boundary equilibria.

For Eq. (1), on the x–y phase plane, L1 represents the
isocline for dx=dt ¼ 0, and L2 the isocline for dy=dt ¼ 0.
The slopes of the two zero isoclines L1 and L2 at an interior

equilibrium ðx%; y%Þ are denoted by dy
dxðL%

1
Þ
and dy

dxðL%

2
Þ
,

respectively. According to the signs of dy
dxðL%

1
Þ
and dy

dxðL%

2
Þ
,

three possible types of the interior equilibria are defined as:

(i) CP, if both dy
dxðL%

1
Þ
and dy

dxðL%

2
Þ
are negative; (ii) MP, if both

dy
dxðL%

1
Þ
and dy

dxðL%

2
Þ
are positive; and (iii) HP, if dy

dxðL%

1
Þ
40 and

dy
dxðL%

2
Þ
p0, or if dy

dxðL%

1
Þ
o0 and dy

dxðL%

2
Þ
X0. In Eq. (1), at most

three interior equilibria can exists, i.e., the existence of

multiple equilibria is possible (see Result 1 in the subsection

2.3). From the Theorem 2, an interior equilibrium is locally

asymptotically stable if and only if ðdy
dxðL%

1
Þ
Þ
�1dy

dxðL%

2
Þ
o1.

Notice that dy
dxðL%

1
Þ
40 (dy

dxðL%

1
Þ
o0) if y%o a

2c
(y%4 a

2c
), and

dy
dxðL%

2
Þ
40 (dy

dxðL%

2
Þ
o0) if x%o b

2d
(x%4 b

2d
). Thus, if an interior

equilibrium is a HP, or a MP, then it must be locally

asymptotically stable, and if it is a CP, then it can be stable
or unstable (see Results 2–4 in the subsection 2.3). Finally,
for the existence of periodic solutions in Eq. (1), the
Theorem 3 shows that it is impossible.
However, the inter-specific relationship is always one of
the most important theoretical topics in population and
community ecology. In nature, the complexity of the inter-
specific relationship should be very important for the
coexistence of multiple species. In this paper, we consider
only a very simple theoretical model with the possibility of
switching from one kind of inter-specific interaction to
another, i.e., undergoing transitions between different
interactions, due to the variation in population densities.
For Eq. (1), the results about the stability of boundary
equilibria strongly support Zhang’s (2003) opinion, i.e.,
mutualism will promote the two-species coexistence. This
result implies that the evolution of mutualism may
contribute to the multiple species coexistence and stability
of ecosystem, and that mutualism may be favored by
natural selection.

Appendix A

For the situation with Rþ r
k
ðb� rd

k
Þ ¼ 0, around ðr

k
; 0Þ

Eq. (1) can be approximated as

dx̂

dt
¼ � rx̂þ Fðx̂; ŷÞ,

dŷ

dt
¼ Cðx̂; ŷÞ, ð19Þ

where x̂ ¼ x� r
k
�

ay
k
, ŷ ¼ y, and

Fðx̂; ŷÞ ¼ � kx̂2
� ax̂ŷ�

rc

k
ŷ2
� cx̂ŷ2

�
ac

k
ŷ3
�

a

k
Cðx̂; ŷÞ,

Cðx̂; ŷÞ ¼ � K þ
adr

R2
þ

Ra

r

� �
ŷ2
�

dr

k
þ

Rk

r

� �
x̂ŷ

� dx̂2ŷ� 2
da

k
x̂ŷ2
�

a2d

k2
ŷ3. ð20Þ

From the center manifold theory (Carr, 1981), there exists
a local center manifold x̂ ¼ hðŷÞ with hð0Þ ¼ 0 and
h0ð0Þ ¼ 0, i.e., hðŷÞ can be expressed as

hðŷÞ ¼ h2ŷ2
þ h3ŷ

3
þ h4ŷ4

� � � . (21)

Notice that x̂ ¼ hðŷÞ satisfies

� r
X1
j¼2

hjŷ
j
þ F

X1
j¼2

hjŷ
j ; ŷ

 !

¼
X1
j¼2

jhjŷ
j�1

 !
C

X1
j¼2

hjŷ
j ; ŷ

 !
, ð22Þ

i.e., the coefficients h2; h3; h4; . . . can be determined by
Eq. (22). From Eqs. (19) and (20), the solution on the local
center manifold satisfies the equation

dŷ

dt
¼ � K þ

adr

R2
þ

Ra

r

� �
ŷ2
þCðhðŷÞ; ŷÞ. (23)

Since K þ adr

R2 þ
Ra
r
40, the boundary equilibrium ðr

k
; 0Þ is

unstable if Rþ r
k
ðb� rd

k
Þ ¼ 0.
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Appendix B

For the situation with

dy

dxðL�
1
Þ

 !�1
dy

dxðL�
2
Þ
¼ 1, (24)

i.e., one of the eigenvalues of the Jacobian matrix J is
zero and the other one negative, notice that about ðx�; y�Þ
Eq. (1) can be approximated as

dx̂

dt
¼ Ax̂þ Bŷþ F ðx̂; ŷÞ,

dŷ

dt
¼ Cx̂þDŷþ Gðx̂; ŷÞ, ð25Þ

with AD� BC ¼ 0, where x̂ ¼ x� x�, ŷ ¼ y� y�, and

A ¼ � kx�,

B ¼ kx�
dy

dxðL�
1
Þ

 !�1
,

C ¼ Ky�
dy

dxðL�
2
Þ
,

D ¼ � Ky�, ð26Þ

and

F ðx̂; ŷÞ ¼ � kx̂2
þ ða� 2cy�Þx̂ŷ� cx�ŷ2

� cx̂ŷ2

¼
A

x�
x̂2
� cx�ŷ2

þ
B

y�
x̂ŷ� cx̂ŷ2,

Gðx̂; ŷÞ ¼ � dy�x̂2
þ ðb� 2dx�Þx̂ŷ� Kŷ2

� dx̂2ŷ

¼ � dy�x̂2
þ

D

y�
ŷ2
þ

C

y�
x̂ŷ� dx̂2ŷ. ð27Þ

Thus, the transformation

~x ¼ Aŷ� Cx̂,

~y ¼ ðAþDÞŷ� ~x,

t ¼ ðAþDÞt ð28Þ

implies that

d ~x

dt
¼

AGðx̂; ŷÞ � CF ðx̂; ŷÞ

AþD

¼ ~F ð ~x; ~yÞ,

d ~y

dt
¼ ~yþ

DGðx̂; ŷÞ þ CF ðx̂; ŷÞ

AþD

¼ ~yþ ~Gð ~x; ~yÞ, ð29Þ

where x̂ ¼ A ~y�D ~x
CðAþDÞ

and ŷ ¼ ~xþ ~y
AþD

. Similarly to the analysis in

the proof of Theorem 1, there exists a local center manifold
~y ¼ hð ~xÞ ¼

P1
j¼2 hj ~x

j with hð0Þ ¼ and h0ð0Þ ¼ 0, and hð ~xÞ
satisfies

hð ~xÞ þ ~Gð ~x; hð ~xÞÞ ¼ h0ð ~xÞ ~F ð ~x; hð ~xÞÞ. (30)

On this manifold, we have

d ~x

dt
¼ ~F ð ~x; hð ~xÞÞ ¼ a ~x2 þ oð ~x3Þ, (31)
where

a ¼ ðAþDÞ�3 �
AD2

C2
dy� þ Ccx�

� �
. (32)

If �AD2

C2 dy� þ Ccx� ¼ 0 holds, then we have

�Kdða� 2cy�Þ ¼ cðb� 2dx�Þ2. (33)

Notice that AD� BC ¼ 0, i.e.,

ða� 2cy�Þ3 ¼
k2Kc

d
,

ðb� 2dx�Þ3 ¼
kK2d

c
, ð34Þ

and that Eq. (2) can be expressed as

ða� 2cy�Þ2 ¼ 4c r� kx� þ
a2

4c

� �
,

ðb� 2dx�Þ2 ¼ 4d R� Ky� þ
b2

4d

� �
. ð35Þ

Then, we must have

3ða� 2cy�Þ2

4ck
¼

r

k
þ

a2

4ck
�

b

2d
,

3ðb� 2dx�Þ2

4dK
¼

R

K
þ

b2

4dK
�

a

2c
, ð36Þ

i.e., it also implies that

r

k
þ

a2

4ck
�

b

2d
¼

3

4

kK2

cd2

� �1=3

,

R

K
þ

b2

4dK
�

a

2c
¼

3

4

k2K

c2d

� �1=3

, ð37Þ

and

4c

3k

R

K
þ

b2

4dK
�

a

2c

� �2

¼
r

k
þ

a2

4ck
�

b

2d
. (38)

Thus, if �AD2

C2 dy� þ Ccx� ¼ 0 holds, then g ¼ K2

3d
ðR
K
þ b2

4dK
�

a
2c
Þ
2 in Eq. (6) that means ~p ¼ 0 and ~q ¼ 0 in Eq. (11), i.e.,

D ¼ 0 in Eq. (13). This implies that Eq. (2) should have a
unique real root. But this contradicts that two parabolas L1

and L2 have at least two interactions. Thus, we have aa0,
i.e., an interior equilibrium ðx�; y�Þ is unstable if
ð
dy
dxðL�

1
Þ
Þ
�1dy

dxðL�
2
Þ
¼ 1.
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