
Pattern Recognition 43 (2010) 3846–3852
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/pr
A call-independent and automatic acoustic system for the individual
recognition of animals: A novel model using four passerines
Jinkui Cheng a,b, Yuehua Sun a, Liqiang Ji a,n

a Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
b Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
a r t i c l e i n f o

Article history:

Received 5 January 2010

Received in revised form

22 March 2010

Accepted 12 April 2010

Keywords:

Call-independent identification

Gaussian mixture models

Individual recognition

Mel-frequency cepstral coefficients

Passerine
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.04.026

esponding author. Tel.: +86 10 64807129; fa

ail address: ji@ioz.ac.cn (L. Ji).
a b s t r a c t

Research into acoustic recognition systems for animals has focused on call-dependent and species

identification rather than call-independent and individual identification. Here we present a system for

automatic call-independent individual recognition using mel-frequency cepstral coefficients and

Gaussian mixture models across four passerine species. To our knowledge this is the first application of

these techniques to the individual recognition of birds, and the results are promising. Accuracies of

89.1–92.5% were achieved and the acoustic feature and classifier method developed here have excellent

potential for individual animal recognition and can be easily applied to other species.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many animals use sound to communicate with conspecifics
and thus animal vocalizations have evolved to be species specific.
Across many taxa, animal calls show individual variation. For
example, in fish [1], amphibians [2,3], birds [4,5], and mammals
[6,7] animal vocalizations may be individual specific. Given this,
species and even individual recognition based on animal vocaliza-
tions is possible for many animals and consequently can be
utilized as a useful tool in the study and monitoring of animal
species.

Automatic species and individual recognition based on
acoustic animal call parameters is a challenge. Interest in this
field is on the rise and several automatic approaches were
recently proposed. One approach gaining results borrows meth-
ods from human speech and speaker recognition [8]. First,
acoustic features from animal calls recorded in the field are
extracted and each call is transformed into a feature vector or set
of feature vectors representing salient characteristics. Second, a
classifier is trained to distinguish between feature sets. Third,
following testing the classifier can be used to classify new
recordings as belonging to one of the target classes or to an
unknown class [9].

To obtain robust recognition results, effective acoustic features
that show greater variation between rather than within species or
ll rights reserved.
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individuals are needed [10]. These acoustic features can be
classified into two classes: statistical and non-statistical. Statis-
tical features include mean fundamental frequency, maximum
fundamental frequency, minimum fundamental frequency, fun-
damental range, syllable energy, syllable duration, zero-crossing
rate and signal bandwidth [11,12]. Long-term averages of these
statistical features have been utilized in machine-learning algo-
rithms that have successfully identified different bird and frog
species [13,14]. Statistical call features can also be used to identify
individuals, although long-term averages discard a great deal of
individual information and condense call characteristics [15].
Weary et al. [16] achieved call-dependent recognition accuracies
of between 69% and 80% in grey tits (Parus afer); and Amazonian
manatees (Trichechus inunguis) can be differentiated based on
individual differences in fundamental frequency and signal
duration [11].

Non-statistical features such as linear prediction coefficients
(LPCs) [17] and mel-frequency cepstral coefficients (MFCCs)
[18,19] are common in human speech and speaker recognition
systems. Applying these features to species identification have
yielded results across a variety of taxa including frogs, crickets
[20] and birds [21,22]. The application of non-statistical features
to individual recognition has proven to be more difficult and
results are varied. In African elephants (Loxodonta africana), 83%
individual recognition accuracy was achieved [23] and in
Norwegian ortolan bunting (Emberiza hortulana) 80–95% of
individuals were identified correctly [24]. In general, models
based on non-statistical features are of greater accuracy, stability
and repeatability.
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Feature classification methods developed for human speech
recognition have been applied to species and individual recogni-
tion in animals. These methods include dynamic time warping
(DTW) [25], sinusoidal modeling of syllables [26], self-organizing
maps [27,28], linear discriminant analysis (LDA) [20], artificial
neural network (ANN) [10,21], sport vector machine (SVM)
[13,14], Gaussian mixture models (GMM) [9] and hidden markov
models (HMM) [22,24]. In speech and speaker recognition, the
type of classifier selected depends on the task required [29] so
chosen classifiers for species and individual recognition in
animals must be carefully considered.

The majority of research into animal recognition is call dependent
and focused predominantly on species identification rather than
individual identification. Call-dependent systems are limited because
they rely on recognition techniques that can compare only a single
call type within and between individuals and thus significantly limit
the range of species and situations in which they can be applied.
Achieving call-independent recognition is more challenging, but
enables recognition regardless of the call type produced [30]. Here,
we aim to construct an automatic call-independent recognition
system and test the ability of GMM to achieve this for four
passerines: Gansu leaf warbler (Phylloscopus kansuensis), Chinese
leaf warbler (Phylloscopus yunnanensis), Hume’s warbler (Phylloscopus

humei) and Chinese bulbul (Pycnonotus sinensis).
2. Method

The architecture of our acoustic-driven individual recognition
system for birds can be divided into three modules: signal
preprocessing, feature extraction, and classification (see Fig. 1).

2.1. Data set

One song type was recorded from Hume’s warbler (N¼10
birds) and two song types were recorded from Gansu leaf
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Training Recognition 
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Bird individual 

Fig. 1. Architecture of our individual recognition system.
warblers (N¼5), Chinese leaf warblers (N¼9) and Chinese bulbuls
(N¼10) were recorded. There are strong distinctions between the
songs of these species (see Fig. 2). Chinese leaf warblers were
recorded from Taibaishan National Nature Reserve (33Chinese–
343Chinese 107Chinese–107Chinese le Gansu leaf warblers and
Hume’s warblers were recorded from Lianhuashan National
Nature Reserve (34nsu –344nsu l 103nsu –103nsu leaf warblers
and Hume’s warblers were recorded from Lianhuashan National
Nature Reserve or call-independent training and testing for a)
Hume’s warbler, b) Chinese leaf WarWM-D6c professional
recorder (Sony Corporation, Tokyo, Japan) with a directional
microphone (Sennheiser, Wedemark, Germany) placed 2–8 m
from a singing bird. Recordings were converted to a digital
medium at 22.05 kHz sampling frequency and saved in 8-bit wave
format using Batsound v3.10 (Pettersson Elektronik AB, Uppsala,
Sweden).

2.2. Feature extraction

2.2.1. Sound signal preprocessing

Bird song is typically divided into four hierarchical levels of
notes, syllables, phrases, and song [31]. Of these, syllables are the
most elementary building blocks and suitable for species and
individual recognition as variation in this aspect of song is neither
excessive not leads to model instability [26,32]. Prior to feature
extraction syllables must be segmented; here we used an iterative
time-domain algorithm [33] following the protocols of Huang
et al. [14]. Once segmented, sound signals (now consisting of
syllables) were divided into two sets to train the classifier and test
the classifier (Table 1). Humans generate speech by exciting the
vocal cords and the high frequencies of human speech are
weakened during the production. Therefore, there is a need to
enhance the high frequencies by a digital filter during pre-
emphasized processing. Bird sounds are generated mainly by the
syrinx but sound generation in birds is similar to that in humans
[21]. Bird sound signals were pre-emphasized before extracting
features by a digital filter described by the formula

HðZÞ ¼ 1�mz�1 ð1Þ

where m is 0.95.
The signal was then divided into a set of overlapping frames

with a frame size of 400 samples, and overlapping size of 200
samples for each pair of successive frames. To reduce disconti-
nuity on both ends of a frame each frame was multiplied by the
Hamming window

S½n� ¼ s½n�w½n�, 0rnrN�1 ð2Þ

where S[n] is the output signal, s[n] is the signal denoting
the input syllable, w[n] is the Hamming window function and
N is 512.

w½n� ¼ 0:54�0:46cosð2pn=N�1Þ, 0rnrN�1 ð3Þ

We then took the discrete Fourier transform of each frame
using the Fast Fourier Transform (FFT).

X½k� ¼
XN�1

n ¼ 0

s½n�expf�2jkpn=Ng, 0rkrN�1 ð4Þ

where X[k] is the output signal and s[n] is the input signal
denoting the signal obtained above.

2.2.2. MFCCs extraction

After signal preprocessing, the MFCCs features can be ex-
tracted from each frame. In studies of speech recognition, the
MFCCs and LPCs are commonly used; however the MFCCs perform
better than others in recognition accuracy [34–36] and have been
widely used for bird song recognition [25].



Fig. 2. Example of the spectrograms of different call types used for call-independent training and testing for a) Hume’s warbler, b) Chinese leaf Warbler, c) Gansu leaf

warbler and d) Chinese bulbul.
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Human auditory perception does not follow a linear scale and
the perception of some frequencies are greatly influenced by
energy in the critical band of frequencies around them. The
bandwidth of the critical band varies with the perceived
frequency. The advantage of this is that the system is capable
of being immune to noise and easily warps frequencies to a



Table 1
The segmenting results of each individual sounds

Species Data set Syllable type

numbers

Syllable numbers of each individual

1 2 3 4 5 6 7 8 9 10

Hume’s warbler Training set 1 7 8 10 6 10 7 9 7 5 7

Testing set 1 4 4 5 4 4 4 6 4 3 4

Chinese leaf warbler Training set 3 72 56 120 112 104 48 52 88 76

Testing set 3 34 12 52 80 42 28 22 32 40

Gansu leaf warbler Training set 3 35 60 40 40 30

Testing set 3 20 40 14 18 16

Chinese bulbul Training set 6 24 20 62 40 45 67 50 72 53

Testing set 6 13 15 30 27 30 34 20 32 24
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Fig. 3. MFCCs vector extraction.
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non-uniform scale, such as the mel scale [37]. Thus, for a signal
with an actual frequency, f (measured in Hz), a subjective pitch
is measured on the mel scale. The relationship between the
real frequency scale and the mel-frequency scale can be
modeled as

Fmel ¼ 2595loglogð1þFrel=700Þ ð5Þ

where, Fmel is the mel frequency and Frel is the real frequency.
The mel scale was used to transform the power spectrum to

compute a mel-warped spectrum. In order to simplify the
spectrum without significant loss of data, Fourier transformed
signals were passed through a set of band-pass filters. The filters
were assumed to be triangular and half overlapping, with center
frequencies spaced equally apart on the mel scale but non-
uniformly distributed on the real scale (see [37,38] for graphical
representation). Each filter in the bank was multiplied by the
spectrum so that only a single value of magnitude per filter was
returned. This value can be calculated by the formula

mðlÞ ¼
Xk ¼ hðlÞ

k ¼ oðlÞ

wlðkÞ9X½k�9, l¼ 1,2,. . .,L ð6Þ

where m(l) is the output result of each filter, L the number of the
triangular filters, in our experiment L is 24. X[k] is the input signal
denoting the signal obtained in the sound signal preprocessing
step.

This value reflected the sum of amplitudes in a particular filter
band and thus reduced precision to the level of the human
auditory system. The modified spectrum consisted of the output
power of these filters. A logarithm of the mel spectrum
coefficients was then taken to compress the coefficients above
1000 Hz and also to compress the magnitude with low frequen-
cies. In our final step, the MFCC coefficients were obtained by
taking a discrete cosine transform (DCT) following [39]

CmfccðiÞ ¼
ffiffiffiffiffiffiffiffiffi
2=N

p XL

l ¼ 1

logmðlÞcosððl�1=2Þip=LÞ, 1r irL ð7Þ

where Cmfcc(i) is the value of the i-th dimension of the MFCCs
feature vector extracted from the frame. Here, the MFCCs feature
vectors are in 23 dimensions (see Fig. 3)
2.3. Classification

Research into speech recognition has shown that probabilistic
models provide a better model of acoustic speech events and
framework for dealing with noise and channel degradation than
non-probabilistic models [40]. We selected GMM as a representa-
tion of bird identity because the Gaussian components of the
GMM can represent general bird-dependent spectral shapes and
because of its ability to model arbitrary densities [41,42].
Multivariate Gaussians have a well-recorded history of serving
as good radial-bases functions for functional approximation [43],
functional approximation using the Gaussian parametric
probability density functions inherently solves the problem of
over-fitting due its smooth and multivariate nature [44]. A
Gaussian mixture density is a weighted sum of M component
densities, as given by the equation

pðx9lÞ ¼
XM

i ¼ 1

pibiðxÞ, i¼ 1,2,. . .,M ð8Þ

where x is a D-dimensional random vector, bi(x) is the component
densities and pi is the mix weights. Each component density is a
D-variate Gaussian function defined as

biðxÞ ¼ 1= ð2pÞD=29
X

i91=2
� �

exp �1=2ðx�miÞ
X

i�1ðx�miÞ

n o
ð9Þ



Table 2
GMM identification performance across different model orders and test lengths.

Test

length

Model

order

Species

Hume’s

warbler (%)

Chinese leaf

warbler (%)

Gansu leaf

warbler (%)

Chinese

bulbul (%)

1 s M¼4 75.9 76.1 85.3 78.5

M¼8 78.4 79.1 87.3 74.8

M¼16 79.3 82.1 91.2 72.0

M¼32 81.1 79.1 76.5 69.2

M¼48 66.7 81.3 89.2 52.3

M¼64 64.0 66.4 77.5 29.9

2 s M¼4 88.9 81.3 83.7 90.2

M¼8 92.5 85.5 87.8 82.4

M¼16 88.7 89.1 90.0 80.4

M¼32 83.0 82.8 77.6 72.6

M¼48 75.5 82.8 87.8 52.9

M¼64 67.9 67.2 75.5 32.7
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where, mi is the mean vector and
P

i is the covariance matrix. The
mixture weights satisfy the constraint that

XM

i ¼ 1

pi ¼ 1 ð10Þ

The complete GMM can be parameterized by the mean vectors,
covariance matrices and mixture weighs from all component
densities. The parameters of the GMM, l, are denoted as

l¼ pi,mi,
X

i
n o

, i¼ 1,2,. . .,M ð11Þ

where, M is the number of the components of the GMM.
For bird identification, each bird is represented by a GMM. In

order to estimate the parameters of the GMM, l, which best
matches the distribution of the training feature vectors, we used
maximum likelihood (ML) estimation [42]. So for a set of T

training vectors X¼{x1,x2,y,xt}, the GMM likelihood can be
written as

pðX9lÞ ¼
YT

t ¼ 1

pðxt9lÞ ð12Þ

The parameters of the GMM were obtained by maximizing the
likelihood function and obtained iteratively using the expecta-
tion–maximization (EM) algorithm [45,46]. On each EM iteration,
the following re-estimation formulas were used and guaranteed a
monotonic increase in model’s likelihood value.

Mixture Weights

pi ¼ 1=T
XT

t ¼ 1

pði9xt ,lÞ ð13Þ

Means

mi ¼
XT

t ¼ 1

pði9xt ,lÞxt=
XT

t ¼ 1

pði9xt ,lÞ ð14Þ

Covariances

X
i¼
X

¼ 1
pði9xt ,lÞðxt�mtÞðxt�miÞ

T=
XT

t ¼ 1

pði9xt ,lÞ ð15Þ

A posteriori probability for acoustic class is given by the
following equation:

pði9xt ,lÞ ¼ pibiðxtÞ=
XM

k ¼ 1

pkbkðxtÞ ð16Þ

We calculated the mean value for each dimension of the
feature vector and complete covariance matrix using all vectors
from each individual. We then initiated the initial mean vector
and the initial covariance matrix for each individual using the
mean values and the covariance matrix. The initial mixture
weights for each component of the GMM were set as equal. Then
the GMMs for each individual were trained using the EM
algorithm. For bird identification, a group of k individual birds is
represented by a set of GMMs: l1, l2, y, lk. The objective is to
find a model, M, which has the maximum a posteriori probability
(MAP) for a given observation sequence X¼{x1,x2,y,xt}

Formally,

M¼ argmaxPrðlk=XÞ ¼ argmaxpðx9lkÞPrðlkÞ=pðXÞ, 1rkrK

ð17Þ

where, K is the number of bird individuals, the second equation is
due to Bayes’ rule. Assuming equally likely the models (i.e.,
Pr(lk)¼1/K) and noticing that p(X) is the same for all bird models.
So the classification rule can be simplified to

M¼ argmaxpðX9lkÞ ð18Þ
Using logarithms and the independence between observations,
the individual recognition system computes

M¼ argmax
XT

t ¼ 1

logpðxt9lkÞ

in which, QUOTE p(xt9lk) is given in formula (8) [42].
3. Results

In order to investigate individual recognition performance of
the GMM with respect to the number of component densities per
model, each bird was modeled using 4, 8, 16, 32, 48 and 64
component GMM with a complete covariance matrix. To deter-
mine the length of the testing signal, each model was tested using
23-dimensional mel-frequency cepstral vectors corresponding to
a 1 and 2 s testing signal. Identification performances for different
model orders and testing signal lengths are shown in Table 2.
From our results is it clear that the GMMs are sensitive to the
number of mixture components for both 1 and 2 s testing signals,
and GMMs with the best results across different species had
different mixture components. However, model order is not
directly proportional to the identification accuracy of the model.
Optimal model order when using a 1 s testing signal was found to
be 16 (for Gansu leaf warbler), 16 (Chinese leaf warbler), 32
(Hume’s warbler) and 4 (Chinese bulbul) and for a 2 s signal 16
(Gansu leaf warbler) , 16 (Chinese leaf warbler), 8 (Hume’s
warbler) and 4 (Chinese bulbul). Table 2 indicates that when
model order exceeds optimal model order recognition results
decrease. We posit that because bird sounds are not complex, an
appropriate model order and not the largest model order is
required. When model order exceeds optimal model order the
result is over-fitting. Our results also show that identification
results using a 2 s testing signal were more accurate than using a
testing signal of 1 s. Our final recognition system therefore
adopted a signal testing length of 2 s and associated mixture
components of the GMM.

Call-independent recognition in the four passerine species
using the MFCCs and GMM achieved good recognition accuracy.
The accuracy was 90% for Gansu leaf warbler, 89.1% for Chinese
leaf warbler, 92.5% for Hume’s warbler, and 90.2% for Chinese
bulbul. Confusion matrices based on identification results are
shown in Tables 3–6 where the first column describes the number
of the testing vectors per individual.



Table 3
Confusion matrix of the recognition results in the Gansu leaf warbler.

Number 1 2 3 4 5

10 1 6 4 0 0 0

18 2 0 18 0 0 0

7 3 0 0 7 0 0

8 4 1 0 0 7 0

7 5 0 0 0 0 7

Table 4
Confusion matrix of the recognition results in Chinese leaf warbler.

Number 1 2 3 4 5 6 7 8 9

7 1 4 0 0 3 0 0 0 0 0

2 2 0 2 0 0 0 0 0 0 0

4 3 0 0 2 2 0 0 0 0 0

16 4 0 0 0 16 0 0 0 0 0

9 5 0 0 0 0 9 0 0 0 0

6 6 0 0 0 0 0 6 0 0 0

4 7 0 0 0 0 0 0 4 0 0

7 8 0 0 0 0 0 0 2 5 0

9 9 0 0 0 0 0 0 0 0 9

Table 5
Confusion matrix of the recognition results in Hume’s warbler.

Number 1 2 3 4 5 6 7 8 9 10

4 1 4 0 0 0 0 0 0 0 0

5 2 0 5 0 0 0 0 0 0 0

6 3 0 0 5 0 0 0 0 0 0 1

4 4 0 0 0 4 0 0 0 0 0

6 5 0 0 0 0 6 0 0 0 0

5 6 0 0 0 0 0 5 0 0 0

7 7 0 0 0 0 0 0 6 0 1

6 8 0 0 0 0 0 0 0 6 0

4 9 1 0 0 0 0 0 0 0 3

6 10 1 0 0 0 0 0 0 0 0 5

Table 6
Confusion matrix of the recognition results in Chinese bulbul.

Number 1 2 3 4 5 6 7 8 9 10

2 1 2 0 0 0 0 0 0 0 0 0

2 2 0 2 0 0 0 0 0 0 0 0

6 3 0 0 6 0 0 0 0 0 0 0

4 4 0 0 0 3 1 0 0 0 0 0

6 5 0 0 0 0 6 0 0 0 0 0

6 6 0 0 0 0 0 6 0 0 0 0

5 7 0 0 0 0 0 0 5 0 0 0

6 8 0 0 0 0 0 0 0 3 3 0

7 9 0 0 0 0 0 0 0 0 7 0

7 10 0 0 0 0 0 0 0 0 1 6
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4. Discussion

Our avian call-independent recognition system uses methods
of feature extraction and classification adapted from human
speech and speaker recognition technology. This system opti-
mizes the number of mixture components of the GMM for each
passerine species. However, the model will continue to be
improved by modifying the methods to better suit bird song or
by incorporating individual-specific information and optimizing
the GMM for each individual [47].

Call recordings used here were made in the field and noise may
therefore be a potential adverse factor that prevented us from
achieving higher identification accuracies. For example, the
recordings used when testing a classifier had noise profiles
different from those used in classifier training. Noise is also a
major challenge in human speech and speaker recognition
applications [48] and can arise from a variety of sources such an
ambient noise, reverberations, channel interference and micro-
phone distortions [10]. The recordings used here did contain
background noise but the noise was relatively small as data was
collected prior to sunrise and with a directional microphone six
meters from the focal bird. During model development we
excluded recordings that contained large levels of background
noise. Although the recordings we used for training and testing
contained different background noise we obtained good results
demonstrating that the system constructed here has some
resilience to noise. Developing strong systems immune to
different sources of noise is a challenge facing future research in
this field.

Here we present an acoustic system for automatic call-
independent individual recognition using the MFCCs and GMM
in birds. To our knowledge this is the first application of the GMM
techniques to bird individual recognition, and the results are
promising. Accuracies of 89.1%–92.5% were achieved across four
passerine families. This indicates that the acoustic feature
(MFCCs) and classifier (GMM) method developed have excellent
potential for individual animal recognition and can be easily
applied to other species. Call-independent identification remains
a challenging area of research, but can be applied to all species
regardless of the amount of song sharing or temporal change in
vocal repertoires. Recognition accuracy may be improved by
optimizing the GMM for each individual or by incorporating
individual-specific information and further research will most
likely adopt this strategy.
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