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a b s t r a c t

The one-shot public goods game is extended to include institutional incentives (i.e. reward and/or

punishment) that are meant to promote cooperation. It is shown that the Nash equilibrium (NE)

outcomes predict either partial or fully cooperative behavior in these extended multi-player games

with a continuous strategy space. Furthermore, for some incentive schemes, multiple NE outcomes are

shown to emerge. Stability of all these equilibria under standard evolutionary dynamics (i.e. the

replicator equation and the canonical equation of adaptive dynamics) is characterized.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The public goods game (PGG) is often used to investigate how
cooperation can emerge and be maintained in theoretical models
of multi-player group interactions. In the standard one-shot PGG
(Sigmund, 2010), the only rational individual behavior (i.e. the
only NE outcome) is for no player to contribute to the public good
(i.e. to defect) whereas it is to everyone’s advantage for all players
to contribute their total endowment (i.e. to cooperate). Experi-
mental evidence (Fehr and Gächter, 2000; Herrmann et al., 2008;
Rand et al., 2009) shows that actual contributions in PGG are
somewhere between these two extremes with typical contribu-
tion levels from 20% to 70% of the endowment.

In real-life situations that include this sort of dilemma between
individual rationality and collective advantage, incentives are often
used to promote cooperation. For example, individuals who are
high contributors may be rewarded (e.g. businesses often give
bonuses to their best performing employees) and those who
contribute little may be punished (e.g. people who cheat on taxes
are subject to fines by the state). Theoretical models (Sigmund
et al., 2001; Hauert et al., 2004) of PGG with incentives are often
based on group members rewarding and/or punishing each other
(called peer incentives) after everyone’s contribution is reported. In
this paper, the effects of institutional incentives are modeled
instead. Here, each group member knows the incentive amounts
and the probabilities that he will be rewarded and/or punished
given his contribution and those of the other group members. Since
ll rights reserved.
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these reward/punishment schemes, based on institutional rather
than peer incentives, are more closely related to such examples as
those mentioned above, it is important to study their effect on
promoting cooperation in theoretical models.

Our reward scheme is also related to the use of lotteries to
finance public goods (Morgan, 2000; Corazzini et al., 2010). For
example, the institution (e.g. government, charitable organiza-
tion) holds a lottery to raise funds for a public project. The more
an individual contributes (and the less contributed by other
people), the better his chance to win the prize provided by the
lottery (i.e. the reward).

Our main goal is then to investigate how institutional incentives
affect individual rational behavior. This is initially done by char-
acterizing the NE outcome for our PGG with incentives. As we will
see, defection is not always rational in these games. In fact, for
certain incentive schemes, there is more than one possible rational
behavior. For such game-theoretic situations, evolutionary dynamics
can be used to predict the expected outcome (Hofbauer and
Sigmund, 1998). We therefore analyze stability of the NE outcome
under such standard evolutionary dynamics as the replicator equa-
tion and the canonical equation of adaptive dynamics.

The paper is organized as follows. Section 2 briefly summarizes
the standard one-shot PGG and evolutionary dynamics for this
multi-player game. In particular, it is shown that these dynamics
agree with the NE prediction of defection by all group members.
Section 3 extends the analysis of the PGG model to include
institutional reward (Section 3.1); punishment (Section 3.2);
reward and punishment (Section 3.3). The theory is illustrated in
these sections by considering in detail four specific connected
examples where the effectiveness of these three schemes in
promoting cooperation can be compared.
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2. The public goods game and evolutionary dynamics

Suppose there are nZ2 players who are each given an initial
endowment E40. Each player decides how much x of this endow-
ment to contribute to a common pool (i.e. xA ½0,E�). All contributions
to the common pool are multiplied by a factor r41 and then evenly
distributed among all n players. A player’s payoff is then the
remainder of his endowment ðE�xÞ plus what he receives from
the public pool. If he contributes x and the other n–1 players
contribute x2,x3, . . . ,xn respectively, this payoff is given as

pðx; x2,x3, . . . ,xnÞ ¼ E�xþ
r

n

Xn

i ¼ 1

xi

¼ Eþ
r

n
�1

� �
xþ

r

n

Xn

i ¼ 2

xi ð1Þ

We assume that the player receives only a fraction of his own
contribution to the common pool (i.e. r=no1). That is, the player’s
return on his contribution is less than 100%. Thus, 1oron.

It is well known that the only Nash equilibrium (NE) of this game
is for each player to contribute 0 (i.e. to free-ride). To see this, recall
that a NE ðx1,x2,x3, . . . ,xnÞ of this n-player game must satisfy pðy; x2,
x3, . . . ,xnÞrpðx1; x2,x3, . . . ,xnÞ for all yA ½0,E�. That is, ðr=n�1Þyr
ðr=n�1Þx1 and so x1ry for all yA ½0,E�. Thus, player 1 must free-
ride.1 Intuitively, since a player’s payoff decreases as the amount he
contributes increases given that the other players’ contributions
remain the same, each player has an incentive to reduce his
contribution.

The public goods game is an example of an n-player game that
has the form of a population game since a player’s payoff
pðx; x2,x3, . . . ,xnÞ depends only on his strategy x and the average
strategy x�1 � ð1=ðn�1ÞÞ

Pn
i ¼ 2 xi of the rest of his group. Moreover,

it is a symmetric game in the sense that payoffs do not depend on
designating who is player 1, who is player 2, etc. Evolutionary
dynamics for symmetric population games have been studied
extensively, especially when there is a finite set of pure strategies
(Hofbauer and Sigmund, 1998; Sandholm, 2010). When there is a
continuum of pure strategies (as in our case where the strategy set
is the one-dimensional interval [0,E]), the standard evolutionary
dynamics are the canonical equation of adaptive dynamics
(Dieckmann and Law, 1996) and the replicator dynamics for a
continuous strategy space (Cressman and Hofbauer, 2005).

2.1. Replicator dynamics

The replicator equation assumes that the population state is
described by a Borel probability measure P over [0,E]. That is, if
B is a Borel subset of [0,E], then P(B) equals the proportion of the
population using strategies in B. In particular, the population is
assumed to be sufficiently large that finite population effects can
be ignored and so the expected payoff of an individual playing y

in a group whose other n–1 players are chosen at random is

pðy; PÞ �
Z
½0,E�n�1

pðy; x2,x3, . . . ,xnÞPðdx2Þ . . . PðdxnÞ

¼ Eþ
r

n
�1

� �
yþ

r

n

Xn

i ¼ 2

Z
½0,E�n�1

xiPðdx2Þ . . . PðdxnÞ

¼ Eþ
r

n
�1

� �
yþ

r

n
xðn�1Þ

where x �
R
½0,E�yPðdyÞ is the average contribution of an individual

in the population.
1 The same argument shows that each of the players must free-ride at a pure-

strategy NE. The extension of this argument shows that no player can use a mixed

strategy at a NE.
This measure-theoretic formulation of the game generalizes
the standard approach for symmetric population games with a
finite set of pure strategies. For instance, if all players use one of N

strategies X1,X2, . . . ,XN in [0,E] (i.e. if P has finite support), then
the average strategy of the population is X ¼

PN
i ¼ 1 piXi where pi

is the proportion of the population using strategy Xi. That is,
P¼

PN
i ¼ 1 pidXi

where dX is the Dirac delta distribution that places
all its weight at X (i.e. dXðfXgÞ ¼ 1). It is well-known (Hofbauer and
Sigmund, 1998) that the support of P is invariant under the
replicator equation

_pi ¼ piðpðXi; PÞ�pðP; PÞÞ ð2Þ

where pðP; PÞ �
PN

i ¼ 1 pipðXi;PÞ ¼ Eþðr�1ÞX is the average payoff
of an individual in the population. Since pðXi; PÞ ¼ Eþ ðr=n�1ÞXiþ

ðr=nÞX ðn�1Þ, _pi ¼ pið1�r=nÞðX�XiÞ. In particular, _p140 if X1 is the
strategy corresponding to the smallest contribution of all players
initially present. Thus, the population evolves to everyone using
this strategy (i.e. p1-1). These results generalize to the case of
infinitely many strategies as follows.

The replicator equation, when the support of P (i.e. the
smallest closed subset of [0,E] whose complement has measure
0) is infinite, is given by

dPðBÞ

dt
¼

Z
B
ðpðy;PÞ�pðP; PÞÞPðdyÞ ð3Þ

Here pðP; PÞ is
R
½0,E�pðy; PÞPðdyÞ ¼ Eþðr�1Þx. Since our strategy

space is compact and the payoff functions are continuous, this
is a well-defined dynamics with a unique solution Pt for tZ0 in
the set Dð½0,E�Þ of Borel measures for every initial P0 (Bomze,
1991; Oechssler and Riedel, 2001). Consider the evolution of x

under (3). This is

dx

dt
¼

Z
½0,E�

y
dP

dt
ðdyÞ ¼

Z
½0,E�

yðpðy; PÞ�pðP; PÞÞPðdyÞ

¼

Z
½0,E�

y Eþ
r

n
�1

� �
yþ

r

n
xðn�1Þ�ðEþðr�1ÞxÞ

h i
PðdyÞ

¼

Z
½0,E�

r

n
�1

� �
y2þyxð1�

r

n
Þ

h i
PðdyÞ

¼
r

n
�1

� �Z
½0,E�
ðy�xÞ2PðdyÞ

r0

with equality if and only if P¼ dx for some xA ½0,E�. Since Pt has
the same support as P0 for all tZ0, x evolves to the smallest
element xn in the support of P0.2 From this it follows that Pt

evolves to dxn in the weak topology of Dð½0,E�Þ.
In particular, if there are some free-riders in the original

population distribution, the proportion of players who contribute
more than e will eventually be less than e no matter how small
e40 is taken (i.e. Pt evolves to d0 in the weak topology). If rare
mutations are also allowed, we can expect that, at some point,
free-riders will appear and from then on the average contribution
in the population will evolve to 0.

2.2. Adaptive dynamics

The canonical equation of adaptive dynamics (Dieckmann and
Law, 1996) assumes the population is monomorphic (i.e. at some
dx) and that this monomorphism evolves through trait substitu-
tion in the direction of nearby strategies that have higher payoff
than the resident strategy when played against the resident
population. For x in the interior of [0,E] (i.e. for 0oxoE), the
2 This conclusion also follows from the fact that xn strictly dominates y

(i.e. pðy,PÞopðxn ,PÞ for all PADð½0,E�Þ) for any y other than xn in the support of Pt

(see Cressman and Hofbauer, 2005).
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equation is given by

dx

dt
¼ kðxÞ

@pðy; xÞ
@y

����
y ¼ x

ð4Þ

where k(x) is a positive function of x that is related to how fast
new traits appear.3 Here, pðy; xÞ is used in place of pðy; x2,
x3, . . . ,xnÞ since x2 ¼ x3 ¼ � � � ¼ xn ¼ x (i.e. pðy; xÞ ¼ Eþðr=n�1Þyþ
ðr=nÞxðn�1Þ). Thus dx=dt¼ r=n�1o0 and so x evolves to 0.

In summary, for the PGG (without incentives), the evolution-
ary outcome under either the replicator (with occasional muta-
tions) or the canonical equation is that the population eventually
adopts the unique NE of free-riding.
3. Institutional incentives

Institutions provide incentives to their members in order to
promote higher contributions to the common pool (i.e. to increase
cooperative behavior). Incentive schemes vary greatly from one
institution to another but a common feature is that individual
members who are considered high contributors are given rewards
while lower contributing individuals are sanctioned (i.e. punished).

We model institutional incentives as follows. After the stan-
dard PGG of Section 2 is played between n players, a second stage
is added where one institutional member is chosen to be rewarded
(institutional reward, IR) or one institutional member is chosen to
be punished (institutional punishment, IP) or both (institutional
reward and punishment, IRP). The probability of being chosen for a
reward and/or punishment depends on the member’s contribution
and those of the rest of the group. The incentive amount (i.e. the
additional payoff given to the member in IR or taken away in IP)
is fixed at A40. We examine how NE behavior and evolutionary
outcomes depend on this amount and the probabilities of
being chosen for IR (Section 3.1), IP (Section 3.2) and IRP
(Section 3.3).

3.1. Institutional reward

An institution rewards those individuals who make higher
contributions in order to encourage all its members to be more
cooperative. This objective is reflected in our model by assuming
that the probability, Fðx; x2,x3, . . . ,xnÞ, an individual who contri-
butes x in a group whose other members contribute x2,x3, . . . ,xn

receives the reward is a continuously differentiable function that
satisfies
(i)
3

such

ignor

and s
exactly one individual receives the reward;

(ii)
 F ¼ 1=n if all members contribute the same;
(iii)
 F is an increasing function of x;

(iv)
 F depends only on contribution x and the average contribu-

tion x�1 of the rest of the group.
The institution may prefer to only reward its highest con-
tributor (i.e. Fðx; x2,x3, . . . ,xnÞ ¼ 1 if x4max fx2,x3, . . . ,xng) but this
is not a continuous function. Moreover, this incentive scheme is
inconsistent with (iv) since the highest contribution may not be x

when x4x�1. We examine consequences of rewarding only the
highest contributor at the end of this section.

One interpretation of our conditions on F is that the institution
uses an imperfect ranking system of its members (based on not
knowing the exact contribution of each individual) and rewards the
A rest point of the canonical equation that is asymptotically stable under all

choices of k(x) is called convergence stable (Christiansen, 1991). Here, we can

e this factor (i.e. take kðxÞ ¼ 1) since our strategy space is one-dimensional

o k(x) only effects the speed of evolution and not the eventual outcome.
person with the highest rank. Alternatively, an institution that knows
the exact contributions may still feel a reward scheme satisfying our
conditions will be more effective at promoting cooperation by
providing an incentive for members who are not the highest
contributor to incrementally increase their contributions.

By assumption (iv), IR is a symmetric population game and so
the simplified notation Fðx; x�1Þ can be used in place of Fðx; x2,
x3, . . . ,xnÞ for our purposes (and pðx; x�1Þ in place of pðx; x2,
x3, . . . ,xnÞ). The reward changes the payoff function (1) to

pðx; x�1Þ ¼ Eþ
r

n
�1

� �
xþ

r

n
x�1ðn�1ÞþAFðx; x�1Þ ð5Þ

If the reward A is high enough, free-riding is no longer a NE.
In general, xn is a symmetric NE (i.e. pðx; xnÞrpðxn; xnÞ for all
xA ½0,E�) if and only if

Ar 1�
r

n

� � x�xn

Fðx; xnÞ�Fðxn; xnÞ
ð6Þ

for all xaxn.
That is, 0 is a NE if and only if

Ar 1�
r

n

� � x

Fðx;0Þ�Fð0;0Þ
ð7Þ

for all xAð0,E�.4 Let us examine how this compares to the stability
for evolutionary dynamics. First, adaptive dynamics is

dx

dt
¼
@pðy; xÞ
@y

����
y ¼ x

¼
r

n
�1

� �
þA

@Fðy; xÞ

@y

����
y ¼ x

for 0oxoE. If Ao ð1�r=nÞðð@Fðy;0Þ=@yÞ9y ¼ 0Þ
�1, then x¼0 is con-

vergence stable, since dx=dto0 for all positive x close to 0.5 The
inequalities for NE (7) and for convergence stability are closely
related since ðð@Fðy;0Þ=@yÞ9y ¼ 0Þ

�1
¼ limx-0þ x=ðFðx;0Þ�Fð0;0ÞÞ.

Specifically, except in the threshold case where A¼ ð1�r=nÞ�

ðð@Fðy;0Þ=@yÞ9y ¼ 0Þ
�1, if 0 is a NE, then 0 is convergence stable.

The converse is not true (i.e. convergence stability of 0 does not
imply 0 is a NE) since convergence stability of xnA ½0,E� relies only
on properties of F near xn whereas the NE conditions on F require
comparisons for all xA ½0,E�. However, if Fðx; xnÞ is a concave
function of x, then the converse is true since x=ðFðx;0Þ�Fð0;0ÞÞ is
then an increasing function of x.

Analogous results for convergence stability of the other end-
point are straightforward to obtain. In summary, E is convergence
stable if A4ð1�r=nÞðð@Fðy; EÞ=@yÞ9y ¼ EÞ

�1 and, from (6), a NE if and
only if AZ ð1�r=nÞðE�xÞ=ðFðE; EÞ�Fðx; EÞÞ for all xA ½0,EÞ. Further-
more if Fðx; xnÞ is a concave function of x, then E is convergence
stable if and only if it is a NE except in the threshold case
Aðð@Fðy; EÞ=@yÞ9y ¼ EÞ ¼ ð1�r=nÞ.

Finally, the NE and convergence stability criteria are well-
known for an xnAð0,EÞ (Dieckmann and Law, 1996). An interior
NE xn is a rest point of the canonical equation but may not be
convergence stable. Conversely, a (convergence stable) rest point
may not be a NE. In general, there may be several rest points,
some of which are convergence stable or NE and others that are
not as in Section 3.3 below (see also Cressman, 2009). In our IR
model, the classification of rest points is based on properties of
the reward function F. An interior xn is a rest point if and only if
Aðð@Fðy; xnÞ=yÞ9y ¼ xn Þ ¼ ð1�r=nÞ and a rest point is convergence
stable if and only if

d

dx

dx

dt

� �
¼

d

dx

@Fðy; xÞ

@y

����
y ¼ x

 !�����
x ¼ xn

� F11þF12o0 ð8Þ
4 The right-hand side of this inequality is positive for each such x by property

(iii) of F since r=no1.
5 If ð@Fðy;0Þ=@yÞ9y ¼ 0 ¼ 0, 0 is convergence stable for any choice of A.
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Fig. 1. The replicator equation and its mean-field approximation for IR (Example 2).

Panel A shows the mean contribution along five trajectories of the replicator

equation whose initial distribution is pi¼0.0025 for all i¼ 0,1, . . . ,20 except for one

choice of i. These five choices are p20¼0.95 for the trajectory that has the highest

initial mean contribution; p16¼0.95 for the trajectory with the next highest initial

contribution; then p12¼0.95; p8¼0.95; and finally p2¼0.95 for the trajectory with
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where Fij are the second order partial derivatives of F evaluated at
xn.6 On the other hand, if xnAð0,EÞ is a NE, then F11o0 and the
converse is true if F is concave.

Concavity holds in the following example where it is shown
that there is exactly one rest point in [0,E] and it is both a NE and
convergence stable.

Example 1. There are many incentive schemes that fit our IR
model. We will look in depth at a four player example with
parameters n¼4, E¼20 and r¼1.6 since these values are com-
monly used in experimental games examining cooperation in PGG
(e.g. Herrmann et al., 2008; Rand et al., 2009). In these experi-
mental games, incentives are typically implemented through peer
decisions (i.e. an individual may be rewarded or punished by
other members of his group, often at a cost to themselves) rather
than through an institutional scheme as in our model. Here, the
reward probabilities are taken as

Fðx; x�1Þ ¼
xþ1

xþ3x�1þ4
, ð9Þ

for which it is straightforward to verify conditions (i)–(iv) above
for IR. Moreover, Fðx; x�1Þ is a concave function of x for fixed x�1.

In particular, x=ðFðx;0Þ�Fð0;0ÞÞ is an increasing function of x

and so 0 is a NE if Ar ð1�r=nÞðð@Fðx;0Þ=@xÞ9x ¼ 0Þ
�1 but not if

A4ð1�r=nÞðð@Fðx;0Þ=@xÞjx ¼ 0Þ
�1.7 In fact, 0 is a NE if and only if it is

convergence stable. Similarly, ðE�xÞ=ðFðE; EÞ�Fðx; EÞÞ is an increas-
ing function of x and so E is a NE if and only if it is conver-
gence stable (if and only if AZð1�r=nÞðð@Fðx; EÞ=@xÞ9x ¼ EÞ

�1
¼

16
3 ð1þEÞð1�r=nÞ ¼ 67:2).

An xnA ð0,EÞ is a rest point of the canonical equation if and only
if Aðð@Fðx; xnÞ=@xÞ9x ¼ xn Þ ¼ ð1�r=nÞ. From (9), ð@Fðy; xnÞ=@yÞ9y ¼ xn ¼
3

16 � 1=ðx
nþ1Þ and so xn ¼ ð3A=16Þð1�r=nÞ�1

�1¼ 5A=16�1. Thus, xn

is unique and it is in the interval (0,E) if and only if 3:2oAo67:2.
Furthermore, F11 ¼�6=64ðxnþ1Þ2 ¼ F12 and so this point is con-
vergence stable and a NE if it exists.

In summary, for each A40 in this example, there is a unique
NE given by

xn ¼

0 if Ar3:2
5A

16
�1 if 3:2oAo67:2

20 if AZ67:2

8>><
>>: ð10Þ

and it is a globally stable rest point of the canonical equation.
For small rewards, individuals free-ride. For A43:2, cooperation
increases linearly in the reward until the population is fully
cooperative once A¼67.2.

The replicator equation with institutional incentives is more
difficult since the probability an individual receives the reward is
not linear either in his contribution or in the contributions of the
other group members. Specifically,

pðy; PÞ ¼ Eþ
r

n
�1

� �
yþ

r

n
xðn�1Þþ

Z
½0,E�n�1

F y;
x2þx3þ � � � þxn

n�1

� �
�Pðdx2Þ � � � PðdxnÞ and

pðP; PÞ ¼ Eþxðr�1Þþ

Z
½0,E�n

F x1;
x2þx3þ � � � þxn

n�1

� �
�Pðdx1ÞPðdx2Þ � � �PðdxnÞ:

A complete analysis of this dynamics is not practical. Instead,
we simulate the dynamics in the following example.

Example 2. Continue with the same parameters and reward
probabilities as in Example 1 and take A¼20. From Example 1,
6 Here, we ignore the threshold cases F11þF12 ¼ 0 for convergence stability

and F11¼0 for NE.
7 From (9), A¼ ð1�r=nÞðð@Fðx; 0Þ=@xÞ9x ¼ 0Þ

�1
¼ ð1� 1:6

6 Þ
16
3 ¼ 3:2.
xn ¼ 5:25 is the unique NE and it is convergence stable (in fact, it
is globally asymptotically stable for the canonical equation).
Simulations of the replicator equation are shown in Fig. 1 where
the pure strategies are taken as Xi ¼ i for i¼ 0, . . . ,20 (i.e. a finite
set). This strategy set models the situation where the initial
endowment is made up of 20 indivisible monetary units and so
individuals must contribute an integer number of units. From
(2) and (3), the dynamics is

_pi ¼ pi 1� 1:6
4

� �
ðX�iÞþ

X20

k1 ¼ 0

. . .
X20

k4 ¼ 0

A F i;
k2þk3þk4

3

� �	2
4

�F k1;
k2þk3þk4

3

� �

pk1

pk2
pk3

pk4

3
5 ð11Þ

for i¼ 0,1, . . . ,20 where pi is the frequency of strategy Xi in the
large population. Here X ¼

P20
i ¼ 0 ipi is the expected contribution

of a randomly chosen individual, Fði; ðk2þk3þk4Þ=3Þ ¼ ðiþ1Þ=
ðiþk2þk3þk4þ4Þ and Fðk1; ðk2þk3þk4Þ=3Þ ¼ ðk1þ1Þ= ðk1þk2þ

k3þk4þ4Þ. In particular, Fði; x�1Þ is not linear in either i or in
x�1 ¼ ðk2þk3þk4Þ=3.

Fig. 1 also gives the corresponding simulations for the mean-
field replicator equation (for this same strategy set) that approx-
imates the replicator equation by assuming the expected payoff of
an individual using strategy i is his payoff in a group where the
average contribution of the other members is the mean contribu-
tion of the population. That is,

dpi

dt
¼ piðpði,X Þ�pðX ,X ÞÞ

pði;X Þ ¼ 20�iþ
r

n
ðiþðn�1ÞX ÞþAFði;X Þ

pðX ,X Þ ¼ 20�XþrXþA=n ð12Þ
the lowest initial contribution. Panel B shows the corresponding five mean

contributions of the mean-field replicator equation. Panel C plots pi(t) for

i¼ 0,1, . . . ,20 under the replicator equation with initial distribution pi¼0.0025 for

all i¼ 0,1, . . . ,20 except p2¼0.95. Parameters are taken as in Example 2:

n¼4;r¼1.6;A¼20;E¼20.
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Fig. 2. The replicator equation for IR with discontinuous reward scheme (Section

3.1.1). Panel A shows the mean contribution along four trajectories of the replicator

equation whose initial distribution is pi¼0.0025 for all i¼ 0,1, . . . ,20 except for one

choice of i. These four choices are p20¼0.95 for the trajectory that has the highest

initial mean contribution; p14¼0.95 for the trajectory with the next highest initial

contribution; then p8¼0.95; and finally p2¼0.95 for the trajectory with the lowest

initial contribution. Panel B plots pi(t) for i¼ 0,1, . . . ,20 under the replicator equation

with initial distribution pi¼0.0025 for all i¼ 0,1, . . . ,20 except p2¼0.95. Parameters

are the same as in Fig. 1.
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From Panels A and B, it is clear that the mean field approach
approximates the replicator equation well. Panel C indicates that
p5-1 (i.e. the population evolves to the monomorphism where
all individuals contribute 5). If xn ¼ 5:25 is in the support of the
initial distribution P0, then P0 evolves to d5:25 in the simulations
(the analytic proof of this result remains an open problem).8

3.1.1. Rewarding the highest contributor

Suppose the institution gives the reward A to the highest
contributor and, in the case where several group members make
the highest contribution, gives each such member an equal share
of A. That is,

Fðx; x2,x3, . . . ,xnÞ ¼

1 if x4maxfx2,x3, . . . ,xng

1

kþ1

ifx¼maxfx2,x3, . . . ,xng and

x¼ xi for k elements of f2, . . . ,ng

0 if xomaxfx2,x3, . . . ,xng

8>>>><
>>>>:

ð13Þ

First, assume that the population is monomorphic at xA ½0,E�.
Then an individual contributing y has payoff

pðy; xÞ ¼

Eþ
r

n
�1

� �
yþ

r

n
xðn�1ÞþA if y4x

Eþ
r

n
�1

� �
yþ

r

n
xðn�1Þþ

1

n
A if y¼ x

Eþ
r

n
�1

� �
yþ

r

n
xðn�1Þ if yox

8>>>>>><
>>>>>>:

ð14Þ

Thus, the explicit form of the canonical equation in (4) is no longer
applicable since pðy; xÞ is discontinuous at y¼x. However, for any
reward A40, pðxþe; xÞ4pðx; xÞ4pðx�e; xÞ when e40 is suffi-
ciently small. That is, it is always to an individual’s advantage to
contribute a small amount more than what everyone else does in
order to reap the full reward (and to his disadvantage to contribute a
little less). Thus, through trait substitution, adaptive dynamics moves
the population in the direction of ever increasing contributions (i.e.
there is runaway selection in favor of cooperation (Nakamaru and
Dieckmann, 2009)) until the population consists entirely of max-
imum contributors. That is, x¼E is convergence stable.

On the other hand, contributing E is not a NE unless the reward
is quite high. For instance, with the parameters from Example 1
where E¼20, pð0;20Þ4pð20;20Þ whenever Ao48 and so free-
riders can invade the monomorphic population of full contributors
in this case. Such situations (i.e. a convergence stable rest point
that is not a NE) are often analyzed in adaptive dynamics through
evolutionary branching (Geritz et al., 1998; Doebeli and
Dieckmann, 2000) whereby there is an initial splitting into a
dimorphic population with both strategies near the convergence
stable rest point. However, in our model, initial successful inva-
ders must be far away from the rest point 20. We instead consider
the replicator dynamics with parameters as in Examples 1 and 2
(in particular, A¼20) and reward function (13).9

For the numerical simulations of (11) in Fig. 2 (Panel B), the
initial distribution has 95% of the population contributing 2 and
the other 5% evenly distributed among the other 20 strategies
fXi ¼ i9i¼ 0,1,3 . . . ,20g. Panel B shows an initial successful inva-
sion by full cooperators (i.e. p20ðtÞ is initially increasing fastest).
Later free-riding behavior becomes more prevalent (i.e. p0ðtÞ

increases) and so there is an advantage for individuals contributing
8 Numerical simulations of (11) and (12) were also carried out for other values

of A between 0 and 70. In all cases considered, the population evolved to a

monomorphism on one side of xn predicted by (10) for the continuous strategy

space.
9 The mean-field Eq. (12) cannot be used here since the reward function (13)

cannot be written in the form Fðx; x�1Þ (i.e. the reward to x is not determined

uniquely by the average strategy x�1 of the rest of the group).
slightly more whereby we see contributions up to about six
appearing in the system. In the long-run, the dynamics converges
to a steady-state distribution with a significant share (about 41%)
fully cooperative. There are also significant shares for low contribu-
tors that diminish as the contribution goes up and disappear for
contribution levels between 7 and 19. Interestingly, this steady-state
distribution seems to be independent of the initial distributions with
support fXi ¼ i9i¼ 0, . . . ,20g.10 In particular, this occurred for all
initial distributions reported in Fig. 2 (Panel A) which shows that the
mean contributions are evolving toward the same value.

It is clear that no pure strategy xn can be stable under the
replicator equation since monomorphic populations of high con-
tributors can be invaded by free-riders and individuals in mono-
morphic populations of low contributors have an incentive to
contribute slightly more. The argument here is essentially the
result that no xnA ½0,20� is a NE as shown by Corazzini et al.
(2010) for a related lottery model with a prize given to the highest
contributor. On the other hand, numerical simulations suggest
that the limiting distribution shown in Fig. 2 (Panel B) is a
polymorphic NE of the game restricted to the strategy set
fXi ¼ i9i¼ 0, . . . ,20g since all strategies with positive shares have
(approximately) the same payoffs.

For the remainder of the paper, we again assume that incen-
tives depend continuously on contributions.

3.2. Institutional punishment

Let Gðx; x�1Þ be the probability the institution punishes an
individual who contributes x in a group whose other members
contribute x�1 on average. We assume G satisfies the same four
properties as F at the beginning of the previous section except
that property (iii) is replaced by:
(iii)0
10
G is a decreasing function of x (i.e. institutions punish low
contributors in a group more frequently than high contributors).
The analytic proof of independence remains an open problem.
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Fig. 3. The replicator equation and its mean-field approximation for IP (Example 12).

Panel A shows the mean contribution along each of the five trajectories of the

replicator equation whose initial distribution is the same as in Fig. 1. Panel B shows

the corresponding results for the mean-field replicator equation. Parameters are the

same as in Fig. 1.
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One possibility for G is to take the probability of punishment
symmetric about the interval [0,E] with the probability of reward
in the previous section. That is, the probability that an individual
who contributes x is punished in a group whose other members
contribute x�1 on average is the same probability that an
individual who contributes E–x is rewarded in the previous
section when the other members of his group contribute E�x�1

on average. With this assumption, we have

Gðx; x�1Þ ¼ FðE�x; E�x�1Þ ð15Þ

The payoff function is now

pðx; x�1Þ ¼ Eþ
r

n
�1

� �
xþ

r

n
x�1ðn�1Þ�AGðx; x�1Þ

where A is now the amount of punishment. Following the steps in
Section 3.1, we find that 0 is a NE if and only if11

Ar 1�
r

n

� � x

Gð0;0Þ�Gðx;0Þ

for all xAð0,E�. Similarly, E is a NE if and only if AZ ð1�r=nÞ�

ðE�xÞ=ðGðx;EÞ�GðE; EÞÞ for all xA ½0,E�.

Example 3. Let us continue Example 1 from Section 3.1 by
replacing the reward scheme there by its symmetric punishment
function. That is, from (9) and (15), Gðx; x�1Þ ¼ ð21�xÞ=ð84�
x�3x�1Þ which is again a concave function of x. Then 0 is a NE if
Arðð21� 16Þ=3Þð1�r=nÞ ¼ 67:2 and E¼20 is a NE if AZð16ð21�
EÞ=3Þð1�r=nÞ ¼ 3:2. That is, punishment must be quite high to
overcome the free-riding advantage in a group of free-riders
whereas fully cooperative groups are NE already at low levels of
punishment. In particular, at least one endpoint is a NE (and
convergence stable) for any fixed value of A40. On the other
hand, if an interior xn is a rest point of the canonical equation

dx

dt
¼

r

n
�1

� �
�A

@Gðy; xÞ

@y

����
y ¼ x

¼�0:6þ
3A

16
�

1

21�x

then xn ¼ 21�5A=16 (cf. Eq. (10)). That is, xnAð0,EÞ if and only if
3:2oAo67:2. However, since the incentive �AGðx; x�1Þ is now
convex in x (i.e. �G1140) no such interior xn is a NE and it is not
convergence stable either.12 In particular, trajectories of the
canonical equation evolve monotonically to the endpoint on the
same side of xn as the initial point. For low levels of punishment,
xn is close to 1 and so the NE 0 has the larger basin of attraction.
As A increases, the basin of attraction of the NE 20 gets larger until
it attracts all initial points when AZ67:2.

The simulations in Fig. 3 are based on IP with A¼20 (as in
Example 2). For this game, both 0 and 20 are NE and convergence
stable. The other (unstable) rest point of the canonical equation is
14.75. Fig. 3 summarizes five trajectories of the replicator equa-
tion and its mean field approximation using the method of
Example 2 applied to the punishment incentive scheme. Again,
the approximation is almost identical to the replicator equation as
the mean contribution evolves along each trajectory.13 In the long
run, all trajectories converge to either 0 (i.e. p0¼1) or to 20 (i.e.
p20¼1). Interestingly, some trajectories that start with initial
mean contribution above 14.75 evolve to 0; whereas they evolve
to 20 for the canonical equation. The nonlinear nature of the
payoff function results in substantial differences between the
outcome predicted by the canonical equation and those from the
replicator equation.
11 Note that x=ðGð0;0Þ�Gðx;0ÞÞ is positive for x40 since G is a decreasing

function of x.
12 This follows from �G11�G12 40 (cf. Eq. (8)).
13 Other simulations can be used to show that trajectories of the replicator

equation and its mean-field approximation are not identical. By carefully choosing

the initial distribution near a threshold value, the trajectory of the replicator

equation evolves to 0 and the mean-field approximation evolves to 20.
Examples 2 and 3 (with A¼20) show clearly that a positive
incentive (reward) can have quite a different effect on NE
behavior than a negative incentive (punishment) (cf. Rand et al.,
2009). With these incentive schemes, an institution interested
in promoting cooperation when cooperation is low is more
effective by rewarding its members for better behavior than to
punish for worse behavior. However, such rewards are not able
to maintain high levels of cooperation whereas punishment is
effective at encouraging full cooperation once it is established
at intermediate levels in the population. Example 4 of the
following section examines the combined effect of these two
schemes.

3.3. Institutional reward and punishment

Here, one individual is chosen for the reward and, indepen-
dently, one individual is chosen to be punished.14 If the amount of
reward is A and the punishment amount B, the payoff function is
now

pðx; x�1Þ ¼ pðx; x2,x3, . . . ,xnÞ ¼ Eþ
r

n
�1

� �
xþ

r

n
x�1ðn�1ÞþHðx; x�1Þ

ð16Þ

where Hðx; x�1Þ � AFðx; x�1Þ�BGðx; x�1Þ.

Example 4. Let us continue the above three examples and
assume that A¼B. The canonical equation is

dx

dt
¼

r

n
�1

� �
þA

@Fðy; xÞ

@y
y ¼ x

�A
@Gðy; xÞ

@y

�����
�����
y ¼ x

where

Fðy; xÞ ¼
yþ1

yþ3xþ4

Gðy; xÞ ¼
21�y

84�y�3x
14 In particular, this could be the same person.
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Fig. 4. The replicator equation and its mean-field approximation for IRP (Example 4

with A¼16). Panel A shows the mean contribution along four trajectories of the

replicator equation whose initial distribution is pi¼0.0025 for all i¼ 0,1, . . . ,20

except for one choice of i. These choices are p16¼0.95 for the trajectory that has the

highest initial mean contribution; p12¼0.95 for the trajectory with the next highest

initial contribution; then p8¼0.95; and finally p2¼0.95 for the trajectory with the

lowest initial contribution. Panel B shows the corresponding results for the mean-

field replicator equation. Panel C plots piðtÞ for i¼ 0,1, . . . ,20 under the replicator

equation with initial distribution pi¼0.0025 for all i¼ 0,1, . . . ,20 except p8¼0.95.

Parameters are taken as in Example 4: n¼4;r¼1.6;A¼16;E¼20.

Table 1
Nash equilibrium, rest points and dynamic stability under the canonical equation

in Examples 2–4 where the group size is 4, E¼ 20 and A¼ 20.

Incentive
scheme

Rest point Nash

equilibrium

Dynamic

stability

IR 5.25 Yes Globally stable

0 Yes Locally stable

IP 14.75 No Unstable

20 Yes Locally stable

IRP 20 Yes Globally stable
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An interior rest point x is a solution of

x2�20xþK ¼ 0

where

K ¼
33A

8
1�

r

n

� ��1

�21

The solutions are

xn

1,2 ¼
207

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400�4 K
p

2
¼ 107

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100�K
p

Clearly, xn

1,2Að0,EÞ if and only if 0rKo100 with xn

1Z10 and
xn

2r10.

Since

d

dx

dx

dt

� �
¼�

3A

16
�

2ð10�xÞ

ð21�xÞ2ðxþ1Þ2

xn

1 ¼ 10þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100�K
p

is unstable and xn

2 ¼ 10�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100�K
p

is stable if

0oKo100. Furthermore, if 0oKo100, then x¼20 is conver-

gence stable and x¼0 is unstable in IRP. If A¼20 as in Examples

1–3, then K4100 and x¼20 is the only rest point. All trajectories

of the canonical equation converge to it as well as all simulations

of the replicator equation and its mean-field approximation.

A more interesting case is A¼16. Then K¼89, xn

1 ¼ 10þ
ffiffiffiffiffiffi
11
p
ffi

13:32, and xn

2 ¼ 10�
ffiffiffiffiffiffi
11
p
ffi6:68. The simulations in Fig. 4 (Panels

A and B respectively) show that the mean contribution for the

replicator equation and its mean-field approximation respec-

tively, all converge to x¼20 or to xffi6:87. In Panel C, trajectories

are seen to converge to the dimorphic population consisting of

most individuals contributing 7 and about 13% contributing 6.15

This is consistent with the prediction of the canonical equation
15 This occurs since neither 6 nor 7 is a NE in this IRP game restricted to these

two strategies. If xn

2 is added to the support of the initial distribution whose mean

contribution is close-by, simulations show convergence to the monomorphic

population at xn

2.
that has xn

2 as a convergence stable equilibrium and with the

results of Examples 2 and 3. It is also true that the initial points

that evolve to a particular mean contribution depend on which

evolutionary dynamics is used (in analogy to Example 12 for IP).

4. Discussion

From the above analysis, institutional incentives are an effec-
tive means to promote cooperation in the public goods game.
Furthermore, the NE structure of PGG with incentives (that
depend continuously on contribution levels) predicts the eventual
contribution level under the standard evolutionary dynamics (i.e.
the canonical equation and the (mean-field) replicator equation)
of this multi-player game that has a continuous strategy space. In
order to obtain stable positive contribution levels, the incentive
amount A must be large enough to overcome the individual free-
riding advantage in PGG.

The four examples considered in detail show that, when group
size is 4, E¼20 and A¼20, institutional reward (IR) destabilizes
free-riding behavior and cooperation can invade. However, IR is
unable to maintain full cooperation (i.e. contributing E¼20) since
the globally stable NE behavior has contribution level near 5.25. On
the other hand, cooperation cannot invade an initially free-riding
population under institutional punishment (IP) but, once estab-
lished, full cooperation can be maintained (i.e. 0 and 20 are both
NE). Finally, IRP (institutional reward and punishment) combines
both desired features of IR and IP leading to the prediction that the
population will become fully cooperative in the long run. Table 1
illustrates these results by characterizing stability of the rest points
of the canonical equation for all three incentive schemes.

In these examples, the probability an individual receives the
reward (or is punished) is a concave function of his contribution
level. There are many other possible institutional incentive
schemes. For instance, rather than a fixed incentive amount, it
may be more realistic to assume that these amounts decrease as
the group’s average contribution increases (e.g. businesses may feel
the costs associated to an incentive scheme are unwarranted when
all employees are performing well). It could also be argued that the
amounts increase in group average contribution to model situa-
tions where a business increases bonuses when it has a good year
(due to high performance levels of employees). Another realistic
change to the incentive scheme is to reward or punish more than
one individual, especially as group size increases. The approach
taken in this paper can be generalized to such incentive schemes.

On the other hand, it is also of interest to analyze rational
behavior in public goods games (with or without incentives)
repeated among the same group of players. Real-life situations
related to dilemmas between individual rationality and collective
advantage are often of this sort. Experimental results on repeated
PGG (Schram, 2000) show that individuals in a group tend to
adjust their contribution between rounds to be closer to the
group’s current average contribution. Such ‘‘reactive’’ strategies
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that are beyond the scope of the present model, warrant more
analysis in future theoretical research.
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