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Abstract

Stochastic noise in gene expression arises as a result of species in small copy number undergoing transitions between discrete chemical

states. Here the noise in a single gene network is investigated using the O-expansion techniques. We show that the linear noise

approximation implies an invariant relationship between the normalized variances and normalized covariance in steady-state statistics.

This invariant relationship provides an exactly statistical interpretation for why the stochastic noise in gene expression should be

measured by the normalized variance. The nature of the normalized variance reveals the basic relationship between the stochasticity and

system size in gene expression. The linear noise approximation implies also that for both mRNA and protein, the total noise can be

decomposed into two basic components, one concerns the contribution of average number of molecules, and other the contribution of

interactions between mRNA and protein. For the situation with linear feedback, our results clearly show that for two genes with the

same average number of protein molecules, the gene with negative feedback will have a small protein noise, i.e., the negative feedback will

reduce the protein noise. For the effect of the burst size on the protein noise, we show also that the protein intrinsic noise will decrease

with the increase of the burst size, but the protein extrinsic noise is independent of the burst size.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Paulsson (2004) pointed out that random fluctuations in
genetic networks are inevitable as chemical reactions are
probabilistic and many genes, RNAs and proteins are
present in low numbers per cell. In order to identify the
sources of noise in gene expression, Ozbudark et al. (2002)
incorporated a single fluorescent reporter gene, the green
fluorescent protein gene (gfp), into the chromosome of
Bacillus subtilis, varied independently the rates of tran-
scription and translation of the reporter gene, and
quantitatively measured the resulting changes in the
phenotypic noise characteristics. Their result provides the
first direct experimental evidence of the biochemical origin
of phenotypic noise, demonstrating that the level of
phenotypic variation in an isogenic population can be
regulated by genetic parameters. This result is consistent
e front matter r 2007 Elsevier Ltd. All rights reserved.
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with a long-standing hypothesis that protein fluctuations
depend on the number of proteins made per mRNA
transcript (Paulsson, 2004; Thattai and van Oudenaarden,
2001; McAdams and Arkin, 1997; Rigney and Schieve,
1977; Berg, 1978; Paulsson and Ehrenberg, 2000, 2001).
Elowitz et al. (2002) instead inserted two types of gfp into
the Escherichia coli chromosome and used correlation
between them to infer where the fluctuations came from
(Paulsson, 2004). Blake et al. (2003) investigated the
stochastic gene expression in Saccharomyces cerevisiae.
They showed that stochasticity arising from transcription
contributes significantly to the level of heterogeneity within
a eukaryotic clonal population, in contrast to observations
in prokaryotes, (Ozbudark et al., 2002) and that such noise
can be modulated at the translation level. They suggested
that eukaryotes differ from prokaryotes because promoter
fluctuations and transcriptional reinitiation produce a non-
monotonous transcription noise (see also Paulsson, 2004).
An important issue for biological systems is how gene

regulation is controlled given its stochastic nature. Becski
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and Serrano (2000) designed and constructed a simple
genetic circuit consisting of a regulator and transcriptional
repressor modules in E. coli, and demonstrated an inc-
rease in stability produced by negative feedback. Becski
et al. (2001) used a positive feedback to construct a
synthetic gene switch in S. cerevisiae. Thattai and van
Oudenaarden developed a theoretical framework to
investigate the stochastic noise in gene regulatory net-
works (Paulsson, 2004, see also Ozbudark et al., 2002;
Thattai and van Oudenaarden, 2002; Tao, 2004; Tao et al.,
2005) and they suggested that the noise can be measured
by the Fano factor, which is defined as the ratio of variance
to average, because the Fano factor of an arbitrary
stochastic system reveals deviations from Poissonian
behavior. A similar model was analyzed independently by
Paulsson et al. (2000) (see also Paulsson and Ehrenberg,
2001; Berg et al., 2000). They calculated the stationary
distribution for geometrically distributed translation
bursts, and formulated the variance over squared ave-
rage in terms of internal and time-averaged external
fluctuations.

Recently, Paulsson (2004, 2005) interpreted the fluctua-
tion–dissipation theorem (linear noise approximation) in
gene expression. He suggested that the noise in gene
expression should be measured by the variance over
squared average rather than the Fano factor. Because of
that, in statistics, the variance should be normalized by the
squared average since the variance is a second order
moment. On the other hand, he pointed out that the Fano
factor only works well for univariate discrete random
process, where the variance often is proportional to the
average with a proportionality constant that reflects the
overall nature of the process, and for multivariate random
processes, the Poisson distribution holds no special
position and using the Fano factor can be misleading.
For the noise decomposition, Paulsson illustrated that all
cell components display intrinsic noise due to random
births and deaths of individual molecules, and extrinsic
noise due to fluctuations in reaction rates, and that the
terms ‘‘intrinsic’’ and ‘‘extrinsic’’ generically distinguish
between the origin and propagation of noise, and their
biological meaning is always defined in conjunction with a
specified component or process. For the mRNA–protein
and gene–mRNA–protein models, Paulsson (2004, 2005)
showed that the intrinsic noise depends on the average
number of molecules and how systematic adjustments
quench spontaneous fluctuations.

In this paper, a single gene regulatory network is
investigated. Our main goal is to show how the feedback
regulation acts on the stochastic noise in gene expression.
Actually, this model has been studied by some authors, but
here we will focus our attention on why we should use the
normalized variance (variance over squared average) to
measure the noise rather than the Fano factor, on what the
extrinsic noise means in statistics if the noise is measured
by the normalized variance, and on how the linear and
nonlinear feedback acts on the noise.
2. Theory

2.1. Single gene network

Consider a single gene regulatory network (i.e., mRNA–
protein system), where the concentrations of mRNA and
protein at time t are denoted by rðtÞ and pðtÞ, respectively.
The macroscopic rates equation is given by

dr

dt
¼ sþr ðpÞ � s�r ðrÞ,

dp

dt
¼ sþp ðrÞ � s�p ðpÞ, ð1Þ

where s�r and s�p are the macroscopic rates of mRNA and
protein with s�r ðrÞ ¼ r=tr and s�p ðpÞ ¼ p=tp where tr and tp

are the lifetimes of mRNA and protein molecules,
respectively. The term sþr ðpÞ in Eq. (1) represents the
feedback of protein on the transcription. For this system,
we assume that there is at least one asymptotically stable
fixed point, denoted by ðr%; p%Þ.
2.2. Linear noise approximation

Let O be the size parameter of the system (normally, this
parameter is defined as the volume) (van Kampen, 1992).
The numbers of mRNA and protein molecules can be
expressed as nr ¼ Or and np ¼ Op. For the stochastic
fluctuations in mRNA and protein numbers, the probabil-
ities of having nr mRNAs and np proteins are described by
a birth-and-death Markov process with events

nr!
S�r

nr � 1,

np!
S�p

np � 1,

where S�r ¼ Os�r and S�p ¼ Os�p are the mesoscopic rates.
According to Paulsson (2004), use Hr;r ¼ q lnðS�r =Sþr Þ=
q lnðnrÞ to measure how the balance between production
and elimination of mRNA is affected by itself. Similarly,
we have also Hr;p, Hp;r, and Hp;p.
Let Fðnr; np; tÞ be the joint probability distribution that

the number of mRNAs and proteins equal exactly nr and np

at time t. The master equation of Fðnr; np; tÞ is

qtFðnr; np; tÞ ¼ O ðEþr � 1Þs�r
nr

O

� �
Fþ ðE�r � 1Þsþr

np

O

� �
F

h
þðEþp � 1Þs�p

np

O

� �
Fþ ðE�p � 1Þsþp

nr

O

� �
F
i
,

ð2Þ

where the symbol E is the step operator, which is defined as
E�gðnÞ ¼ gðn� 1Þ. From van Kampen (1992), the joint
probability distribution Fðnr; np; tÞ can be anticipated to
have a sharp maximum around the macroscopic values
nrðtÞ ¼ OrðtÞ and npðtÞ ¼ OpðtÞ determined by Eq. (1) with
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the width of order n
1=2
r ; n1=2

p �O1=2. Let

nr ¼ OrðtÞ þ O1=2xr,

np ¼ OpðtÞ þ O1=2xp, ð3Þ

where rðtÞ and pðtÞ are the solutions of Eq. (1), and xr and
xp are two new variables associated with number fluctua-
tions. The joint probability distribution Fðnr; np; tÞ is
now rewritten as the function of xr and xp, i.e.,
Fðnr; np; tÞ ¼ Cðxr; xp; tÞ. Using the O-expansion (van
Kampen, 1992), we have

qC
qt
¼ �

q
qxr

�
ds�r ðrÞ

dr
xr þ

dsþr ðpÞ

dp
xp

� �
C

þ
1

2
ðsþr ðpÞ þ s�r ðrÞÞ

q2C

qx2r

�
q
qxp

dsþp ðrÞ

dr
xr �

ds�p ðpÞ

dp
xp

� �
C

þ
1

2
ðsþp ðrÞ þ s�p ðpÞÞ

q2C

qx2p
ð4Þ

(see Appendix). This equation is a linear Fokker–Planck
equation, whose coefficients depend on time t through rðtÞ

and pðtÞ, and it is called the linear noise approximation
(van Kampen, 1992) (also called the fluctuation–dissipa-
tion theorem in physics, Paulsson, 2004, 2005).

When the state of Eq. (1) is near the stable fixed point
ðr%; p%Þ, Eq. (4) can be approximated as

qC
qt
¼ �

q
qxr

ða11xr þ a12xpÞCþDr

q2C

qx2r

�
q
qxp

ða21xr þ a22xpÞCþDp

q2C

qx2p
ð5Þ

with boundary conditions

lim
xr;xp!�1

C ¼ lim
xr ;xp!�1

qC
qxr

¼ lim
xr;xp!�1

qC
qxp

¼ 0,

where Dr ¼ r%=tr, Dp ¼ p%=tp, and

a11 ¼ �
ds�r ðr

%Þ

dr
¼ �

Hr;r

tr

,

a12 ¼
dsþr ðp

%Þ

dp
¼ �

r%

p%
�

Hr;p

tr

,

a21 ¼
dsþp ðr

%Þ

dr
¼ �

p%

r%
�

Hp;r

tp

,

a22 ¼ �
ds�p ðp

%Þ

dp
¼ �

Hp;p

tp

.

Since the fixed point ðr%; p%Þ is asymptotically stable, the
matrix A ¼ ðaijÞ2�2 satisfies that a11 þ a22o0 and a11a22�

a12a2140. Notice that

dhxri

dt
¼ a11xr þ a12xp,

dhxpi

dt
¼ a21xr þ a22xp ð6Þ
and

dN
dt
¼ ANþ ðANÞT þ 2D, (7)

where N ¼ ðXijÞ2�2 with X11 ¼ hx
2
r i, X12 ¼ X21 ¼ hxrxpi and

X22 ¼ hx
2
pi, A ¼ ðaijÞ2�2 and D ¼ ðdijÞ2�2 with d11 ¼ Dr,

d12 ¼ d21 ¼ 0 and d22 ¼ Dp (see Appendix). Notice that
the expectations and variances of nr and np are hnri ¼ Or,
hnpi ¼ Op, s2r ¼ Ohx2r i and s2p ¼ Ohx2pi, respectively, and the
covariance of nr and np is Covðnr; npÞ ¼ Ohxrxpi. Thus, the
statistics around a stable fixed point ðr%; p%Þ can be
determined by the stationary solutions of Eqs. (6) and (7).

3. Results

3.1. Steady-state statistics

From the stationary solutions of Eqs. (6) and (7), the
steady-state statistics around a stable fixed point follow

s2r
hnri

2
�

Hp;r

tp

þ
Covðnr; npÞ

hnrihnpi

Hr;r

tr

þ
Hp;p

tp

� �
þ

s2p
hnpi

2
�

Hr;p

tr

¼ 0

(8)

and

Hr;rHp;r
s2r
hnri

2
�

1

hnriHr;r

� �
¼ Hr;pHp;p

s2p
hnpi

2
�

1

hnpiHp;p

 !
,

(9)

where for both mRNA and protein, the variance over
squared average, i.e., s2r=hnri

2 and s2p=hnpi
2, is called the

normalized variance, and the term Covðnr; npÞ=ðhnrihnpiÞ is
called the normalized covariance, and where the variances,
s2r and s2p, and covariance, Covðnr; npÞ, are given by

s2r ¼
hnriðHr;rHp;p �Hr;pHp;rÞ=tr þ hnriH

2
p;p=tp þ ðhnri

2=hnpiÞH
2
r;p=tr

ðHr;r=tr þHp;p=tpÞðHr;rHp;p �Hr;pHp;rÞ
,

s2p ¼
hnpiðHr;rHp;p �Hr;pHp;rÞ=tp þ hnpiH

2
r;r=tr þ ðhnpi

2=hnriÞH
2
p;r=tp

ðHr;r=tr þHp;p=tpÞðHr;rHp;p �Hr;pHp;rÞ

ð10Þ

and

Covðnr; npÞ

¼ �
hnriHr;rHr;p=tr þ hnpiHp;rHp;p=tp

ðHr;r=tr þHp;p=tpÞðHr;rHp;p �Hr;pHp;rÞ
. ð11Þ

In the above equations, the terms Hr;r=tr þHp;p=tp and
Hr;rHp;p �Hr;pHp;r refer the locally asymptotical stability
of Eq. (1), i.e., for the Jacobian matrix of Eq. (1) about the
fixed point ðr�; p�Þ, the real parts of its eigenvalues are
negative if both the terms Hr;r=tr þHp;p=tp and Hr;rHp;p �

Hr;pHp;r are positive.
For noise measure, Paulsson expounded that the

variance over squared average is certainly a more suitable
basis for experimental interpretations since (i) in most
experimental studies so far the average number of proteins
per cell is too high to contribute substantial spontaneous
fluctuations; (ii) by plotting the variance over squared
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average as a function of the inverse average, any univariate
scaling behavior is easily identified without introducing
scaling problems for any extrinsic noise; (iii) the relevance
of a function typically depends on the normal size of the
system (Paulsson, 2004, 2005). On the other hand, Paulsson
also pointed out that in statistics the variance should be
normalized by the squared average since the variance is a
second order moment. Kaern et al. (2005) pointed out that
it is sometimes advantageous to use the Fano factor,
defined as the variance over average, as a different measure
for the stochasticity in gene expression, where the Fano
factor is called also the noise strength. They think of that
the noise-strength measure has proved useful as a tool to
interpret experimental data because of its ability to
discriminate between the rate of transcription and transla-
tional efficiency.

For the single gene regulatory network, Eq. (8) pro-
vides a statistical interpretation for why we should use
the normalized variance to measure the noise in gene
expression, i.e., there is an invariant relationship bet-
ween the normalized variances, s2r=hnri

2 and s2p=hnpi
2, and

the normalized covariance, Covðnr; npÞ=ðhnrihnpiÞ, that is
independent of any possible feedback regulation mec-
hanisms, and that of the average numbers of mRNA
and protein molecules. In Eq. (8), the term Hp;r=tp

represents a normalized effect, i.e., the effect of mRNA
on the balance between the elimination and pro-
duction of protein is normalized by the lifetime of protein.
Similarly, we have the identical interpretations for the
terms Hr;p=tr, Hr;r=tr and Hp;p=tp. For s2p=hnpi

2, we have
that

q
qhnpi

s2p
hnpi

2

 !

¼ �
1

hnpi
2
�
ðHr;rHp;p �Hr;pHp;rÞ=tp þH2

r;r=tr

ðHr;r=tr þHp;p=tpÞðHr;rHp;p �Hr;pHp;rÞ

o0, ð12Þ

i.e., (i) the normalized variance of protein will decrease
with the increase of the average number of protein
molecules; (ii) the change rate of s2p=hnpi

2 due to the
change of hnpi is independent of the average number of
mRNA molecules; and (iii) for large hnpi the change of
s2p=hnpi

2 due to the change of hnpi should be small. This
nature of s2p=hnpi

2 reveals the basic relationship between
the stochasticity and system size in single gene network. On
the other hand, if the Fano factor, i.e., the variance over
average, is used to measure the noise (Paulsson, 2004),
where the covariance should be normalized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnrihnpi

p
,

we will see that in statistics there is no an invariant
relationship between the Fano factors, s2r=hnri and s2p=hnpi,
and Covðnr; npÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnrihnpi

p
such that it is independent of the

average numbers of mRNAs and proteins. Obviously, this
is an explanation based on the viewpoint of statistics for
why using Fano factor to measure the noise can be
misleading. However, it is easy to see that the nature of the
Fano factor is different from the normalized variance. For
s2p=hnpi, we have that

q
qhnpi

s2p
hnpi

 !

¼
1

hnri
�

H2
p;r=tp

ðHr;r=tr þHp;p=tpÞðHr;rHp;p �Hr;pHp;rÞ

40, ð13Þ

i.e., (i) the Fano factor s2p=hnpi will increase with the
increase of the average number of protein molecules; (ii)
the change rate of s2p=hnpi due to the change of hnpi

depends on the average number of mRNAmolecules, but it
is independent of the average number of protein molecules;
and (iii) the change of s2p=hnpi due to the change of hnpi

should be linear. Evidently, as a noise measure, the Fano
factor might be sometimes convenient and useful for to
interpret experimental data (Kaern et al., 2005), but it
cannot characterize correctly the relationship between the
stochasticity and system size since the stochastic noise in
gene expression arise as a result of species in small copy
number undergoing transitions between discrete chemical
states (Paulsson, 2004).
3.2. Intrinsic and extrinsic noise

All cell components display intrinsic noise due to
random births and deaths of individual molecules, and
extrinsic noise due to fluctuations in reaction rates
(Paulsson, 2004). As pointed out by Paulsson (2005), from
a physical viewpoint, the terms ‘‘intrinsic’’ and ‘‘extrinsic’’
have no specific meaning other than ‘‘inside’’ and ‘‘out-
side’’, and thus always depend on the definition of system
versus environment. For the single gene regulatory net-
work Eq. (1), Eq. (7) implies that s2r=hnri

2 and s2p=hnpi
2 can

be expressed as

s2r
hnri

2
¼

1

hnriHr;r
�

Hr;p

Hr;r
�

Covðnr; npÞ

hnrihnpi
,

s2p
hnpi

2
¼

1

hnpiHp;p
�

Hp;r

Hp;p
�

Covðnr; npÞ

hnrihnpi
, ð14Þ

i.e., from a statistical viewpoint, for both mRNA and
protein the total noise can be decomposed into two basic
components, one concerns the contribution of average
number of molecules (system size), and other the contribu-
tion of interactions between mRNA and protein. Accord-
ing to Paulsson’s interpretation (Paulsson, 2004), for the
terms 1=ðhnriHr;rÞ and 1=ðhnpiHp;pÞ, Hr;r and Hp;p are
interpreted as the statistical bias to return to the average
rather than deviate further, and for the terms �Hr;p=Hr;r �

Covðnr; npÞ=ðhnrihnpiÞ and �Hp;r=Hp;p � Covðnr; npÞ=ðhnri

hnpiÞ, the factors Hr;p=Hr;r and Hp;r=Hp;p are called the
normalized susceptibility factors. On the other hand, notice
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that �Covðnr; npÞ=ðhnrihnpiÞ can be expressed as

�
Covðnr; npÞ

hnrihnpi

¼
Hr;rHp;p

Hr;rHp;p �Hr;pHp;r

1

hnpiHp;p
�

Hr;p

Hr;r
�

Hr;r=tr

Hr;r=tr þHp;p=tp

�

þ
1

hnriHr;r
�

Hp;r

Hp;p
�

Hp;p=tp

Hr;r=tr þHp;p=tp

�
, ð15Þ

where the factor Hr;rHp;p=ðHr;rHp;p �Hr;pHp;rÞ measures
the relative importance of Hr;rHp;p, i.e., if the feedback is
positive, then it will be less than one, and conversely, if the
feedback is negative, then it will be bigger than one, and
Hr;r=tr=ðHr;r=tr þHp;p=tpÞ and Hp;p=tp=ðHr;r=tr þHp;p=tpÞ

are the time-averages for mRNA and protein, respectively
(Paulsson, 2004). Hence, in Eq. (15), the term 1=ðhnpiHp;pÞ �

Hr;p=Hr;r �Hr;r=tr=ðHr;r=tr þHp;p=tpÞ represents how the
fluctuation in the number of protein molecules affects the
interactions between mRNA and protein, and the term
1=ðhnriHr;rÞ �Hp;r=Hp;p �Hp;p=tp=ðHr;r=tr þHp;p=tpÞ how
the fluctuation in the number of mRNA molecules affects
the interactions between mRNA and protein. Notice also
that the interactions between mRNA and protein in
statistics mainly reflect how the fluctuations in the reaction
rates are affected by the fluctuations in the numbers of
mRNA and protein molecules. Thus, for the mRNA–
protein system, we define that (i) the intrinsic noises of
mRNA and protein are measured by 1=ðhnriHr;rÞ and
1=ðhnpiHp;pÞ, respectively; and (ii) the extrinsic noises of
mRNA and protein are measured by �Hr;p=Hr;r �

Covðnr; npÞ=ðhnrihnpiÞ and�Hp;r=Hp;p �Covðnr; npÞ=ðhnrihnpiÞ,
respectively. According to this definition, for both mRNA
and protein, the extrinsic noise represents only how the
total noise deviates from the intrinsic noise. It is necessary
to point out that for the situation with no feedback
regulation, i.e., Hr;p ¼ 0, the mRNA extrinsic noise is zero,
and the protein extrinsic noise is

s2p
hnpi

2
�

1

hnpiHp;p
¼

s2r
hnri

2
�

H2
p;r

H2
p;p

�
Hp;p=tp

Hr;r=tr þHp;p=tp

, (16)

that reflects how the stochastic fluctuation in number of
mRNA molecules affects the protein noise. The situation
with no feedback has been discussed by Paulsson (2004).
Here, we mainly focus our attention on how the protein
noise is affected by the feedback regulation.
3.3. Effect of feedback regulation

In order to show clearly how the feedback regulation
acts on the noise, the macroscopic rate equation, Eq. (1), is
rewritten as

dr

dt
¼ �grþ f ðpÞ,

dp

dt
¼ k0r� g0p, ð17Þ
where g and g0 are the degradation rates of mRNA and
protein that are defined as g ¼ t�1r and g0 ¼ t�1p , k0 is the
translation rate of protein, and the function f ðpÞ represents
the feedback regulation on the transcription. For this
macroscopic rate equation, we still assume that there is at
least one stable fixed point. Around the stable fixed
point we have Hr;r ¼ Hp;p ¼ 1, Hp;r ¼ �1 and Hr;p ¼

�hbitpf 0ðp%Þ where f 0ðp%Þ ¼ df ðp%Þ=dp, and hbi is the
expected number of protein molecules produced per
mRNA transcript, which is defined as hbi ¼ k0=g and
called also the burst size (Paulsson, 2004; Thattai and van
Oudenaarden, 2001; McAdams and Arkin, 1997). Thus,
the total noise of protein can be expressed as

s2p
hnpi

2
¼

1

hnpi
þ

1

hbitpf 0ðp%Þ

s2r
hnri

2
�

1

hnri

� �
(18)

with f 0ðp%Þa0.
For the situation with linear feedback, f ðpÞ is taken as a

linear function,

f ðpÞ ¼ kpþ K0, (19)

where the parameter K0 is the fundamental transcription
rate, k40 and ko0 correspond to positive and negative
feedback, respectively, and the stable fixed point is
ðr%; p%Þ ¼ ðK0g0;K0k0Þ=ðgg0 � kk0Þ with gg0 � kk040. The
total noise of protein is given by

s2p
hnpi

2
¼

g0

OK0

1

hbi
þ

g� k

gþ g0

� �
, (20)

and the protein extrinsic noise is

s2p
hnpi

2
�

1

hnpi
¼

gðg0 þ kÞ

OK0ðgþ g0Þ
, (21)

where

1

hnpi
¼

OK0

hbi�1g0 � k

� ��1
(22)

with hbi�1g0 � k40. Obviously, for given parameters g, g0,
k0 and K0, the protein intrinsic noise, 1=hnpi, will increase
with the decrease of k, but the protein extrinsic noise,
s2p=hnpi

2 � 1=hnpi, will decrease with the decrease of k. This
implies that for given genetic parameters, the negative
feedback will have two opposite effects on the protein
noise, i.e., it will increase the protein intrinsic noise through
decreasing the average number of protein molecules, and
will reduce the protein extrinsic noise through damping the
fluctuations in reaction rates. Hence, for two genes with the
same parameters g, g0, k0 and K0, the gene with negative
feedback will have a large total noise in the number of
protein molecules. But it may be more interested biologi-
cally to compare the effect of negative feedback for two
genes with the same average number of protein molecules.
In this context, if we assume that the average number of
protein molecules is fixed, then the term OK0 in Eq. (19)
can be replaced by the term hnpiðhbi

�1g0 � kÞ, i.e., Eq. (20)



ARTICLE IN PRESS
Y. Tao et al. / Journal of Theoretical Biology 247 (2007) 827–836832
can be rewritten as

s2p
hnpi

2
¼

1

hnpi
�

g0

gþ g0
�
ðgþ g0Þ þ ðg� kÞhbi

g0 � hbik
(23)

with

q
qk

s2p
hnpi

2

 !
¼

1

hnpi
�

gg0

gþ g0
�
hbið1þ hbiÞ

ðg0 � hbikÞ2

40. ð24Þ

This means that for two genes with the same average
number of protein molecules, hnpi, the gene with negative
feedback will have a small total noise in the number of
protein molecules. This conclusion provides a reasonable
explanation in biology for the effect of negative feedback
on the protein noise. On the other hand, for both the
intrinsic noise and total noise, they will decrease with the
increase of burst size hbi, but the extrinsic noise is
independent of hbi. The above results show clearly how
the linear feedback acts on the protein noise.

The Monte Carlo simulation results for the situation
with linear feedback are plotted in Fig. 1a and b, where the
time unit for the simulation is minute, the protein half-life
is ln 2=g0 ¼ 60 min, and the mRNA half-life is
ln 2=g ¼ 2 min. In Fig. 1a, in order to show the effect of
negative feedback on the protein noise, two cases are
considered, i.e., (i) the fundamental transcriptional rate K0

is fixed at K0 ¼ 10 for different k values, that corresponds
to Eq. (20); and (ii) the average number of protein
molecules hnpi is fixed at hnpi ¼ 100 for different k values
where K0 ¼ hnpiðhbi

�1g0 � kÞ, that corresponds to Eq. (23).
In both cases, the bust size is taken as hbi ¼ k0=g ¼ 10, and
the parameter k is varied from �1 to �0:1 in increments of
0:1. In Fig. 1b the burst size hbi is varied from 1 to 14 in
increments of 1 where the parameter k is fixed at k ¼ �0:5.
The algorithm of the Monte Carlo simulation is from
Gillespie (1977) (see Appendix). The main results of the
Monte Carlo simulation show clearly that the theoretical
analysis is correct, i.e., for two genes with the same average
number of protein molecules, the gene with negative
feedback will have a small protein noise, but for two genes
with the same fundamental transcriptional rate, the gene
with negative feedback will have a big protein noise; and
the protein noise will decrease with the increase of burst
size hbi.

For the situation with nonlinear feedback, f ðpÞ is taken
as the Hill type function,

f ðpÞ ¼
kmax

1þ ðp=kdÞ
b (25)

with df ðpÞ=dpo0 for all possible values of p, where kmax is
the maximum of the transcription rate, kd is the dissocia-
tion constant that specifies the threshold protein concen-
tration at which the transcription rate is at half its
maximum value, and the parameter b is the Hill coefficient
and determines the steepness of the repression curve
(Paulsson, 2004). For example, the cl repressor protein
acts on the promoters PR and PRM of phage l with a kd

about 50 and 1000 nm, respectively (Thattai and van
Oudenaarden, 2001; Shea and Ackers, 1985). Typical
biological values b range from 1 (hyperbolic control) to
over 30 (sharp switching) (Thattai and van Oudenaarden,
2001). Around the stable fixed point, the total noise of
protein is

s2p
hnpi

2
¼

g0

hnpi

g0

hbi
� f 0ðp%Þ

� ��1
1

hbi
þ

g� f 0ðp%Þ

gþ g0

� �
, (26)

and the protein extrinsic noise is

s2p
hnpi

2
�

1

hnpi
¼

gðg0 þ f 0ðp%ÞÞ

hnpiðgþ g0Þ
g0

hbi
� f 0ðp%Þ

� ��1
, (27)

where

f 0ðp%Þ ¼ �
g0b
hbi

1�
g0p%

kmaxhbi

� �

that represents the strength of the negative feedback at the
stable fixed point. It is easy to see that the contribution of
the protein extrinsic noise to the total noise is negative if
g0 þ f 0ðp%Þo0.
Similarly to the situation with linear feedback, the

Monte Carlo simulation results for the nonlinear feedback
are plotted in Fig. 2a and b, that show how the Hill
coefficient b and the dissociation constant kd act on the
protein noise (see Appendix). The parameters g and g0 are
kept identical to Fig. 1, i.e., ln 2=g ¼ 2 min and
ln 2=g0 ¼ 60 min, the burst size and the maximum value
of transcription rate are taken as hbi ¼ 10 and kmax ¼ 3,
respectively. In Fig. 2a the Hill coefficient b is varied from
1 to 10 in increments of 1 where the dissociation constant is
fixed at kd ¼ 800, and in Fig. 2b the dissociation constant
kd is varied from 500 to 1400 in increments of 100 where
the Hill coefficient is fixed at b ¼ 5. The results show
clearly that the total noise of protein will decrease with the
increase of b, and it will increase with the increase of kd .
Obviously, the effects of the Hill coefficient and dissocia-
tion constant on the protein noise are completely different.

4. Conclusions

Gene expression is an inherently stochastic process. How
to measure and decompose noise in gene expression are
very important for identifying different sources of noise. In
this paper, a single gene network is investigated using the
O-expansion techniques (van Kampen, 1992). For the noise
measure, we show that the linear noise approximation (it is
called also the fluctuation–dissipation theorem in physics)
implies an invariant relationship between the normalized
variances, s2r=hnri

2 and s2p=hnpi
2, and the normalized

covariance, Covðnr; npÞ=ðhnrihnpiÞ, in steady-state statistics
(see Eq. (8)). Notice that this invariant relationship is
independent of any possible feedback regulation mechan-
isms and that of average numbers of mRNA and pro-
tein molecules. Thus, it provides an exactly statistical
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Fig. 1. (a) Noise control by the linear feedback. The total noise of protein is plotted versus the different values of the parameters k, where the case with

fixed fundamental transcription rate at K0 ¼ 10 is scaled on the left axis (solid line), and the case with fixed average number of protein molecules at

hnpi ¼ 100 is scaled on the right axis (dash line). The illustrations are given in the main text. (b) Noise control by the linear feedback. The total noise of

protein scaled on the left axis (solid line) and average number of proteins scaled on the right axis (dash line) are plotted versus the different values of burst

size hbi, respectively. The illustrations are given in the main text.
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interpretation for why the stochastic noise in gene
expression should be measured by the normalized variance.
For the nature of protein noise, s2p=hnpi

2, our analysis
shows that (i) s2p=hnpi

2 will decrease with the increase of
hnpi; and (ii) the change rate of s2p=hnpi

2 due to the change
of hnpi is independent of hnri, and for large hnpi the change
of s2p=hnpi

2 due to the change of hnpi should be small.
However, the nature of s2p=hnpi

2 reveals the basic relation-
ship between the stochasticity and system size. On the other
hand, for the noise decomposition, the linear noise
approximation implies also that for both mRNA and
protein, the total noise can be decomposed into two basic
components, one concerns the contribution of average
number of molecules (system size), and other the contribu-
tion of interactions between mRNA and protein. Accord-
ing to Paulsson (2004, 2005), for the single gene network
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(mRNA–protein system), we define that the intrinsic noises
of mRNA and protein are measured by 1=ðhnriHr;rÞ

and 1=ðhnpiHp;pÞ, respectively, and the extrinsic noises
of mRNA and protein are measured by �Hr;p=Hr;r �

Covðnr; npÞ=ðhnrihnpiÞ and �Hp;r=Hp;p � Covðnr; npÞ=
ðhnrihnpiÞ, respectively, since the interactions between
mRNA and protein in statistics mainly reflect the effect
of fluctuations in numbers of mRNA and protein
molecules on the biochemical reaction rates. For instance,
if there is no feedback, the protein extrinsic noise only
show that how the fluctuation in number of mRNA
molecules acts the protein noise (see Eq. (16) and Paulsson,
2004).
For the situation with linear feedback, our results show

that for the given parameters g, g0, K0, and k0, then the
negative feedback will have two opposite effects on the
protein noise, i.e., it will increase the protein in-
trinsic through decreasing the average number of protein
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molecules, but will reduce the protein extrinsic noise
through damping the fluctuations in biochemical reaction
rates. This implies that if two genes have the same genetic
parameters g, g0, K0, and k0, then the gene with negative
feedback will have a large protein noise. But, for two genes
with the same average number of protein molecules, the
gene with negative feedback will have a small protein noise,
i.e., the negative feedback will reduce the protein noise.
This conclusion should be more important in biology (see
Eqs. (23) and (24)). For the effect of the burst size hbi on
the protein noise, it is also easy to see that the protein
intrinsic noise will decrease with the increase of hbi but the
protein extrinsic noise is independent of hbi. The results of
Monte Carlo simulation for the linear feedback show
clearly that the theoretical analysis is correct (see Fig. 1a
and b). These results should be useful for identifying noise
sources from experimental data. For the situation with
nonlinear feedback where the Hill type function is taken as
the feedback function, we show that the effects of the Hill
coefficient b and dissociation constant kd on the protein
noise are completely different, i.e., the total noise of protein
will decrease with the increase of b (see Fig. 2a), and it will
increase with the increase of kd (see Fig. 2b).

Recently, for the future directions of stochastic gene
expression, Kaern et al. (2005) pointed out that there is a
clear need to address in great detail how gene expression
responds to fluctuations in signal transduction, how gene-
expression noise is transmitted through regulatory circuits
and control loops, and how the architecture of regulatory
networks allows cell to deal with or take advantage of
unreliable, fluctuating signals. Similarly, Paulsson (2005)
also pointed out that:
(i)
 There are no strong indications that genes, RNAs and
proteins are the critical molecules that contribute
small-number fluctuations.
(ii)
 Many enzyme and substrate concentrations are
statistically correlated. Such correlations may even
have evolved to suppress total protein fluctuations.
(iii)
 The discrete probabilistic events are assumed to be
exponential, yet we know that gene activation,
transcription and translation consist of numerous
small steps. Does this qualitatively change the nature
of the fluctuations in concentrations?
As an example for (ii), Paulsson assumed that a gene for a
certain protein is transcribed by a certain sigma factor. He
further assumed that the corresponding mRNA is de-
graded by an RNase that is transcribed by the same sigma
factor. A random increase in the concentration of the
sigma factor then increase both the synthesis and degrada-
tion rates of the mRNA, and the two effects could partially
cancel out. In this example, we are very interested in the
exact effect of the sigma factor on the stochastic fluctua-
tions in gene expression. If we assume that the concentra-
tion of the sigma factor is a random variable, and that the
decay and transcriptional rates of the mRNA are the
functions of the RNase and sigma factor, respectively, then
from the basic idea in Sections 2 and 3 we should be able to
identify the contributions of the sigma factor and correla-
tion between the sigma factor and RNase to the mRNA
and protein noises.
Appendix

Derivation of Eq. (4). For Eqs. (2) and (3), and the joint
probability distribution Fðnr; np; tÞ ¼ Cðxr; xp; tÞ, notice
that nr ! nr � 13xr ! xr � O�1=2 and np ! np � 13
xp ! xp � O�1=2, and that the Taylor expansions of the
step operators E�1r and E�1p are

E�1r ¼ 1� O�1=2
q
qxr

þ
1

2
O�1

q2

qx2r
� � � � ,

E�1p ¼ 1� O�1=2
q
qxp

þ
1

2
O�1

q2

qx2p
� � � � ð28Þ

(see van Kampen, 1992). The time derivative in Eq. (3) is
taken with constants nr and np, i.e., dxr=dt ¼ �O�1=2 dr=dt

and dxp=dt ¼ �O�1=2 dp=dt. Hence

qtF ¼
qC
qt
� O�1=2

dr

dt
�
qC
qxr

� O�1=2
dp

dt
�
qC
qxp

¼ O O�1=2
q
qxr

þ
1

2
O�1

q2

qx2r
þ � � �

 !"

�s�r ðrðtÞ þ O�1=2xrÞC

þ �O�1=2
q
qxr

þ
1

2
O�1

q2

qx2r
� � � �

 !

�sþr ðpðtÞ þ O�1=2xpÞC

þ O�1=2
q
qxp

þ
1

2
O�1

q2

qx2p
þ � � �

 !

�s�p ðpðtÞ þ O�1=2xpÞC

þ �O�1=2
q
qxp

þ
1

2
O�1

q2

qx2p
þ � � �

 !

�sþp ðrðtÞ þ O�1=2xrÞC

#
, ð29Þ

where the terms s�r ðrðtÞ þ O�1xrÞ, sþr ðpðtÞ þ O�1xpÞ,
s�p ðpðtÞ þ O�1xpÞ and sþp ðrðtÞ þ O�1xrÞ are taken their
Taylor expansions about xr ¼ 0 and xp ¼ 0, i.e.,

s�r ðrþ O�1=2xrÞ ¼ s�r ðrÞ þ O�1=2
ds�r ðrÞ

dr
xr þ � � � ,

sþr ðpþ O�1=2xpÞ ¼ sþr ðpÞ þ O�1=2
dsþr ðpÞ

dp
xp þ � � � ,

s�p ðpþ O�1=2xpÞ ¼ s�p ðpÞ þ O�1=2
ds�p ðpÞ

dp
xp þ � � � ,

sþp ðrþ O�1=2xrÞ ¼ sþp ðrÞ þ O�1=2
dsþp ðrÞ

dr
xr þ � � � .
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Collecting the terms in Eq. (20) of order O0, we have
Eq. (4).

Derivation of Eqs. (6) and (7). From Eq. (5) and its
boundary conditions, we have

dhxri

dt
¼

Z 1
�1

Z 1
�1

xr

qC
qt

dxr dxp

¼ a11hxri þ a12hxpi,

dhxpi

dt
¼

Z 1
�1

Z 1
�1

xp

qC
qt

dxr dxp

¼ a21hxri þ a22hxpi, ð30Þ

and

dhx2r i
dt
¼

Z 1
�1

Z 1
�1

x2r
qC
qt

dxr dxp

¼ 2a11hx
2
r i þ 2a12hxrxpi þ 2Dr,

dhxrxpi

dt
¼

Z 1
�1

Z 1
�1

xrxp

qC
qt

dxr dxp

¼ a21hx
2
r i þ ða11 þ a22Þhxrxpi þ a12hx

2
pi,

dhx2pi

dt
¼

Z 1
�1

Z 1
�1

x2p
qC
qt

dxr dxp

¼ 2a21hxrxpi þ 2a22hx
2
pi þ 2Dp. ð31Þ

Obviously, Eq. (31) can be equivalently expressed as
Eq. (7).

Monte Carlo simulations. The algorithm of Monte Carlo
simulations is from Gillespie (1977) for stochastic coupled
chemical reactions. In order to do the simulations, a
mesoscopic rate equation, that corresponds to Eq. (11), is
considered, i.e.,

dnr

dt
¼ �gnr þ f ðnpÞ,

dnp

dt
¼ k0nr � g0np. ð32Þ
The stochastic fluctuations in nr and np are described by a
birth-and-death process with events

nr�!
gnr

nr � 1,

nr�!
f ðnpÞ

nr þ 1,

np�!
g0np

np � 1,

np�!
k0nr

np þ 1,

where f ðnpÞ ¼ knp þ K0 for linear feedback, and f ðnpÞ ¼

kmaxð1þ ðnp=kdÞ
b
Þ
�1 for nonlinear feedback.
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