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The jumps in population size due to the occurrence of an unfavorable physical environment (e.g. the

effects of periodic climate disaster on the population size), or due to the intrinsic physiological and

reproductive mechanisms of the population (e.g. the seasonal reproduction of most animal

populations), can be called impulsive perturbations. A two-phenotype evolutionary game dynamics

with impulsive effects is investigated. The main goal is to show how the evolutionary game dynamics is

affected by the impulsive perturbations. The results show that the impulsive perturbations not only

result in periodic behavior, but also it is possible that an ESS strategy based on the traditional concept of

evolutionary stability can be replaced successfully by a non-ESS strategy.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The jumps in population size due to the occurrence of an
unfavorable physical environment (e.g. the effects of periodic
climate disaster on the population size), or due to the intrinsic
physiological and reproductive mechanisms of the population
(e.g. the seasonal reproduction of most wild animal populations),
are called impulsive perturbations. Theoretically, the Lotka–Vol-
terra systems with impulsive perturbations have been analyzed
by some authors using the theory of impulsive differential
equation (Laksmikantham et al., 1989; Bainov and Simeonov,
1993; Ballinger and Liu, 1997; Liu and Rohlf, 1998; Liu and Chen,
2003, 2004; Tang and Chen, 2003; Jin et al., 2004; Pei et al., 2005;
Zhang et al., 2005; Song and Xiang, 2006; Liu et al., 2007). For
example, consider the classic Logistic model

dN

dt
¼ rN 1�

N

K

� �
,

where N represents the population size, r the intrinsic growth
rate, and K the carrying capacity of environment. For the
population dynamics with impulsive effects, the key assumption
is that the impulsive perturbations (external effects) can cause
jumps in the population size (Bainov and Simeonov, 1993). As a
result of an impulsive perturbation at the moment t ¼ tk let the
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population size suffer an increment dk, that is

DNðtkÞ ¼ Nðtþk Þ � Nðt�k Þ ¼ dk,

where Nðt�k Þ and Nðtþk Þ, are respectively, the population sizes
before and after the impulsive effect. For the case with DN ¼ C and
Nðt�k Þ ¼

~N (tk ¼ kT), the Logistic model with impulsive effect has a
T-periodic solution

NðtÞ ¼

Kð ~N þ CÞ
~N þ C þ ðK � ~N � CÞe�rt

¼ N0ðtÞ for 0otpT ;

N0ðt � kTÞ for kTotpkT þ T

8><
>:

for k ¼ 0;1;2; . . . ; where

T ¼
1

r
ln
ðK � ~N � CÞ ~N

ð ~N þ CÞðK � ~NÞ

(see Bainov and Simeonov, 1993). Although the theory of
population dynamics with impulsive perturbations has been used
to explain the impulsive stabilization and optimal control of
population dynamics (Liu, 1995; Fan and Wang, 1998; Angelova
and Dishliev, 2000; Tang and Chen, 2002; Xiao et al., 2006), the
species coexistence (Chesson et al., 2004; Wang et al., 2007; Pei
et al., 2005), the biological control and management of pesticide
(Grasman et al., 2001; Tang and Cheke, 2005), and the mecha-
nisms of epidemiology (Donofrio, 1997; Shulgi et al., 1998; Roberts
and Kao, 1998), the effects of impulsive perturbations on the
population evolutionary dynamics are still not clear.
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In order to explain the evolution of animal behavior, Maynard
Smith (1982) developed the concept of an evolutionarily stable
strategy (ESS) (see also Maynard Smith and Price, 1973). According
to Maynard Smith’s (1982) definition, an ESS is a strategy which, if
adopted by a population of players, cannot be invaded by any
alternative strategy. For the standard evolutionary game dynamics
based on the payoff matrix, it has been shown that if an interior
equilibrium is an ESS equilibrium, then it must be asymptoti-
cally stable (Taylor and Jonker, 1978; Maynard Smith, 1982;
Hofbauer and Sigmund, 1988, 1998; Cressman, 1992). Recently,
Nowak et al. (2004) studied the emergence of cooperation and
evolutionary stability in finite populations using the Moran
process. Cooperators help others at a cost to themselves, while
defectors receive the benefits of altruism without providing any
help in return. In general, defectors are stable against invasion by
cooperators. This is based on the traditional concept of evolu-
tionary stability and dynamics in infinite populations. However,
for evolutionary game dynamics in finite populations, Nowak et al.
(2004) showed that a single cooperator can invade a population of
defectors with a probability that corresponds to a net selective
advantage.

It is well known that the seasonal reproduction is one of the
most important characteristics of most wild animal populations.
Tang and Chen (2002) developed a single-species model with
stage structure for the dynamics in a wild animal population for
which births occur in a single pulse once per time period. Their
main result shows that the dynamical behavior of the single
species model with birth pulse can be very complex. From an
evolutionary game perspective, a natural question is how the
evolutionary stability of phenotypes is affected by the seasonal
reproduction (or the impulsive perturbations due to the other
reasons). For example, for the classical hawk–dove model
developed by Maynard Smith (1982), if the characteristic of
seasonal reproduction (or the mechanism of impulsive perturba-
tions) is introduced into this model, we have to answer whether
the traditional concept of evolutionary stability is still valid. In
this paper, a simple two-phenotype evolutionary game model
with impulsive perturbations is investigated. Our main goal is to
show how the evolutionary game dynamics is influenced by the
impulsive perturbations, and to reveal the relationship between
the dynamical properties of the system and the traditional
concept of evolutionary stability.
2. Basic model

Consider a standard two-phenotype matrix evolutionary game
model, where the two pure strategies are denoted by R1 and R2,
respectively, and the payoff matrix is given by A ¼ ðaijÞ2�2. In this
model, it is assumed that (a) each individual uses one of two
possible pure strategies; (b) individuals interact in random
pairwise contests; and (c) aij is the payoff of strategy Ri when
interacting with strategy Rj for i; j ¼ 1;2 (Maynard Smith, 1982). We
assume also that all individuals are pure strategists and that they
have the same density-dependent background fitness, denoted by
WðNÞ with dWðNÞ=dNo0 where N is the population size (Maynard
Smith, 1982). Let ni denote the number of individuals using strategy
Ri (i ¼ 1;2), i.e., N ¼ n1 þ n2, and x the frequency of strategy R1 in
the population, i.e., x ¼ n1=N. According to Maynard Smith (1982),
the dynamics for ni can be given by

dni

dt
¼ niðf i þWðNÞÞ (1)

for i ¼ 1;2, where f i represents the expected payoff of strategy Ri, i.e.,

f i ¼ xai1 þ ð1� xÞai2, (2)
and the mean payoff of the population is

f̄ ¼ xf 1 þ ð1� xÞf 2. (3)

Clearly, the frequency dynamics can be given by

dx

dt
¼ xð1� xÞðf 1 � f 2Þ (4)

and is also density-independent. For this simple evolutionary game
dynamics, Maynard Smith (1982) showed that (a) Eq. (4) has a
unique interior positive equilibrium x� ¼ ða12 � a22Þ=ða12 � a22 þ

a21 � a11Þ with x� 2 ð0;1Þ if and only if both a12 � a22 and a21 � a11

are positive, or both are negative; (b) the interior positive
equilibrium x� is asymptotically stable if and only if x� is an ESS
equilibrium, i.e., a124a22 and a214a11; (c) the boundary x ¼ 1
(or x ¼ 0) is asymptotically stable if and only if the pure strategy R1

(or R2) is an ESS, i.e., a114a21 (or a224a12) (see also Lessard, 1984;
Hofbauer and Sigmund, 1988, 1998; Cressman, 1992).

As pointed out in Section 1, we introduce the mechanism of
impulsive perturbations into the above standard evolutionary
game model, where the impulsive perturbations can be due to the
intrinsic physiological and reproductive mechanisms of animal
population (e.g. seasonal reproduction), or due to the occurrence
of an unfavorable physical environment. In order to do this, we
make some basic assumptions:
(i)
 There are effects of impulsive perturbations on the number
of individuals that can cause jumps in the number of
individuals with phenotype Ri (i ¼ 1;2), niðtÞ. As a result of
an impulsive perturbation at the moment t ¼ tk, the
number of individuals with phenotype Ri (i ¼ 1;2), niðtÞ,
suffers an increment DniðtkÞ, that is DniðtkÞ ¼ niðt

þ

k Þ � niðt
�
k Þ

where niðt
þ

k Þ and niðt
�
k Þ are, respectively, the numbers of

individuals with phenotype Ri after and before the impulsive
effect. A natural constraint is niðt

þ

k Þ ¼ niðt
�
k Þ þ DniðtkÞ40

which means that the number of individuals with phenotype
Ri is not destroyed as a result of the impulsive effect (Bainov
and Simeonov, 1993).
(ii)
 For the phenotype Ri (i ¼ 1;2), the increment DniðtkÞ depends
on niðt

�
k Þ, that is defined as Dni ¼ gini for t ¼ tk where gi is a

constant withgi4� 1 (i.e., niðt
þ

k Þ must be positive) (Bainov
and Simeonov, 1993). For g1ag2, it means that the effects of
impulsive perturbations on the numbers of individuals with
phenotype R1 and with phenotype R2 are different.
(iii)
 For simplicity, it is assumed that the moments tk are
t-periodic: tk ¼ t0 þ kt for k ¼ 1;2; . . . ; i.e., the impulsive
effect takes place after equal time intervals.
According to the above three assumptions, Eq. (1) can be
rewritten as

dni

dt
¼ niðf i þWðNÞÞ; takt,

Dni ¼ gini; t ¼ kt; k ¼ 0;1;2; . . . (5)

for i ¼ 1;2. Normally, this equation is called the impulsive
differential equation. For our main goal, we are more interested
in the effects of impulsive perturbations on the frequency
dynamics. Notice that, at the moment t ¼ kt, the increment in
the frequency of phenotype R1, x, denoted by Dx, is

Dx ¼ UðxÞxð1� xÞ, (6)

where

UðxÞ ¼
g1 � g2

1þ xg1 þ ð1� xÞg2
(7)

with �1oUðxÞo1 and dUðxÞ=dx ¼ �UðxÞ2. Thus, similarly to
Eq. (5), the impulsive differential equation for the frequency
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dynamics can be given by

dx

dt
¼ Q ðxÞ; takt,

Dx ¼ UðxÞxð1� xÞ; t ¼ kt; k ¼ 0;1;2; . . . , (8)

where Q ðxÞ ¼ xð1� xÞðf 1 � f 2Þ.
3. Stability analysis

In order to show the dynamical properties of Eq. (8), we first
introduce two definitions:

Definition 1. xðt; ~xÞ is a t-periodic solution of Eq. (8) if there exists
a t40 such that, for any tX0, xððt þ tÞ�; ~xÞ ¼ xðt�; ~xÞ. Here,
xð0; ~xÞ ¼ ~x.

Definition 2. A t-periodic solution of Eq. (8), xðt; ~xÞ, is stable if
there exists a deleted neighborhood of ~x, denoted by [oð~xÞ with
~xe[oð~xÞ, such that for any x0 2 [

oð~xÞ the limit points of the
solution xðt; x0Þ are on the periodic orbit xðt; ~xÞ.

From the existence and uniqueness of the solution of impulsive
differential equation (see Bainov and Simeonov, 1993), for Eq. (8)
there must exist a unique FðxÞ 2 ð0;1Þ such that for all x 2 ð0;1ÞZ FðxÞ

hðxÞ

ds

Q ðsÞ
¼ t, (9)

where hðxÞ ¼ xþ Dx with hðxÞ 2 ð0;1Þ and dhðxÞ=dx ¼ ð1� xUðxÞÞ

ð1þ ð1� xÞUðxÞÞ40.

Lemma 1. Eq. (8) has a t-periodic solution if and only if FðxÞ has a

fixed point.

Proof. Let ~x ¼ Fð~xÞ with ~x 2 ð0;1Þ. Then, from Eq. (9), we haveZ ~x

hð~xÞ

ds

Q ðsÞ
¼ t.

Notice that xðt; ~xÞ is the solution of Eq. (8), i.e.,Z xðtÞ

hð~xÞ

ds

Q ðsÞ
¼ t.

Thus, xðtÞ ¼ Fð~xÞ ¼ ~x. Clearly, for all k ¼ 0;1;2; . . . we have
xðktÞ ¼ ~x, i.e., ~x is a fixed point of FðxÞ. &

Lemma 2. FðxÞ is an increasing function of x, i.e., Fðx1ÞXFðx2Þ for all

x1Xx2 with x1; x2 2 ð0;1Þ.

Proof. Notice that hðxÞ is an increasing function in the interval
0oxo1. From Eq. (9), we haveZ Fðx1Þ

hðx1Þ

ds

Q ðsÞ
¼

Z Fðx2Þ

hðx2Þ

ds

Q ðsÞ
¼ t.

This implies also thatZ hðx1Þ

hðx2Þ

ds

Q ðsÞ
¼

Z Fðx1Þ

Fðx2Þ

ds

Q ðsÞ
.

Thus, FðxÞ is an increasing function of x in the interval
0oxo1. &

Theorem 1. Assume FðxÞ has a fixed point ~x. Then xðt; ~xÞ is a stable t-
periodic solution of Eq. (8) if and only if

lim
x!~x

sgnððFðxÞ � xÞðx� ~xÞÞ ¼ �1, (10)

where sgnðxÞ is the sign function, which is defined as sgnðxÞ ¼ 1 if

x40, sgnðxÞ ¼ �1 if xo0, and sgnðxÞ ¼ 0 if x ¼ 0.

Proof. For simplicity, we here give only the proof for sufficiency. If
Eq. (10) holds, there must exist a deleted neighborhood of ~x,
denoted by [oð~xÞ with ~xe[oð~xÞ, such that ðFðxÞ � xÞðx� ~xÞo0 for
x 2 [oð~xÞwith Fð~xÞ � ~x ¼ 0. Denote xk ¼ xðktÞ for k ¼ 0;1;2; . . . ; i.e.,
xðktþÞ ¼ hðxkÞ and xkþ1 ¼ FðxkÞ. For x04~x with x0 2 [

oð~xÞ, we have
x1 � x0 ¼ Fðx0Þ � x0, i.e., ~xox1ox0. By similar arguments, we have
~xoxkþ1oxk for k ¼ 0;1;2; . . .. Similarly, for x0o~x with x0 2 [

oð~xÞ,
we have ~x4xkþ14xk for k ¼ 0;1;2; . . . : &

Corollary 1. xðt; ~xÞ is a globally asymptotically stable t-periodic

solution of Eq. (8) if and only if ðFðxÞ � xÞðx� ~xÞo0 for all x 2 ð0;1Þ
with xa~x.

Proof. The proof is similar to Theorem 1. &

Corollary 2. xðt; ~xÞ is a semi-stable t-periodic solution of Eq. (8) if

and only if the following one-sided limits exist and satisfy

lim
x!~xþ

sgnððFðxÞ � xÞðx� ~xÞÞ ¼ � lim
x!~x�

sgnððFðxÞ � xÞðx� ~xÞÞ. (11)

Proof. The proof is similar to Theorem 1. &

Corollary 3. For Eq. (8), if no periodic solution exists in the interval

0oxo1, then the trajectory will either converge to the boundary

x ¼ 1 or 0.

Proof. The straightforward proof is omitted. &

According to Eq. (9), let

FðxÞ ¼
Z x

hðxÞ

l1

s
þ

l2

1� s
þ

l3

asþ bð1� sÞ

� �
ds

¼ ln
x

hðxÞ

� �l1 1� x

1� hðxÞ

� ��l2 ða� bÞxþ b
ða� bÞhðxÞ þ b

� �ðl3=a�bÞ
" #

, (12)

where a ¼ a11 � a21, b ¼ a12 � a22, l1 ¼ 1=a, l2 ¼ 1=b and
l3 ¼ �ða� bÞ2=ðabÞ. From Lemma 1, if Eq. (8) has a t-periodic
solution xðt; ~xÞ, then we must have Fð~xÞ ¼ t.

Corollary 4. (i) If xðt; ~xÞ is a t-periodic solution of Eq. (8), then xðt; ~xÞ

is locally stable if and only if

dFðxÞ
dx

Q ðxÞ40 (13)

for all x in some deleted neighborhood [oð~xÞ. (ii) If xðt; ~xÞ is a t-
periodic solution of Eq. (8), then xðt; ~xÞ is locally semi-stable if and

only if

dFðxÞ
dx

Q ðxÞðx� ~xÞ (14)

has the same sign for all x 2 [oð~xÞ. (iii) The boundary x ¼ 0 is locally

stable if and only if

lim
x!0þ
ðFðxÞ � tÞQ ðxÞ40, (15)

and, similarly, the boundary x ¼ 1 is locally stable if and only if

lim
x!1�
ðFðxÞ � tÞQ ðxÞo0. (16)

Obviously, the boundary x ¼ 0, or x ¼ 1, is globally stable if and only

if ðFðxÞ � tÞQ ðxÞ40, or ðFðxÞ � tÞQ ðxÞo0, in the interval 0oxo1.

Proof. (i) Similar to the proof of Theorem 1, we here give only the
proof of the sufficiency. For x 2 [oð~xÞ, if Q ðxÞ40, then
ðdFðxÞ=dxÞQ ðxÞ40 implies that FðxÞoFð~xÞ if xo~x, and FðxÞ4Fð~xÞ
if x4~x. Notice thatZ x

hðxÞ

ds

Q ðsÞ
o
Z FðxÞ

hðxÞ

ds

Q ðsÞ
¼

Z ~x

hð~xÞ

ds

Q ðsÞ
¼ t (17)

if xo~x, andZ x

hðxÞ

ds

Q ðsÞ
4
Z FðxÞ

hðxÞ

ds

Q ðsÞ
¼

Z ~x

hð~xÞ

ds

Q ðsÞ
¼ t (18)
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if x4~x. Thus, we have ðFðxÞ � xÞðx� ~xÞo0. Similarly, for the
situation Q ðxÞo0 with x 2 [oð~xÞ, we have the same result. (ii)
The proof is similar to (i). (iii) From the definition of FðxÞ, the proof
is obvious. &
4. Results

In general, it is not easy to obtain the analytic expression
of FðxÞ. However, as a special case with l1 ¼ l2 ¼ l and
l3 ¼ 0, i.e., a ¼ b, and l ¼ 1=a ¼ 1=b, the function FðxÞ can be
expressed as

FðxÞ ¼
xð1þ UðxÞð1� xÞÞ

e�t=l þ ð1� e�t=lÞxð1þ UðxÞð1� xÞÞ
. (19)

For the fixed points of FðxÞ, it is easy to see that both x ¼ 0 and 1
are trivial solutions of equation FðxÞ ¼ x, and that if

1

1� e�t=l
þ

1þ g2

g1 � g2
¼ 0,

then FðxÞ ¼ x holds for all possible x 2 ð0;1Þ, and, conversely, if

1

1� e�t=l
þ

1þ g2

g1 � g2
a0,

then no interior positive fixed point can exist. This means that for
a ¼ b if 1=ð1� e�t=lÞ þ ð1þ g2Þ=ðg1 � g2Þ ¼ 0, i.e., t ¼ �l lnðð1þ
g1Þ= ð1þ g2ÞÞ, then for any initial value x0 2 ð0;1Þ, xðt; x0Þ will be
a t-periodic solution of Eq. (8) (see Fig. 1).

For the situation with aab, notice that dhðxÞ=dx ¼ ð1� UðxÞxÞ

ð1þ UðxÞð1� xÞÞ, i.e., dhðxÞ=dx40. Thus, we have that

dFðxÞ
dx
¼
ða� bÞUðxÞ

SðxÞ
, (20)
Fig. 1. Payoff matrix is ð54
4
3Þ, i.e., l ¼ 1=a ¼ 1=b ¼ 1, where R1 is an ESS. Here, the

parameters g1, g2, and t are taken as g1 ¼ 0:228, g2 ¼ 0:5, and t ¼ 0:2. Notice that

1=ð1� e�t=lÞ þ ð1þ g2Þ=ð1þ g1Þ ¼ 0. Thus, FðxÞ ¼ x holds for all possible x 2 ð0;1Þ.
where

SðxÞ ¼ ðða� bÞxþ bÞðða� bÞðxþ UðxÞxð1� xÞÞ þ bÞ. (21)

For convenience, assume g1og2, i.e.,
g1 � g2

1þ g1
oUðxÞo

g1 � g2

1þ g2
o0.

The analysis for the case with g14g2 will be similar. For the
existence and stability of periodic solution of Eq. (8), we have that:
(i)
Fig. 2
with

Since

t ¼ 0

are ta

perio
If both a and b are positive, i.e., the pure strategy R1 is an ESS,
then Q ðxÞ40, SðxÞ40, and dFðxÞ=dxo0 (or 40) if a� b40
. a40 and b40, i.e., the pure strategy R1 is an ESS. (a) Payoff matrix is ð64
4
3Þ

a ¼ 2 and b ¼ 1. The parameters g1 and g2 are taken as g1 ¼ 0:1 and g2 ¼ 0:6.

Fð1Þ ¼ 0:155 and Fð0Þ ¼ 0:310, there is a unstable t-periodic solution with

:2. (b) Payoff matrix is ð54
5
3Þ with a ¼ 1 and b ¼ 2. The parameters g1 and g2

ken as g1 ¼ 0:1 and g2 ¼ 0:5. Since Fð0Þ ¼ 0:155 and Fð1Þ ¼ 0:310, a stable t-

dic solution exists with t ¼ 0:2.



ARTICLE IN PRESS

Fig. 3
a ¼ �
Since

will b

S. Wang et al. / Journal of Theoretical Biology 254 (2008) 384–389388
(or a� bo0). (a) For a� b40, if a t-periodic solution xðt; ~xÞ
exists, then it must satisfy Fð1ÞotoFð0Þ, i.e.,

1

a
ln

1þ g2

1þ g1
oto

1

b
ln

1þ g2

1þ g1
,

and it must be also unstable since ðdFðxÞ=dxÞQ ðxÞo0
(see Fig. 2a). (b) For a� bo0, if a t-periodic solution xðt; ~xÞ
exists, then it must satisfy Fð0ÞotoFð1Þ, i.e.,

1

b
ln

1þ g2

1þ g1
oto

1

a
ln

1þ g2

1þ g1
,

and it is stable since ðdFðxÞ=dxÞQ ðxÞ40 (see Fig. 2b). Result (a)
implies that if an unstable t-periodic solution exists, then the
non-ESS boundary ðx ¼ 0Þ must be locally stable, i.e., it is
possible that an ESS strategy can be replaced successfully
by a non-ESS strategy under the impulsive perturbations
(see Fig. 2a). On the other hand, result (b) shows that if a
stable t-periodic solution exists, then the ESS boundary
(x ¼ 1) must be unstable (see Fig. 2b).
(ii)
 If both a and b are negative, i.e., the pure strategy R2 is an ESS,
then we must have Q ðxÞo0 for all possible x 2 ð0;1Þ. Notice
also that Dx ¼ UðxÞxð1� xÞo0. Thus, no periodic solution can
exist, and the system state will be attracted by the ESS
boundary x ¼ 0 (see Fig. 3).
(iii)

Fig. 4. a40 and bo0, i.e., both pure strategies R1 and R2 are ESS strategies, but the

phenotypic equilibrium x� ¼ �b=ða� bÞ 2 ð0;1Þ is not an ESS equilibrium. Payoff

matrix ð64
2
3Þ with a ¼ 2 and b ¼ �1. The parameters g1 and g2 are taken as g1 ¼ 0:1

and g2 ¼ 0:5. There exists an �x such that hðxÞ � x40 if x4�x and hðxÞ � xo0 if xo�x,

where x� ¼ 1
3 and �x ¼ 0:276. In the interval �xoxo1 there is an unstable t-periodic

solution with t ¼ 0:4.
If a40 and bo0, then both the phenotypes R1 and R2 are ESS
strategies, and the phenotypic equilibrium exists, i.e.,
x� ¼ �b=ða� bÞ. For convenience, the function Q ðxÞ and SðxÞ

can be rewritten as

Q ðxÞ ¼ ða� bÞxð1� xÞðx� x�Þ,

SðxÞ ¼ ða� bÞ2ðx� x�ÞðhðxÞ � x�Þ. (22)

Since hðxÞ ¼ xþ UðxÞxð1� xÞ, there must exist an �x with �x 2

ð0;1Þ such that hðxÞ4x�, or hðxÞox�, if x4�x, or xo�x. It is easy
to see that (a) no periodic solution can exist in the interval
0oxox� since Q ðxÞo0; (b) since hðxÞox� for x 2 ðx�; �xÞ, when
the system state is in the interval x�oxo�x, it will be moved to
the interval 0oxox� after one impulse, i.e., no periodic
. ao0 and bo0, i.e., the pure strategy R2 is an ESS. Payoff matrix is ð46
3
4Þ with

2 and b ¼ �1. The parameters g1 and g2 are taken as g1 ¼ 0:1 and g2 ¼ 0:5.

Q ðxÞo0 for all x 2 ð0;1Þ, no periodic solution can exist, and the system state

e attracted by the boundary x ¼ 0, where t is taken as t ¼ 0:2.

Fig. 5. ao0 and b40, i.e., both pure strategies R1 and R2 are not ESS strategies, but

the phenotypic equilibrium x� ¼ �b=ða� bÞ 2 ð0;1Þ is an ESS equilibrium. Payoff

matrix is ð46
5
2Þ with a ¼ �2 and b ¼ 3. The parameters g1 and g2 are taken as

g1 ¼ 0:1 and g2 ¼ 0:5. In the interval 0oxox� , there is a stable t-periodic solution

with t ¼ 0:2, where x� ¼ 3
5.
solution is possible in the interval x�oxo�x; and (c) since
dFðxÞ=dxo0 for x 2 ð�x;1Þ, if a t-periodic solution exists with
t4Fð1Þ in the interval �xoxo1, then it must be unstable since
ðdFðxÞ=dxÞQ ðxÞo0 (see Fig. 4).
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(iv)
 If ao0 andb40, then the phenotypic equilibrium
x� ¼ �b=ða� bÞ is an ESS equilibrium. It is also easy to
see that (a) no periodic solution is possible in the
interval x�oxo1 since Q ðxÞo0; (b) similar to the analysis
in (iii), if a t-periodic solution xðt; ~xÞ exists in the interval
0oxox�, then it must be stable since ðdFðxÞ=dxÞQ ðxÞ40
(see Fig. 5).
The above results for aab can be summarized as follows. (a)
The boundary x ¼ 1 is stable if and only if

lim
x!1�
ðFðxÞ � tÞQ ðxÞo0) ðFð1Þ � tÞ lim

x!1�
Q ðxÞo0,

and, similarly, the boundary x ¼ 0 is stable if and only if

lim
x!0þ
ðFðxÞ � tÞQ ðxÞ40) ðFð0Þ � tÞ lim

x!0þ
Q ðxÞ40.

(b) If both boundaries are stable (or unstable), then there must
exist a unique unstable (or stable) t-periodic solution. If one
boundary is stable but the other unstable, then no periodic
solution can exist, and the stable boundary must be globally
attractive.
5. Summary

In this paper, a two-phenotype evolutionary game dynamics
with impulsive effects is investigated. As pointed out in Section 1,
if the mechanism of impulsive perturbations (e.g. the effects of
periodic climate disaster on the population size, or the
seasonal reproduction of wild animal population) is introduced
into the classical evolutional game model, we have to answer
whether the traditional concept of evolutionary stability
is still valid, or how the evolutionary game dynamics is affected
by the impulsive perturbations. For our main goal, we mainly
focus our attention on the relationship between the traditional
concept of ESS in evolutionary game with no impulsive pertur-
bations and the properties of evolutionary game dynamics
with impulsive effects. Our main results show that the impulsive
perturbations not only result in the periodic behavior of the
system, but also it is possible that an ESS strategy based
on the traditional concept of evolutionary stability can be
replaced successfully by a non-ESS strategy. Our results for
evolutionary game dynamics with impulsive perturbations
provides another theoretical mechanism, besides such mechan-
isms as the effect of finite populations on evolutionary game
dynamics (e.g. Nowak et al., 2004), for the successful invasion of a
mutant strategy.
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